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Abstract

In this paper we prove that the solution of implicit difference scheme for a
semilinear parabolic equation converges to the solution of difference scheme for the
corresponding nonlinear stationary problem as t → ∞. For the discrete solution
of nonlinear parabolic problem, we get its long time asymptotic behavior which
is similar to that of the continuous solution. For simplicity, we consider one-
dimensional problem.
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1. Introduction

Let Ω = (0, l), f(x) ∈ L2(Ω), u0(x) ∈ H2(Ω) ∩H1
0 (Ω), φ(u) = u3, we consider the

following initial-boundary value problem:




∂u

∂t
=

∂2u

∂x2
− φ(u) + f(x) in Ω×R+

u(0, t) = u(l, t) = 0

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

By the usual approach[1−4] we can get the global existence of the solution of (1.1),
furthermore, the solution of (1.1) converges to the solution of the following stationary
problem (1.2) as t →∞.





∂2u

∂x2
− φ(u) + f(x) = 0 in Ω

u(0, t) = u(l, t) = 0.
(1.2)
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In this paper we prove that the solution of implicit difference scheme for (1.1)
converges to the solution of difference scheme for (1.2) as t →∞.

2. Finite Difference Scheme

The domain Ω is divided into small segments by points xj = jh (j = 0, 1, · · · , J),
where Jh = l, J is an integer and h is the space stepsize. Let ∆t be the time stepsize.
For any function w(x, t) we denote the values w(jh, n∆t) by wn

j (0 ≤ j ≤ J , n =
0, 1, 2, · · ·) and denote the discrete function wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·) by wn
h . We

introduce the following notations:

∆+wn
j = wn

j+1 − wn
j (0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·)

and
∆−wn

j = wn
j − wn

j−1 (1 ≤ j ≤ J, n = 0, 1, 2, · · ·).

We denote the discrete function
∆+wn

j

h
(0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) by δwn

h .

Similarly, the discrete function
∆2

+wn
j

h2
(0 ≤ j ≤ J − 2, n = 0, 1, 2, · · ·) is denoted by

δ2wn
h .
Denote the scalar product of two discrete functions un

h and vm
h by

(un
h, vm

h ) =
J∑

j=0

un
j vm

j h.

For 2 ≥ k ≥ 0, define discrete norms

‖δkwn
h‖p =

( J−k∑

j=0

∣∣∣
∆k

+wn
j

hk

∣∣∣
p
h
)1

p , +∞ > p > 1

and

‖δkwn
h‖∞ = max

j=0,1,···,J−k

∣∣∣
∆k

+wn
j

hk

∣∣∣.

The difference equation associate with (1.1) is:

un+1
j − un

j

∆t
=

∆+∆−un+1
j

h2
− φ(un+1

j ) + fj (2.1)

for j = 1, · · · , J − 1 and n = 1, 2, · · ·, where fj = f(xj).
The boundary condition of (2.1) is of the form

un
0 = un

J = 0

The discrete form corresponding to (1.2) is:

∆+∆−u∗j
h2

− φ(u∗j ) + fj = 0, 0 < j < J (2.2)
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u∗0 = u∗J = 0

Let the discrete function un
h and u∗h be the solution of difference equation (2.1) and

(2.2) respectively. For n = 0, 1, 2, · · ·, the discrete function vn
h = {vn

j | j = 0, 1, · · · , J}
is defined as vn

j = un
j − u∗j (j = 0, 1, · · · , J). Then vn

h satisfies

vn+1
j − vn

j

∆t
=

∆+∆−vn+1
j

h2
− [(un+1

j )3 − (u∗j )
3] (2.3)

for j = 1, · · · , J − 1 and n = 0, 1, 2, · · · Obviously, vn
0 = vn

J = 0, n = 0, 1, 2, · · ·.

3. Preliminary Results

Lemma 1. For any discrete function uh = {uj | j = 0, 1, · · · , J} satisfying the
homogeneous discrete boundary condition u0 = uJ = 0, we have

‖uh‖2 ≤ k1‖δuh‖2,

‖δuh‖2 ≤ k1‖δ2uh‖2,

where k1 is a constant independent of uh and h.
Proof. The first inequality is from [5], since

J−1∑

j=0

(∆+uj)
2 = −

J−1∑

j=1

uj∆+∆−uj ,

we can get the second inequality.
By [5], we have the following Lemma 2:
Lemma 2. For any discrete function uh = {uj | j = 0, 1, · · · , J}, there is

‖δkuh‖∞ ≤ k2‖uh‖
1−2k+1

2n
2 (‖δnuh‖2 + ‖uh‖2)

2k+1
2n ,

where 0 ≤ k < n and k2 is a constant independent of uh and h.
Lemma 3. Let the discrete function u∗h = {u∗j | j = 0, 1, · · ·J} be the solution of

the difference equation (2.2). There are

‖δ2u∗h‖2 ≤ k3,

‖δu∗h‖∞ ≤ k4, ‖u∗h‖∞ ≤ k5,

where k3, k4, k5 are constants independent of h.
Proof. It follows from (2.2) that

J−1∑

j=1

(∆+∆−u∗j
h2

)2
h−

J−1∑

j=1

∆+∆−u∗j
h2

(u∗j )
3h +

J−1∑

j=1

fj

∆+∆−u∗j
h2

h = 0,

since
J−1∑

j=1

(u∗j )
3 ∆+∆−u∗j

h2
h =−

J−1∑

j=0

[(u∗j+1)
3 − (u∗j )

3]
u∗j+1 − u∗j

h2
h
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=−
J−1∑

j=0

(u∗j+1 − u∗j )
2 (u∗j+1)

2 + u∗j+1u
∗
j + (u∗j )

2

h2
h ≤ 0,

we get
J−1∑

j=1

∆+∆−u∗j
h2

2

h ≤
J−1∑

j=1

f2
j h (3.1)

(3.1) together with the previous Lemmas imply the conclusion.
Lemma 4. Let the discrete function un

h and u∗h be the solution of difference equation
(2.1) and (2.2) respectively. There exist positive constants k6 and α independent of
h, n, ∆t such that

‖un
h − u∗h‖2

2 ≤ k6e
−αn∆t.

Proof. By (2.3), we have

J−1∑

j=1

(vn+1
j − vn

j )vn+1
j h =

J−1∑

j=1

∆+∆−vn+1
j

h2
vn+1
j h∆t

−
J−1∑

j=1

[(un+1
j )3 − (u∗j )

3]vn+1
j h∆t,

this implies

J−1∑

j=1

(vn+1
j )2h−

J−1∑

j=1

(vn
j )2h +

J−1∑

j=1

(vn+1
j − vn

j )2h + 2
J−1∑

j=0

(∆+vn+1
j

h

)2
h∆t

+ 2
J−1∑

j=1

(vn+1
j )2[(un+1

j )2 + un+1
j u∗j + (u∗j )

2]h∆t = 0,

the last term in the above equality is positive, then

J−1∑

j=1

(vn+1
j )2h−

J−1∑

j=1

(vn
j )2h + 2

J−1∑

j=0

(∆+vn+1
j

h

)2
h∆t ≤ 0,

by Lemma 1, there is a constant α > 0 such that

J−1∑

j=1

(vn+1
j )2h−

J−1∑

j=1

(vn
j )2h + α

J−1∑

j=1

(vn+1
j )2h∆t ≤ 0.

Therefore,
‖vn+1

h ‖2
2 ≤ 2e−α∆t‖vn

h‖2
2,

the proof of the lemma is completed.
Lemma 5. Let the discrete function un

h and u∗h be the solution of difference equation
(2.1) and (2.2) respectively, there exists constant k7 > 0 independent of h, n, ∆t such
that

‖un
h − u∗h‖6 ≤ k7.
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Proof. It follows from (2.3) that

J−1∑

j=1

(vn+1
j )6h−

J−1∑

j=1

(vn+1
j )5vn

j h =
J−1∑

j=1

(vn+1
j )5h(vn+1

j − vn
j )

=
J−1∑

j=1

(vn+1
j )5h∆t

(∆+∆−vn+1
j

h2
− [(un+1

j )3 − (u∗j )
3]

)

= −
J−1∑

j=0

[(vn+1
j+1 )5 − (vn+1

j )5]
∆+vn+1

j

h2
h∆t

−
J−1∑

j=1

(vn+1
j )6[(un+1

j )2 + un+1
j u∗j + (u∗j )

2]h∆t

= −
J−1∑

j=0

(∆+vn+1
j

h

)2
G(vn+1

j , vn+1
j+1 )h∆t

−
J−1∑

j=1

(vn+1
j )6[(un+1

j )2 + un+1
j u∗j + (u∗j )

2]h∆t

≤ −
J−1∑

j=0

(∆+vn+1
j

h

)2
G(vn+1

j , vn+1
j+1 )h∆t,

where
G(x, y) = x4 + x3y + x2y2 + xy3 + y4 ≥ 0,∀x, y ∈ R,

hence
J−1∑

j=1

(vn+1
j )6h ≤

J−1∑

j=1

(vn+1
j )5vn

j h. (3.2)

By Holder’s inequality, (3.2) yields that

J−1∑

j=1

(vn+1
j )6h ≤

J−1∑

j=1

(vn
j )6h,

this complete the proof.
A simple computation shows that

Lemma 6. Suppose the sequence {an} satisfies

an+1 ≤ e−c1∆tan + c2e
−c3(n+1)∆t∆t,

where an ≥ 0, ∀n ∈ N , ci > 0, i = 1, 2, 3, then there exist c4 > 0, σ > 0 such that

an ≤ c4e
−σn∆t.

4. Asymptotic Behavior of Implicit Difference Solution

In this section, we intend to study the asymptotic behavior of solutions of (2.1). It
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follows from (2.3) that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2+‖δ(vn+1
h − vn

h)‖2
2 + 2∆t

J−1∑

j=1

(∆+∆−vn+1
j

h2

)2
h

= 2
J−1∑

j=1

((un+1
j )3 − (u∗j )

3)
∆+∆−vn+1

j

h2
h∆t.

From Lemma 1 it follows that there exists θ > 0 such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2+‖δ(vn+1
h − vn

h)‖2
2 + ∆t‖δ2vn+1

h ‖2
2 + θ∆t‖δvn+1

h ‖2
2

≤ 2
J−1∑

j=1

((un+1
j )3 − (u∗j )

3)
∆+∆−vn+1

j

h2
h∆t. (4.1)

A simple computation shows that

J−1∑

j=1

(un+1
j )3∆+∆−vn+1

j = −
J−1∑

j=0

((un+1
j+1 )3 − (un+1

j )3)(vn+1
j+1 − vn+1

j )

= −
J−1∑

j=0

(un+1
j+1 − un+1

j )[(un+1
j+1 )2 + un+1

j+1 un+1
j + (un+1

j )2](vn+1
j+1 − vn+1

j )

= −
J−1∑

j=0

(∆+vn+1
j )2[(un+1

j+1 )2 + un+1
j+1 un+1

j + (un+1
j )2]

−
J−1∑

j=0

∆+u∗j [(u
n+1
j+1 )2 + un+1

j+1 un+1
j + (un+1

j )2]∆+vn+1
j .

Similarly,

J−1∑

j=1

(u∗j )
3∆+∆−vn+1

j = −
J−1∑

j=0

∆+u∗j [(u
∗
j+1)

2 + u∗j+1u
∗
j + (u∗j )

2]∆+vn+1
j .

Hence from (4.1) it follows that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 + ‖δ(vn+1
h − vn

h)‖2
2 + ∆t‖δ2vn+1

h ‖2
2 + θ∆t‖δvn+1

h ‖2
2

≤− 2
J−1∑

j=0

(∆+vn+1
j

h

)2
[(un+1

j+1 )2 + un+1
j+1 un+1

j + (un+1
j )2]h∆t

− 2
J−1∑

j=0

∆+u∗j
h

∆+vn+1
j

h
[(un+1

j+1 )2 + un+1
j+1 un+1

j + (un+1
j )2]h∆t

+ 2
J−1∑

j=0

∆+u∗j
h

∆+vn+1
j

h
[(u∗j+1)

2 + u∗j+1u
∗
j + (u∗j )

2]h∆t

=− 2
J−1∑

j=0

(∆+vn+1
j

h

)2
[(un+1

j+1 )2 + un+1
j+1 un+1

j + (un+1
j )2]h∆t
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− 2
J−1∑

j=0

∆+u∗j
h

∆+vn+1
j

h
Ajh∆t

≤− 2
J−1∑

j=0

∆+u∗j
h

∆+vn+1
j

h
Ajh∆t, (4.2)

where

Aj =(vn+1
j+1 )2 + vn+1

j+1 vn+1
j + (vn+1

j )2 + 2vn+1
j+1 u∗j+1 + 2vn+1

j u∗j
+ vn+1

j u∗j+1 + vn+1
j+1 u∗j . (4.3)

(4.2) implies that there exist ρ > 0, µ > 0 independent of h, n, ∆t such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 + ‖δ(vn+1
h − vn

h)‖2
2 + ∆t‖δ2vn+1

h ‖2
2 + ρ∆t‖δvn+1

h ‖2
2

≤µ
J−1∑

j=0

(∆+u∗j
h

)2
A2

jh∆t. (4.4)

By Lemma 3, it follows from (4.4) that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 + ‖δ(vn+1
h − vn

h)‖2
2 + ∆t‖δ2vn+1

h ‖2
2 + ρ∆t‖δvn+1

h ‖2
2

≤τ
( J−1∑

j=0

(vn+1
j )4h∆t +

J−1∑

j=0

(vn+1
j )2h∆t

)

≤τ(‖vn+1
h ‖3

6‖vn+1
h ‖2 + ‖vn+1

h ‖2
2)∆t. (4.5)

From Lemma 4 and Lemma 5, there are constants M > 0, α > 0 inpendent of h, n, ∆t

such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 + ‖δ(vn+1
h − vn

h)‖2
2 + ∆t‖δ2vn+1

h ‖2
2 + ρ∆t‖δvn+1

h ‖2
2

≤ M exp
{
− α

2
(n + 1)∆t

}
∆t. (4.6)

Therefore by Lemma 6, we have
Theorem 1. Let the discrete function un

h and u∗h be the solution of difference
equation (2.1) and (2.2) respectively. There exist constants M1 > 0, β > 0 independent
of h, n, ∆t such that

‖δ(un
h − u∗h)‖2

2 ≤ M1e
−βn∆t.

By (4.6), it suffices to show that from Theorem 1:
Theorem 2. Let the discrete function un

h and u∗h be the solution of difference
equation (2.1) and (2.2) respectively. For any positive integer s, there exist constants
M2 > 0, λ > 0 independent of h, n, ∆t such that

s∑

i=0

‖δ2(un+i
h − u∗h)‖2

2∆t ≤ M2e
−λn∆t.
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Remark. Let u∗ be the solution of (1.2), φh = {φj | j = 0, 1, · · · , J} be the discrete
function satisfies φj = u∗(xj), j = 0.1, · · · , J . By the well-known energy method, there
is C > 0 such that

‖δ(u∗h − φh)‖2 ≤ Ch2.

The authors are grateful to Prof. Zhou Yulin for his useful suggestion and discussion.
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