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Abstract

In this paper we are concerned with finite difference schemes for the numer-
ical approximation of linear Hamiltonian systems of ODEs. Numerical methods
which preserves the qualitative properties of Hamiltonian flows are called symplec-
tic integrators. Several symplectic methods are known in the class of Runge-Kutta
methods. However, no high order symplectic integrators are known in the class
of Linear Multistep Methods (LMMs). Here, by using LMMs as Boundary Value
Methods (BVMs), we show that symplectic integrators of arbitrary high order are
also available in this class. Moreover, these methods can be used to solve both
initial and boundary value problems. In both cases, the properties of the flow of
Hamiltonian systems are “essentially” maintained by the discrete map, at least for
linear problems.

1. Introduction

In many areas of physics, mechanics, etc., Hamiltonian systems of ODEs play a
very important role. Such systems have the following general form:

y′ = JT
2m 5H(y, t), t ∈ [t0, T ], y(t0) = y0 ∈ IR2m, (1)

where, by denoting with Om and Im the null matrix and the identity matrix of order
m, respectively,

J2m =
(

Om Im

−Im Om

)
.

Simple properties of the matrix J2m are the following ones:

J−1
2m = JT

2m = −J2m, det(J2m) = 1.

In equation (1) 5H(y, t) is the gradient of a scalar function H(y, t), usually called
Hamiltonian. In the case where H(y, t) = H(y), then the value of this function remains
constant along the solution y(t), that is:

H(y(t)) = H(y0), for all t ≥ t0.
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In particular, we shall consider the simpler case where

H(y) =
1
2
yT Sy, S = ST ∈ IR2m×2m. (2)

In this case, problem (1) is linear:

y′ = JT
2mSy, t ∈ [t0, T ], y(t0) = y0. (3)

In the following, we assume the matrix S to be nonsingular.
Another important feature of problem (3) is that oriented areas are preserved by

the flow. This because the exponential eJT
2mS is symplectic, that is:

(eJT
2mS)T J2meJT

2mS = J2m.

We now want to look for numerical schemes which satisfy the following two require-
ments:

1. they define a symplectic map and

2. they preserve the quadratic form (2).

Such methods are usually called symplectic or canonical integrators.
The known symplectic methods are essentially Runge-Kutta schemes[13,19,20,21],

while it seems that they are rare in the class of LMMs. This apparent weakness of
LMMs has been recently overcome by using them as Boundary Value Methods (BVMs).
We shall recall the main facts about BVMs in Section 2. In Section 3 we shall examine
one step methods, while in Section 4 we shall consider multistep methods. In Section
5 we shall analyze three classes of symplectic BVMs and, finally, in Section 6 some
numerical examples are reported.

2. Boundary Value Methods

In this section we briefly recall the basic results on BVMs[3,7,8]. Let us then consider
the IVP

y′ = f(t, y), t ∈ [t0, T ], y(t0) = y0. (4)

To approximate its solution, we consider the k-step LMM

k∑

i=0

αiyn+i = h
k∑

i=0

βifn+i, (5)

used over the partition

ti = t0 + ih, i = 0, · · · , N + k2 − 1, h =
T − t0

N + k2 − 1
,

where 0 ≤ k2 < k. As usual, yn+i and fn+i denote the approximations to y(tn+i)
and f(tn+i, y(tn+i)), respectively. It is known that the discrete problem (5) needs k
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independent conditions to be imposed, in order to get the discrete solution. The most
commonly used way of imposing such conditions is to fix the values of the discrete solu-
tion at the first k grid points, that is one fixes the values y0, · · · , yk−1. The continuous
problem (4) provides only the value y0, while the remaining ones must be obtained
by other means. In other words, the continuous IVP is approximated by means of a
discrete IVP. The methods obtained in this way will be called Initial Value Methods
(IVMs). This approach is very simple, but suffers of heavy limitations, summarized by
the two well-known Dahlquist barriers.

An alternative approach has been considered, where the k conditions needed by the
difference equation (5) are imposed by fixing the values

y0, · · · , yk1−1, yN , · · · , yN+k2−1, k1 + k2 = k. (6)

This means that the continuous IVP is now approximated by means of a discrete BVP.
The methods obtained in this way have been called BVMs. If the values (6) are fixed,
we say that scheme (5) is used with (k1, k2)-boundary conditions[7,8,9]. As before, only
the value y0 is provided by the continuous problem, while the remaining values must
be obtained in some appropriate way.

For the moment we shall neglect the problem of finding the unknown values in (6).
This problem will be considered in Section 2.1.

The definition of 0-stability and Absolute stability for IVMs are now generalized to
BVMs by introducing the following two kinds of polynomials.

Definition 1. A polynomial p(z) of degree k = k1 + k2 is said to be an Sk1k2-
polynomial if its roots are such that

|z1| ≤ |z2| ≤ · · · ≤ |zk1 | < 1 < |zk1+1| ≤ · · · ≤ |zk|,

while it is called an Nk1k2-polynomial if

|z1| ≤ |z2| ≤ · · · ≤ |zk1 | ≤ 1 < |zk1+1| ≤ · · · ≤ |zk|,

where the roots of unit modulus are simple.
We observe that, for k1 = k and k2 = 0, Nk1k2-polynomials reduce to Von Neumann

polynomials while Sk1k2-polynomials reduce to Schur polynomials. Now we can give
the following definitions for BVMs[7−9].

Definition 2. BVM (5) used with (k1, k2)-boundary conditions is said to be
0k1k2-stable if the polynomial

ρ(z) =
k∑

i=0

αiz
i

is an Nk1k2-polynomial. It is said to be (k1, k2)-Absolutely stable for a given q ∈ IC if
the polynomial

π(z, q) =
k∑

i=0

(αi − qβi)zi (7)
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is an Sk1k2-polynomial. The region

Dk1k2 = {q ∈ IC : π(z, q) is an Sk1k2-polynomial }

is called region of (k1, k2)-Absolute stability of the method. Finally, the method is said
to be Ak1k2-stable if IC− ⊆ Dk1k2 , where IC− is the left half of the complex plane.

The given definitions reduce to the well-known ones for IVMs when k1 = k and
k2 = 0. This means that the class of the BVMs contains the IVMs as a proper subclass.
Moreover, to fully understand the meaning of the above definitions, especially the
definition of (k1, k2)-Absolute stability, we report without proof the following result[8].
It will be re-derived in a more general form in Section 4.

We need the following notations: let

|z1| ≤ · · · ≤ |zk|

be the roots of polynomial (7), relative to the use of method (5) on the usual test
equation:

y′ = λy, y(t0) = y0, q = hλ. (8)

Then, the following result holds true.
Theorem 1. Let

|zk1−1| < |zk1 | < |zk1+1|, |zk1−1| < 1 < |zk1+1|.

Then, the discrete solution of method (5), used with (k1, k2)-boundary conditions, is
given by:

yn =zn
k1

(γ + O(|zk1/zk1+1|N−n) + O(|zk1+1|−N ))

+ O(|zk1−1|n) + O(|zk1+1|−(N−n)), (9)

where γ depends only on the initial conditions.
The above result states that the numerical solution is essentially generated by the

root zk1 , which therefore will be called generating root[8]. Moreover, we observe that
|zk1 | < 1, if q ∈ Dk1k2 .

From (8) and (9), it follows that the discrete solution will be an effective approx-
imation of the continuous one when zk1 is the principal root of the method. In this
case, if the method has order p, one has:

zk1 ≡ zk1(q) = eq + O(hp+1).

For this purpose, the next result holds true.
Theorem 2. If a k-step LMM, used with (k1, k2)-boundary conditions on problem

(8), is:
1. consistent,

2. 0k1k2-stable, and
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3. the associated polynomial ρ(z) has only one root of unit modulus (i.e. z = 1),

then there is a neighborhood D of q = 0 where the generating root of the method co-
incides with its principal root. In this case, the constant γ in (9) is given by γ =
y0 + O(hp), provided that the additional initial conditions are at least O(hp) accurate.

Proof. See [8].
The advantage of BVMs over IVMs is that now there are no more barriers concerning

the order of 0k1k2-stable and Ak1k2-stable methods. In fact, in Section 5 we shall
consider 0k1k2-stable, Ak1k2-stable methods of order up to 2k, for every odd k.

2.1. The additional conditions
Let us rewrite scheme (5), used with (k1, k2)-boundary conditions by fixing the

values (6), as follows:

k2∑

i=−k1

αi+k1yn+i = h
k2∑

i=−k1

βi+k1fn+i, n = k1, · · · , N − 1. (10)

Thus, we have a set of N − k1 equations in the N − k1 unknowns yk1 , · · · , yN−1. It
follows that if the values (6) are really known, then we can obtain the discrete solution.

However, the only value provided by the continuous problem is the initial con-
dition y0. It follows that we must regard the remaining k − 1 values y1, · · · , yk1−1,
yN , · · · , yN+k2−1 as unknowns. This implies that we must add an additional set of k−1
equations independent of those in (10). These equations can be derived by suitable
methods of order (at least) p− 1, in order to preserve the global error of the method[8].

Each of the methods presented in the next sections, will be associated with an
appropriate set of additional equations.

3. One-step Methods

We start considering the case of one-step methods. We shall assume the method to
be consistent, so that its form will be:

yn+1 − yn = h(β1fn+1 + β0fn). (11)

Since this method requires only one condition to be imposed, it will be an IVM. When
we apply this scheme to problem (3), then the discrete solution is given by:

(I − hβ1J
T
2mS)yn+1 = (I + hβ0J

T
2mS)yn,

that is, if we assume the matrix (I − hβ1J
T
2mS) to be nonsingular,

yn+1 = (I − hβ1J
T
2mS)−1(I + hβ0J

T
2mS)yn

=: ϕ(hJT
2mS)yn ≡ ϕ(hJT

2mS)n+1y0. (12)

Then, the method will be symplectic if

ϕ(hJT
2mS)T J2mϕ(hJT

2mS) = J2m,
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and
yT

n+1Syn+1 = yT
n Syn.

In this case, the following theorem due to Feng[11,13,14] can be used.
Theorem 3. Let ϕ(z) be a complex valued function such that:
1. ϕ(z) is analytical and with real coefficients in a neighborhood D of z = 0;

2. ϕ(z)ϕ(−z) ≡ 1 in D;

3. ϕ′(0) 6= 0.

Then, for all square matrices C and L, one has ϕ(hL)T Cϕ(hL) = C iff C L+LT C = O.

When C = J2m, then ϕ(hL) is symplectic iff L is Hamiltonian. Moreover, if in this
case L = JT

2mS, S = ST , then one also has:

SL + LT S = SJT
2mS + SJ2mS = O,

so that
ϕ(hL)T Sϕ(hL) = S

follows. The above relation implies the conservation of the quadratic form (2) for the
discrete sequence defined by:

yn+1 = ϕ(hL)yn.

Coming back to method (11), we observe that the iteration function ϕ(z) defined
in (12) is given by:

ϕ(z) =
1 + β0z

1− β1z
.

This function is evidently analytical and with real coefficients in a neighborhood D of
z = 0. Moreover, it is:

ϕ′(0) = β0 + β1 = σ(1) = ρ′(1) 6= 0,

so that the hypotheses 1) and 3) of Feng’s Theorem are fulfilled. It remains to satisfy
condition 2), which reads as follows:

1 + β0z

1− β1z
=

1 + β1z

1− β0z
,

thus giving β0 = β1. From the consistency conditions, it follows that β0 = β1 =
1
2
, so

that the well-known trapezoidal rule is obtained:

yn+1 − yn =
h

2
(fn+1 + fn).

This is, therefore, a symplectic method. This is a known result[11]. We shall extend this
result to general multistep methods with higher number of steps in the next section.
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4. Multistep Methods

Let us consider the k-step method (5), to be used with (k1, k2)-boundary conditions.
In the following, we shall assume that the method is irreducible, of order p ≥ 1, and
satisfying the hypotheses of Theorem 2. Then, there exists a neighborhood D of q = 0
where the generating root of the method, zk1 , coincides with the principal one.

Moreover, let
π(z, q) = ρ(z)− qσ(z), q = hλ, (13)

be its characteristic polynomial, whose roots are ordered by increasing moduli:

|z1| ≤ · · · ≤ |zk|.

To examine the properties of this method when used on problem (3), we need to
generalize the result of Theorem 1. To do this, we start analyzing the application of
the method to the following problem:

y′ = Jλy, t ∈ [t0, T ], y(t0) = y0,

where the vector y ∈ ICm, and

Jλ =




λ 1
. . . . . .

. . . 1
λ




m×m

. (14)

Let h = (T − t0)/(N + k2 − 1) be the used stepsize. Then, for each root zj = zj(hλ),
j = 1, · · · , k, of polynomial (13), we define the matrix:

Sj := zj(hJλ) =




zj(q) hzj(q)′ · · · hm−1zj(q)(m−1)

(m− 1)!
. . . . . .

...
. . . hzj(q)′

zj(q)




m×m

. (15)

Then, the following result holds true.
Lemma 1. Let the method (5) satisfy the hypotheses of Theorem 1. Moreover,

suppose the roots of π(z, hλ) to be simple. Then the discrete solution provided by the
method behaves, for n and N − n large, as:

yn = Sn
k1

(y0 + d(n,N, h))) + g(n,N, h). (16)

The quantities d(n,N, h) and g(n,N, h) are defined as follows:
1. d(n,N, h) = O(hp), g(n,N, h) = O(hp)(O(|zk1−1|n) + O(|zk1+1|n−N )),

in the case where zk1 is the principal root of the method and the additional con-
ditions have at least O(hp) accuracy;
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2. d(n,N, h) = v + O(|zk1/zk1+1|N−n) + O(|zk1+1|−N ), g(n,N, h) = O(|zk1−1|n) +
O(|zk1+1|n−N ), with the vector v depending only on the initial conditions, other-
wise.

Proof. In the following, we shall denote as case 1) the case where zk1 is the principal
root of the method and the additional conditions have at least O(hp) accuracy.

Since we have assumed the roots {zi} to be simple, it follows that the matrices
{S1, · · · , Sk} constitute a complete set of solvents[15] for the matrix polynomial

ρ(z)Im − hJλσ(z).

Then, the discrete solution provided by the method (5) can be written as:

yn =
k∑

j=1

Sn
j cj ,

where the vectors {cj} are determined by fixing the values

y0, y1, · · · , yk1−1, yN , · · · , yN+k2−1

of the discrete solution. This can be recast in matrix form as follows:

M




ck1

ci

cf


 =




y0

yi

yf


 ,

where:

ci =




c1
...

ck1−1


 , cf =




ck1+1
...
ck


 , yi =




y1
...

yk1−1


 , yf =




yN
...

yN+k2−1


 ,

and

M =




Im ET
k1−1 ET

k2

Wk1−1Sk1 Uk1−1Di Vk1−1Df

Wk2S
N
k1

Uk2D
N
i Vk2D

N
f


 ,

Wj =




Im

Sk1

...
Sj−1

k1


 , Ej =




1
...
1




j×1

⊗ Im,

Uj =




Im · · · Im

S1 · · · Sk1−1
...

...
Sj−1

1 · · · Sj−1
k1−1


 , Di =




S1
. . .

Sk1−1


 ,
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Vj =




Im · · · Im

Sk1+1 · · · Sk
...

...
Sj−1

k1+1 · · · Sj−1
k


 , Df =




Sk1+1

. . .
Sk


 .

After some calculations, one finds that

M−1 =




(Im + ET
k1−1B

−1
1 Wk1−1Sk1 + F H) (F B2 − ET

k1−1)B
−1
1 −F

B−1
1 (C G−1H −Wk1−1Sk1) B−1

1 (Îi + C G−1B2B
−1
1 ) −B−1

1 C G−1

−G−1H −G−1B2B
−1
1 G−1


 ,

where:

Îi = Ik1−1 ⊗ Im,

B1 = Uk1−1Di −Wk1−1Sk1E
T
k1−1,

B2 = Uk2D
N
i −Wk2S

N
k1

ET
k1−1,

C = Vk1−1Df −Wk1−1Sk1E
T
k2

,

G = Vk2D
N
f −Wk2Sk1E

T
k2
−B2B

−1
1 C

= (Vk2 + O(|zk1+1|−N ))DN
f ,

F = (ET
k2
− ET

k1−1B
−1
1 C)G−1

= (ET
k2
− ET

k1−1B
−1
1 C)D−N

f (Vk2 + O(|zk1+1|−N ))−1,

H = Wk2S
N
k1
−B2B

−1
1 Wk1−1Sk1 .

Moreover, by denoting with

ξi(h) = yi −Wk1−1Sk1y0, ξf (h) = yf −Wk1−1S
N
k1

y0,

one has that

ξi(h) =

{
O(hp), in case 1),

O(1), otherwise,
ξf (h) =

{
O(hp), in case 1),

O(|zk1 |N ), otherwise.

This allows us to derive the unknown vectors {cj} as follows:

ck1 = y0 + ET
k1−1B

−1
1 ξi(h) + F (B2B

−1
1 ξi(h)− ξf (h))

=

{
y0 + O(hp), in case 1),

y0 + v + O(|zk1/zk1+1|N ) + O(|zk1+1|−N ), otherwise,

where the vector v = ET
k1−1B

−1
1 ξi(h) depends, obviously, only on the initial conditions.

Similarly, we obtain:

ci = B−1
1 ((Îi + CG−1B2B

−1
1 )ξi(h)− CG−1ξf (h))

=

{
O(hp), in case 1),

O(1), otherwise,



242 L. BRUGNANO

and, finally,

cf = G−1(ξf (h)−B2B
−1
1 ξi(h)) =

{
D−N

f O(hp), in case 1),

D−N
f (O(1) + O(|zk1 |N )), otherwise.

From the above relations, one finally obtains:

yn = Sn
k1

ck1 + Dn
i ci + Dn

f cn
f

=





Sn
k1

(y0 + O(hp)) + O(hp)O(|zk1−1|n)+

O(hp)O(|zk1+1|n−N ), in case 1),

Sn
k1

(y0 + v + O(|zk1/zk1+1|N−n) + O(|zk1+1|−N ))+

O(|zk1−1|n) + O(|zk1+1|n−N ), otherwise.

Observe that when m = 1, we obtain the result of Theorem 1. Moreover, we observe
that from (16) one has that the discrete solution is now essentially generated by the
matrix Sk1 . This matrix will be called generating matrix, in analogy with the scalar
case.

We now apply the result of the previous lemma to the adjoint equation:

y′ = −JT
λ y, t ∈ [t0, T ], y(t0) = y0,

where Jλ is given by (14). The following result holds true.
Lemma 2. Let method (5) satisfy the hypotheses of Theorem 1, with k1 = ν

and k2 = ν − 1. Moreover, let the roots of the polynomial π(z, hλ) be simple, and the
polynomials ρ(z) and σ(z) satisfy the following requirements:

ρ(z) = −zkρ(z−1), σ(z) = zkσ(z−1). (17)

Then, the generating matrix of the method is given by S−T
ν , where Sν is given by (15),

with j = ν.
Proof. First of all, we observe that if the polynomials ρ(z) and σ(z) of the method

satisfy relation (17), then

π(ξ, q) := ρ(ξ)− qσ(ξ) = 0 iff π(ξ−1,−q) := ρ(ξ−1) + qσ(ξ−1) = 0.

It follows that if ξ(q) is one of the roots, then one has:

ξ(−q) = ξ(q)−1. (18)

Moreover, method (5) satisfies the hypotheses of Lemma 1. Then, by using arguments
similar to those used in the proof of that Lemma, we have that the generating matrix
needs to be zν(−hJλ)T . The thesis then completes by observing that from (18) one has

zν(−hJλ)T = zν(hJλ)−T ≡ S−T
ν .

Let us now consider the application of method (5), used with (k1, k2)-boundary
conditions, to problem (3). If the symmetric matrix S is real and nonsingular, then, by
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using arguments similar to those used in [16], it is possible to find a (generally complex)
matrix V such that

V T J2mV = J2m, V −1JT
2mSV =




Jλ1

. . .
Jλr

−JT
λ1

. . .
−JT

λr




=: Λ, (19)

where ±λ1, · · · ,±λr are the eigenvalues (not necessarily distinct) of JT
2mS, and

Jλi
=




λi 1
. . . . . .

. . . 1
λi




mi×mi

, i = 1, · · · , r.

Moreover, for i = 1, · · · , r, let
|z(i)

1 | ≤ · · · ≤ |z(i)
k | (20)

be the roots of the polynomial

π(z, qi) = ρ(z)− qiσ(z), qi = hλi,

and
|ẑ(i)

1 | ≤ · · · ≤ |ẑ(i)
k | (21)

those of
π(z,−qi) = ρ(z) + qiσ(z).

If method (5) satisfies the hypotheses of Theorem 2 and moreover for all i = 1, · · · , r:
a) the roots {z(i)

j } and {ẑ(i)
j } are all simple, and

b)

{ |z(i)
k1−1| < |z(i)

k1
| < |z(i)

k1+1|, |z(i)
k1−1| < 1 < |z(i)

k1+1|,
|ẑ(i)

k1−1| < |ẑ(i)
k1
| < |ẑ(i)

k1+1|, |ẑ(i)
k1−1| < 1 < |ẑ(i)

k1+1|,
then the discrete solution is given by

yn = Zn(y0 + d(n,N, h)) + g(n,N, h).

In the above expression,

Z = V




z
(1)
k1

(hJλ1)
. . .

z
(r)
k1

(hJλr )

ẑ
(1)
k1

(−hJλ1)
T

. . .
ẑ
(r)
k1

(−hJλr )
T




V −1,=: V ẐV −1,

(22)
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and, by denoting with

η = min
i
{|z(i)

k1+1|, |ẑ(i)
k1+1|}, ζ = max

i
{|z(i)

k1−1|, |ẑ(i)
k1−1|}, µ = max

i
{|z(i)

k1
/z

(i)
k1+1|, |ẑ(i)

k1
/ẑ

(i)
k1+1|},

1. d(n,N, h) = O(hp), g(n,N, h) = O(hp)(O(ζn) + O(ηn−N )),

if all the roots {z(i)
k1
} and {ẑ(i)

k1
} are principal roots (i.e. z

(i)
k1

= ehλi + O(hp+1)

and ẑ
(i)
k1

= e−hλi + O(hp+1), for all i = 1, · · · , r) and, moreover, the additional
conditions are at least O(hp) accurate;

2. d(n,N, h) = v + O(µN−n) + O(η−N ), g(n,N, h) = O(ζn) + O(ηn−N ),

where the vector v depends only on the initial conditions, otherwise.

This can be proved by using the result of Lemma 1 on each subproblem of the
transformed equation

ŷ′ = Λŷ, ŷ = V −1y.

Concerning the previous requirements a) and b), we can say that they are fulfilled
almost everywhere. In fact, concerning requirement a), if ξ is a multiple root of the
polynomial ρ(z)− qσ(z), then we have:

ρ(ξ)− qσ(ξ) = ρ′(z)− qσ′(q) = 0,

that is,
ρ(ξ)
σ(ξ)

=
ρ′(ξ)
σ′(ξ)

.

It follows that multiple roots may occur only in correspondence of the (at most) 2k− 1
roots of the polynomial:

ρ(z)σ′(z)− ρ′(z)σ(z).

On the other hand, concerning requirement b), it is possible to show that roots of equal
modulus may occur at most over a set of zero measure, in the q-plane. Moreover, this
set does not contain the origin, if the hypotheses of Theorem 2 are satisfied, as we have
assumed.

Then, we may say that the numerical solution originated by method (5) is essentially
generated by the matrix Z defined in (22). This justifies the following definition.

Definition 3. The method (5) is “essentially” symplectic if Z is a symplectic
matrix and, moreover,

ZT SZ = S, (23)

thus giving that the quadratic form (2) is “essentially” preserved by the discrete solu-
tion.
Moreover, in this case also the quantity

e(h) = max
n
|H(y(tn))−H(yn)| (24)
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essentially depends only on the stepsize h, and not on the number of the mesh points,
that is, on the length of the interval of integration T − t0. In particular, it follows
that, for essentially symplectic methods, e(h) is always O(hp), if all the zeros {z(i)

k1
}

and {ẑ(i)
k1
} are principal roots and the values (6) have at least O(hp) accuracy.

Let us then concentrate ourselves on the conditions which allow to obtain a matrix
Z which is symplectic and satisfies equation (23). The following result holds true.

Theorem 4. Let the method (5) satisfy the hypotheses of Lemma 2. Then the
method is essentially symplectic.

Proof. Obviously, the matrix Z needs to be real, if the original problem is real.
We start showing that

ZT J2mZ = J2m.

Since in equation (22) we already have that V T J2mV = V −T J2mV −1 = J2m, it suffices
to show that ẐT J2mẐ = J2m.

Since k1 = ν = k2 + 1, from Lemma 2 it follows that for all i = 1, · · · , r, one has:

ẑ(i)
ν ≡ z(i)

ν (−hλi) = z(i)
ν (hλi)−1 ≡ (z(i)

ν )−1,

so that
ẑ(i)
ν (−hJλi

) =
(
z(i)
ν (hJλi

)
)−1

.

Then, from (22) one has:

Ẑ =




z
(1)
ν (hJλ1)

. . .
z
(r)
ν (hJλr)

(z(1)
ν (hJλ1))

−T

. . .
(z(r)

ν (hJλr))
−T




.

It is an easy matter to verify that:

ẐT J2mẐ = J2m.

It remains to show that
ZT SZ = S.

From (19) and (22) one has:

V (ρ(Ẑ)− hΛσ(Ẑ))V −1 = ρ(Z)− hJT
2mSσ(Z) = O.

Moreover, since we have assumed the method to be irreducible, ρ(z) and σ(z) do not
have common factors. It follows that the matrix σ(Z) must be nonsingular, thus giving:

S =
J2m

h
ρ(Z)σ(Z)−1.
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By using this relation, and the fact that Z is symplectic, one finally obtains:

ZT SZ = ZT J2m

h
ρ(Z)σ(Z)−1Z = ZT J2mZ

1
h

ρ(Z)σ(Z)−1

=
J2m

h
ρ(Z)σ(Z)−1 = S.

5. Essentially Symplectic BVMs

In this section, we introduce three families of essentially symplectic BVMs. Common
features to all these methods are the following[8]:

1. they are consistent and irreducible;

2. the corresponding characteristic polynomials ρ(z) and σ(z) satisfy (17);

3. they have an odd number of steps: k = 2ν − 1;

4. they must be used with (ν, ν−1)-boundary conditions, and satisfy the hypotheses
of Theorem 2;

5. for all of them, the region of (ν, ν − 1)-Absolute stability coincides with the left
half of the complex plane, IC−, so that they are Aν,ν−1-stable;

6. they can be used for approximating both initial and boundary value problems [9].

Let us briefly examine these three families of methods.

5.1. Extended Trapezoidal Rules
The Extended Trapezoidal Rules (ETRs)[3] have the following form:

yn − yn−1 = h
ν−1∑

i=−ν

βi+νfn+i, ν = 1, 2, · · · . (25)

The coefficients {βi} are uniquely determined by imposing that the method has the
highest possible order, that is p = k + 1 = 2ν. It is possible to prove that these
coefficients are symmetric[3,8]:

βi = β2ν−1−i, i = 0, · · · , 2ν − 1,

so that the symmetry requirements (17) are satisfied. Scheme (25) is used with (ν, ν−1)-
boundary conditions. It follows that if it is used for n = ν, · · · , N−1, then the following
additional equations can be considered for the additional conditions:

yr − yr−1 = h
2ν−2∑

i=0

βi,rfi, r = 1, · · · , ν − 1, (26)

and

yr − yr−1 = h
2ν−2∑

i=0

βi,rfN−ν+i, r = N, · · · , N + ν − 2. (27)
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In each case, the coefficients {βi,r} are uniquely determined by imposing the corre-
sponding formula to have order k = 2ν − 1 [9].

Example 1.
When ν = 1, formula (25) reduces to the usual trapezoidal rule, which is the simplest

ETR and does not need additional equations.
For ν = 2, we get the ETR of order four:

yn − yn−1 =
h

24
(− fn+1 + 13fn + 13fn−1 − fn−2), n = 2, · · · , N − 1.

It can be used with the following two additional equations:

y1 − y0 =
h

12
(− f2 + 8f1 + 5f0),

and
yN − yN−1 =

h

12
(5fN + 8fN−1 − fN−2).

For ν = 2, we obtain the ETR of order six:

yn−yn−1 =
h

1440
(11fn+2−93fn+1+802fn+802fn−1−93fn−2+11fn−3), n = 3, · · · , N−1.

It can be used with the following four additional equations:

y1 − y0 =
h

720
(− 19f4 + 106f3 − 264f2 + 646f1 + 251f0),

y2 − y1 =
h

720
(11f4 − 74f3 + 456f2 + 346f1 − 19f0),

yN − yN−1 =
h

720
(− 19fN+1 + 346fN + 456fN−1 − 74fN−2 + 11fN−3),

yN+1 − yN =
h

720
(251fN+1 + 646fN − 264fN−1 + 106fN−2 − 19fN−3).

5.2. Extended Trapezoidal Rules of second kind
ETRs can be regarded as generalizations of the basic trapezoidal rule which pre-

serve the structure of the first characteristic polynomial ρ(z). Similarly, we may obtain
a new class of methods which preserve the structure of the second characteristic poly-
nomial, σ(z), of the trapezoidal rule. The following methods, which we call Extended
Trapezoidal Rules of second kind (ETR2s), are then obtained:

ν−1∑

i=−ν

αi+νyn+i =
h

2
(fn + fn−1). (28)

As in the case of ETRs, the coefficients {αi} are uniquely determined by imposing that
the method has the highest possible order, that is p = k + 1 = 2ν. It is possible to
prove that these coefficients are skew-symmetric[8]:

αi = −α2ν−1−i, i = 0, · · · , 2ν − 1,
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so that the symmetry requirements (17) are satisfied for these methods. Formula (28) is
used with (ν, ν−1)-boundary conditions. It follows that if we use it for n = ν, · · · , N−1,
then the following additional equations can be considered for the additional conditions:

2ν−1∑

i=0

αi,ryi =
h

2
(fr + fr−1), r = 1, · · · , ν − 1.

and
2ν−1∑

i=0

αi,ryN−ν−1+i =
h

2
(fr + fr−1), r = N, · · · , N + ν − 2.

The coefficients {αi,r} are uniquely determined by imposing the corresponding formula
to have order k.

Example 2.
When ν = 1, from formula (28) we find again the trapezoidal rule, which also is the

simplest ETR2.
For ν = 2 we obtain the following fourth order ETR2:

1
12

(yn+1 + 9yn − 9yn−1 − yn−2) =
h

2
(fn + fn−1), n = 2, · · · , N − 1.

In this case, the two required additional equations can be chosen as follows:

1
12

(y3 − 3y2 + 15y1 − 13y0) =
h

2
(f1 + f0, ),

1
12

(13yN − 15yN−1 + 3yN−2 − yN−3) =
h

2
(fN + fN−1, ).

For ν = 3 we obtain the sixth order ETR2:

1
120

(− yn+2 + 15yn+1 + 80yn − 80yn−1 − 15yn−2 + yn−3) =
h

2
(fn + fn−1, ).

It can be used with the following set of additional equations:

1
120

(9y5 − 55y4 + 140y3 − 180y2 + 235y1 − 149y0) =
h

2
(f1 + f0),

1
120

(− y5 + 5y4 + 100y2 − 95y1 − 9y0) =
h

2
(f2 + f1),

1
120

(9yN+1 + 95yN − 100yN−1 − 5yN−3 + yN−4) =
h

2
(fN + fN−1),

1
120

(149yN+1 − 235yN + 180yN−1 − 140yN−2 + 55yN−3 − 9yN−4) =
h

2
(fN+1 + fN ).

5.3. Top Order Methods
The last family of methods we consider is that of Top Order Methods (TOMs).

The name of these methods[1,8] derives from the fact that the coefficients of the generic
k-step (k = 2ν − 1) method in this class

ν−1∑

i=−ν

αi+νyn+i = h
ν−1∑

i=−ν

βi+νfn+i, (29)
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are determined so that the order p = 2k = 4ν − 2 is obtained, which is the maximum
order reachable by a k-step LMM.

Formula (29) is used with (ν, ν − 1)-boundary conditions. It follows that if we use
it for n = ν, · · · , N − 1, then suitable methods of order 2k − 1 must be used to obtain
the required 2ν − 2 additional equations (for more details[8,9]).

Example 3.
When ν = 1, from formula (29) we reobtain the trapezoidal rule, which is the

simplest TOM.
For ν = 2, we obtain the sixth order TOM:

1
60

(11yn+1 + 27yn − 27yn−1 − 11yn−2) =
h

20
(fn+1 + 9fn + 9fn−1 + fn−2),

which, if used for n = 2, · · · , N − 1, requires two additional equations. These can be
chosen as follows:

1
210

(52y3 + 81y2 − 108y1 − 25y0) =
h

70
(2f3 + 27f2 + 36f1 + 5f0),

and

1
210

(25yN + 108yN−1 − 81yN−2 − 52yN−3) =
h

70
(5fN + 36fN−1 + 27fN−2 + 2fN−3).

These equations are obtained by two methods of order five.

5.4. Nonlinear Problems
We have seen that essentially symplectic LMMs exist for linear Hamiltonian sys-

tems. However, in general we can not state that they also have the same properties
when used on nonlinear problems. Nevertheless, even in this case something can be
said. In fact, suppose that

y′ = f(y)

is a given nonlinear autonomous Hamiltonian system, and to use a k-step essentially
symplectic integrator to approximate its solution. We obtain:

ρ(E)yn − hσ(E)f(yn) = 0, (30)

where the polynomials ρ(z) and σ(z) satisfy the hypotheses of Theorem 4. In this case,
it is known [10] that the one-leg twin:

ρ(E)yn − hf(σ(E)yn) = 0, (31)

defines a symplectic map with respect to the matrix

M ⊗ J2m,

where M is a k × k matrix which depends only on the coefficients of the method.
Moreover, from equation (31), the following set of equations are readily obtained:

βi(ρ(E)yn+i − hf(σ(E)yn+i)) = 0, i = 0, · · · , k,
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where the {βi} are, as usual, the coefficients of the polynomial σ(z). Suppose to use
the scaling σ(1) = 1. Then, by calling

ŷn = σ(E)yn,

it follows that

ρ(E)ŷn − hσ(E)f(ŷn) = 0,

that is the new “averaged” variable ŷn satisfies equation (30). It follows that we can
expect method (30) to share many of the properties of its one-leg twin (31). Moreover,
its order is in general higher.

6. Numerical Examples

Let us consider the following linear Hamiltonian problem:

y′ =
(

0 10
−1 0

)
y, y(0) =

(
1
2

)
. (32)

The Hamiltonian function is:

H(y) =
1
2
yT

(
1 0
0 10

)
y.

In the following Table 1, we report the computed values of e(h) (see [24]). We want
to stress that this maximum value essentially depends only on the stepsize h used to
obtain the mesh, rather than on the number of mesh points, as we said in Section
4. The labels ETR4 and ETR24 denote the fourth order ETR and the corresponding
formula of second kind, respectively. Finally, TOM6 denotes the sixth order TOM.

Table 1 Numerical results relative to problem (32)
ETR4 ETR24 TOM6

h e(h) rate e(h) rate e(h) rate

0.1 3.360e-2 – 2.970e-2 – 6.705e-04 –

0.05 2.127e-3 3.98 1.919e-3 3.95 1.162e-05 5.85

0.025 1.333e-4 3.99 1.209e-4 3.99 1.861e-07 5.96

0.0125 8.339e-6 4.00 7.571e-6 4.00 2.926e-09 5.99

0.00625 5.213e-7 4.00 4.734e-7 4.00 4.581e-11 6.00

Consider now the following Hamiltonian system[22]:

y′ :=
(

y′1
y′2

)
=

(
sin(y2)
− sin(y1)

)
, y(0) =

(
0
1
2
π

)
, (33)

whose Hamiltonian is given by H(y) = cos(y1) + cos(y2). Again, we found that the
value of e(h) essentially depends only on the stepsize h, and not on the number of the
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mesh points, that is on the width of the interval of integration. The obtained values
for this quantity are reported in Table 2, for the same methods previously considered.

Table 2 Numerical results relative to problem (33)
ETR4 ETR24 TOM6

h e(h) rate e(h) rate e(h) rate

0.1 4.153e-6 – 7.557e-6 – 1.598e-08 –

0.05 2.602e-7 4.00 4.729e-7 4.00 3.469e-10 5.53

0.025 1.627e-8 4.00 2.956e-8 4.00 5.884e-12 5.88

0.0125 1.017e-9 4.00 1.848e-9 4.00 9.415e-14 5.97

Finally, we consider the two-body problem[14]

y′ :=




y′1
y′2
y′3
y′4


 =




−y3/ρ

−y4/ρ

y1

y2


 , ρ = (y2

3 + y2
4)

3
2 , t ∈ [0, 10], y(0) =




1
1
1
1


 . (34)

In this case, the angular momentum

M(y) = y2y3 − y1y4

is preserved, along with the Hamiltonian:

H(y) =
1
2
(y2

1 + y2
2)−

1√
y2
3 + y2

4

.

The initial value of the angular momentum, M(y(0)) = 0, is preserved up to machine
precision for all the considered methods. Concerning the Hamiltonian, the computed
values for e(h) are reported in Table 3.

Table 3 Numerical results relative to problem (34)

ETR4 ETR24 TOM6

h e(h) rate e(h) rate e(h) rate

0.1 5.271e-5 – 8.505e-5 – 3.800e-06 –

0.05 4.172e-6 3.66 7.088e-6 3.58 1.026e-07 5.21

0.025 2.960e-7 3.82 5.189e-7 3.77 2.166e-09 5.57

0.0125 1.976e-8 3.90 3.525e-8 3.88 3.963e-11 5.77
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