# A LINEARIZED DIFFERENCE SCHEME FOR THE KURAMOTO-TSUZUKI EQUATION\*1)

#### Z.Z. Sun

(Department of Mathematics and Mechanics, Southeast University, Nanjing, China)

#### Abstract

In this paper, a linearized three-level difference scheme is derived for the mixed boundary value problem of Kuramoto-Tsuzuki equation, which can be solved by double-sweep method. It is proved that the scheme is uniquely solvable and second order convergent in energy norm.

### 1. Introduction

 $Tsertsadze^{[1]}$  studied the finite difference method for the mixed boundary value problem of Kuramoto-Tsuzuki equation

$$\frac{\partial w}{\partial t} = (1 + ic_1)\frac{\partial^2 w}{\partial x^2} + w - (1 + ic_2)|w|^2 w, \quad 0 < x < 1, \ 0 < t \le T$$
 (1.1)

$$\frac{\partial w}{\partial x}(0,t) = 0, \qquad \frac{\partial w}{\partial x}(1,t) = 0, \quad 0 < t \le T$$
 (1.2)

$$w(x,0) = w_0(x), \quad 0 \le x \le 1$$
 (1.3)

where  $c_1$  and  $c_2$  are real constants, w(x,t) and  $w_0(x)$  complex valued functions. Divide [0,1] into M subintervals and [0,T] into K subintervals with meshsizes h and  $\tau$  respectively. Tsertsadze<sup>[1]</sup> constructed for (1.1)-(1.3) the following difference scheme

$$\delta_t w_0^{k+\frac{1}{2}} = (1+ic_1) \frac{2}{h^2} (w_1^{k+\frac{1}{2}} - w_0^{k+\frac{1}{2}}) + w_0^{k+\frac{1}{2}} - (1+ic_2) \left| w_0^{k+\frac{1}{2}} \right|^2 w_0^{k+\frac{1}{2}},$$

$$0 \le k \le K - 1 \tag{2.1}$$

$$\delta_t w_j^{k+\frac{1}{2}} = (1+ic_1)\delta_x^2 w_j^{k+\frac{1}{2}} + w_j^{k+\frac{1}{2}} - (1+ic_2) \left| w_j^{k+\frac{1}{2}} \right|^2 w_j^{k+\frac{1}{2}},$$

$$1 \le j \le M-1, \ 0 \le k \le K-1 \tag{2.2}$$

$$\delta_t w_M^{k+\frac{1}{2}} = (1+ic_1) \frac{2}{h^2} (w_{M-1}^{k+\frac{1}{2}} - w_M^{k+\frac{1}{2}}) + w_M^{k+\frac{1}{2}} - (1+ic_2) \left| w_M^{k+\frac{1}{2}} \right|^2 w_M^{k+\frac{1}{2}},$$

$$0 \le k \le K - 1 \tag{2.3}$$

<sup>\*</sup> Received January 24, 1994.

Z.Z. SUN

$$w_i^0 = w_0(x_i), \qquad 0 \le j \le M$$
 (2.4)

where  $x_j = jh$ ,  $t_k = k\tau$ ,  $w_j^k$  the approximation of  $w(x_j, t_k)$ ,  $w_j^{k+\frac{1}{2}} = (w_j^{k+1} + w_j^k)/2$ ,  $\delta_t w_j^{k+\frac{1}{2}} = (w_j^{k+1} - w_j^k)/\tau$ ,  $\delta_x^2 w_j^k = (w_{j+1}^k - 2w_j^k + w_{j-1}^k)/h^2$  and proved that the difference scheme is convergent in energy norm with the convergence rate of order  $O(h^{3/2})$  when  $\tau = O(h^{2+\epsilon})$  ( $\epsilon > 0$ ). (2) is nonlinear.

In this paper, for generality, we consider inhomogeneous equation. In other words, instead of (1.1), we consider

$$\frac{\partial w}{\partial t} = (1 + ic_1)\frac{\partial^2 w}{\partial x^2} + w - (1 + ic_2)|w|^2 w + f(x, t), \quad 0 < x < 1, 0 < t \le T \quad (1.1')$$

where f(x,t) is a known complex valued smooth function. We develop for (1.1') and (1.2)-(1.3) the difference scheme

$$\Delta_t w_0^k = (1 + ic_1) \frac{2}{h^2} (w_1^{\hat{k}} - w_0^{\hat{k}}) + w_0^{\hat{k}} - (1 + ic_2) \left| w_0^k \right|^2 w_0^{\hat{k}} + f(\frac{h}{3}, t_k),$$

$$1 \le k \le K - 1 \tag{3.1}$$

$$\Delta_t w_j^k = (1 + ic_1)\delta_x^2 w_j^{\hat{k}} + w_j^{\hat{k}} - (1 + ic_2) \left| w_j^k \right|^2 w_j^{\hat{k}} + f(x_j, t_k),$$

$$1 \le j \le M - 1, 1 \le k \le K - 1 \tag{3.2}$$

$$\Delta_t w_M^k = (1 + ic_1) \frac{2}{h^2} (w_{M-1}^{\hat{k}} - w_M^{\hat{k}}) + w_M^{\hat{k}} - (1 + ic_2) \left| w_M^k \right|^2 w_M^{\hat{k}} + f(1 - \frac{h}{3}, t_k),$$

$$1 \le k \le K - 1 \tag{3.3}$$

$$w_j^0 = w_0(x_j), \quad w_j^1 = w_0(x_j) + \tau w_1(x_j), \quad 0 \le j \le M$$
 (3.4)

where

$$w_1(x) = (1 + ic_1) \frac{d^2 w_0(x)}{dx^2} + w_0(x) - (1 + ic_2) |w_0(x)|^2 w_0(x) + f(x, 0)$$
$$w_j^{\hat{k}} = (w_j^{k+1} + w_j^{k-1})/2, \qquad \Delta_t w_j^k = (w_j^{k+1} - w_j^{k-1})/(2\tau).$$

The scheme (3) is a tridiagonal system of linear algebraic equations, which can be solved by double-sweep method. We suppose  $\tau = \alpha h^{\frac{1}{4} + \epsilon}$ , where  $\alpha$  and  $\epsilon$  are any two positive constants. In next two sections, we will prove that (3) is uniquely solvable and convergent in energy norm with convergence rate of order  $O(\tau^2 + h^2)$ . Farthermore, we will see that the optimal choice is  $\epsilon = 3/4$  or  $\tau = O(h)$ .

Let  $u \equiv \{u_j\}_{j=0}^M$  be a net function on  $I \equiv \{x_j\}_{j=0}^M$ , define the  $L_2$  norm

$$||u|| = \sqrt{h\left(\frac{1}{2}u_0^2 + \sum_{j=1}^{M-1} u_j^2 + \frac{1}{2}u_M^2\right)}.$$

## 2. Solvability

**Theorem 1.** The difference scheme (3) is uniquely solvable.

*Proof.* It is obvious that  $w^0$  and  $w^1$  are uniquely determined by (3). Now suppose  $w^0, w^1, \dots, w^k$   $(1 \le k \le K-1)$  be solved uniquely. Consider the system of homogeneous equations of (3) for  $w^{k+1}$ :

$$\frac{1}{2\tau}w_0^{k+1} = (1+ic_1)\frac{1}{h^2}(w_1^{k+1} - w_0^{k+1}) + \frac{1}{2}w_0^{k+1} - \frac{1}{2}(1+ic_2)\left|w_0^k\right|^2w_0^{k+1}$$
(4.1)

$$\frac{1}{2\tau}w_{j}^{k+1} = \frac{1}{2}(1+ic_{1})\delta_{x}^{2}w_{j}^{k+1} + \frac{1}{2}w_{j}^{k+1} - \frac{1}{2}(1+ic_{2})\left|w_{j}^{k}\right|^{2}w_{j}^{k+1}, \quad 1 \leq j \leq M-1 \quad (4.2)$$

$$\frac{1}{2\tau}w_M^{k+1} = (1+ic_1)\frac{1}{h^2}(w_{M-1}^{k+1} - w_M^{k+1}) + \frac{1}{2}w_M^{k+1} - \frac{1}{2}(1+ic_2)\left|w_M^k\right|^2w_M^{k+1}. \tag{4.3}$$

Multiplying (4.1)-(4.3) by  $\bar{w}_0^{k+1}$ ,  $2\bar{w}_j^{k+1}$  and  $\bar{w}_M^{k+1}$  respectively, then adding the results, we obtain

$$\begin{split} & \left\| \boldsymbol{w}^{k+1} \right\|^{2} / \tau \\ = & (1+ic_{1}) \left[ \frac{1}{h^{2}} \bar{w}_{0}^{k+1} (\boldsymbol{w}_{1}^{k+1} - \boldsymbol{w}_{0}^{k-1}) + \sum_{j=1}^{M-1} \bar{w}_{j}^{k+1} \delta_{x}^{2} \boldsymbol{w}_{j}^{k+1} \right. \\ & \left. + \frac{1}{h^{2}} \bar{w}_{M}^{k+1} (\boldsymbol{w}_{M-1}^{k+1} - \boldsymbol{w}_{M}^{k+1}) \right] h + \left\| \boldsymbol{w}^{k+1} \right\|^{2} \\ & - (1+ic_{2}) \left[ \frac{1}{2} \left| \boldsymbol{w}_{0}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{0}^{k+1} \right|^{2} + \sum_{j=1}^{M-1} \left| \boldsymbol{w}_{j}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{j}^{k+1} \right|^{2} + \frac{1}{2} \left| \boldsymbol{w}_{M}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{M}^{k+1} \right|^{2} \right] h \\ & = - (1+ic_{1}) \sum_{j=0}^{M-1} \left| \frac{1}{h} (\boldsymbol{w}_{j+1}^{k+1} - \boldsymbol{w}_{j}^{k+1}) \right|^{2} + \left\| \boldsymbol{w}^{k+1} \right\|^{2} \\ & - (1+ic_{2}) \left[ \frac{1}{2} \left| \boldsymbol{w}_{0}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{0}^{k+1} \right|^{2} + \sum_{j=1}^{M-1} \left| \boldsymbol{w}_{j}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{j}^{k+1} \right|^{2} + \frac{1}{2} \left| \boldsymbol{w}_{M}^{k} \right|^{2} \cdot \left| \boldsymbol{w}_{M}^{k+1} \right|^{2} \right] h. \end{split}$$

Taking the real part, we have

$$\left\|w^{k+1}\right\|^2/\tau \le \left\|w^{k+1}\right\|^2.$$

Thus  $\|w^{k+1}\|^2 = 0$  when  $\tau < 1$ . That is, (4) has only trivial solution. Therefore, (3) determines  $w^{k+1}$  uniquely. By the inductive principle, this completes the proof.

### 3. Convergence

**Lemma 1.** If a and b are positive and  $v_1, v_2, \dots, v_l$  nonnegtive and satisfy

$$v_k \le (1+a\tau)v_{k-1} + b\tau, \quad k = 2, 3, \dots, l$$

then

$$v_k \leq (v_1 + \frac{b}{a}) \exp[a(k-1)\tau], k = 1, 2, \cdots, l$$

Z.Z. SUN

**Theorem 2.** Suppose (1.1') and (1.2)-(1.3) have sufficiently smooth solution, then the difference scheme (3) is convergent in energy norm with the convergence rate of order  $O(\tau^2 + h^2)$ .

*Proof.* Differentiate (1.1') with respect to x, we obtain

$$\frac{\partial}{\partial t}(\frac{\partial w}{\partial x}) = (1 + ic_1)\frac{\partial^3 w}{\partial x^3} + \frac{\partial w}{\partial x} - (1 + ic_2)(2|w|^2\frac{\partial w}{\partial x} + w^2\frac{\partial \bar{w}}{\partial x}) + \frac{\partial}{\partial x}f(x,t)$$
 (5.1)

Noticing

$$\left. \frac{\partial w}{\partial x} \right|_{x=0} = 0 \tag{5.2}$$

we have

$$(1+ic_1) \frac{\partial^3 w}{\partial x^3}\Big|_{x=0} + \frac{\partial}{\partial x} f(x,t)\Big|_{x=0} = 0$$

or,

$$\frac{\partial^3 w}{\partial x^3}\bigg|_{x=0} = -\frac{1}{1+ic_1} \left. \frac{\partial}{\partial x} f(x,t) \right|_{x=0}$$
 (5.3)

Substituting (5.2) and (5.3) into Taylor expansion

$$|w|_{x=h} = w|_{x=0} + h \left. \frac{\partial w}{\partial x} \right|_{x=0} + \frac{1}{2} h^2 \left. \frac{\partial^2 w}{\partial x^2} \right|_{x=0} + \frac{1}{6} h^3 \left. \frac{\partial^3 w}{\partial x^3} \right|_{x=0} + O(h^4)$$

we obtain

$$\begin{aligned} \frac{\partial^2 w}{\partial x^2} \bigg|_{x=0} &= \frac{2}{h^2} (w|_{x=h} - w|_{x=0}) - \frac{1}{3} h \left. \frac{\partial^3 w}{\partial x^3} \right|_{x=0} + O(h^2) \\ &= \frac{2}{h^2} (w|_{x=h} - w|_{x=0}) + \frac{1}{3} h \frac{1}{1 + ic_1} \left. \frac{\partial}{\partial x} f(x, t) \right|_{x=0} + O(h^2). \end{aligned}$$

Noticing

$$\left. \frac{\partial w}{\partial t} \right|_{x=0} = (1 + ic_1) \left. \frac{\partial^2 w}{\partial x^2} \right|_{x=0} + \left. w \right|_{x=0} - (1 + ic_2) \left. |w|^2 w \right|_{x=0} + f(0,t)$$

we get

$$\begin{split} \frac{\partial w}{\partial t}\Big|_{x=0} &= (1+ic_1) \left[ \frac{2}{h^2} (w|_{x=h} - w|_{x=0}) + \frac{1}{3} h \frac{1}{1+ic_1} \frac{\partial}{\partial x} f(x,t) \Big|_{x=0} + O(h^2) \right] \\ &+ w|_{x=0} - (1+ic_2) |w|^2 w\Big|_{x=0} + f(0,t) \\ &= (1+ic_1) \frac{2}{h^2} (w|_{x=h} - w|_{x=0}) + w|_{x=0} - (1+ic_2) |w|^2 w\Big|_{x=0} \\ &+ f(\frac{h}{3},t) + O(h^2). \end{split} \tag{6.1}$$

Similarly, we have

$$\left. \frac{\partial w}{\partial t} \right|_{x=1} = (1+ic_1) \frac{2}{h^2} (w|_{x=1-h} - w|_{x=1}) + w|_{x=1} - (1+ic_2) |w|^2 w|_{x=1} + f(1-\frac{h}{3},t) + O(h^2). \tag{6.2}$$

Define net functions

$$W_j^k = w(x_j, t_k), \quad \phi_j^k = W_j^k - w_j^k.$$

Averging the equations (6.1) when  $t = t_{k-1}$  and  $t = t_{k+1}$ , we obtain

$$\Delta_t W_0^k = (1 + ic_1) \frac{2}{h^2} (W_1^{\hat{k}} - W_0^{\hat{k}}) + W_0^{\hat{k}} - (1 + ic_2) \left| W_0^k \right|^2 W_0^{\hat{k}} + f(\frac{h}{3}, t_k) + O(\tau^2 + h^2). \tag{7.1}$$

Similarly, we have

$$\Delta_t W_M^k = (1 + ic_1) \frac{2}{h^2} (W_{M-1}^{\hat{k}} - W_M^{\hat{k}}) + W_M^{\hat{k}} - (1 + ic_2) \left| W_M^k \right|^2 W_M^{\hat{k}} + f(1 - \frac{h}{3}, t_k) + O(\tau^2 + h^2).$$

$$(7.2)$$

Farthermore, from Taylor expansion, we have

$$\Delta_t W_j^k = (1 + ic_1)\delta_x^2 W_j^{\hat{k}} + W_j^{\hat{k}} - (1 + ic_2) \left| W_j^k \right|^2 W_j^{\hat{k}} + f(x_j, t_k) + O(\tau^2 + h^2).$$
 (7.3)  
$$W_j^0 = w_0(x_j), \qquad W_j^1 = w_0(x_j) + \tau w_1(x_j) + O(\tau^2 + h^2).$$
 (7.4)

Subtracting (3) from (7), we obtain the error equations

$$\Delta_t \phi_0^k = (1 + ic_1) \frac{2}{h^2} (\phi_1^{\hat{k}} - \phi_0^{\hat{k}}) + \phi_0^{\hat{k}} - (1 + ic_2) \left[ (W_0^k \bar{\phi}_0^k + \bar{w}_0^k \phi_0^k) W_0^{\hat{k}} + \left| w_0^k \right|^2 \phi_0^{\hat{k}} \right] + P_0^k, \quad 1 \le k \le K - 1$$

$$(8.1)$$

$$\Delta_t \phi_j^k = (1 + ic_1) \delta_x^2 \phi_j^{\hat{k}} + \phi_j^{\hat{k}} - (1 + ic_2) \left[ (W_j^k \bar{\phi}_j^k + \bar{w}_j^k \phi_j^k) W_j^{\hat{k}} + \left| w_j^k \right|^2 \phi_j^{\hat{k}} \right] + P_j^k, \quad 1 \le j \le M - 1, \ 1 \le k \le K - 1$$
(8.2)

$$\Delta_t \phi_M^k = (1 + ic_1) \frac{2}{h^2} (\phi_{M-1}^{\hat{k}} - \phi_M^{\hat{k}}) + \phi_M^{\hat{k}} - (1 + ic_2) \left[ (W_M^k \bar{\phi}_M^k + \bar{w}_M^k \phi_M^k) W_M^{\hat{k}} + \left| w_M^k \right|^2 \phi_M^{\hat{k}} \right] + P_M^k, \quad 1 \le k \le K - 1$$
(8.3)

$$\phi_i^0 = 0, \quad \phi_i^1 = Q_i, \quad 0 \le j \le M$$
 (8.4)

where  $P_j^k$  and  $Q_j$  are the truncation errors of difference scheme (3) and there exists a constant  $c_0$  such that

$$\left| P_j^k \right| \le c_0(\tau^2 + h^2), \quad |Q_j| \le c_0(\tau^2 + h^2), \quad 0 \le j \le M, \quad 1 \le k \le K - 1$$
 (9)

Denote

$$s = \max_{0 \le x \le 1, \ 0 \le t \le T} |w(x, t)|. \tag{10}$$

We prove by inductive method that

$$\left\|\phi^k\right\| \le c(\tau^2 + h^2), \quad 0 \le k \le K \tag{11}$$

where

$$c = c_0 \sqrt{1 + \frac{1}{2 + (1 + |c_2|)(2s + 1)s}} \exp\{3[2 + (1 + |c_2|)(2s + 1)s]T\}.$$

From (8.4) and (9), we have

$$\|\phi^0\| = 0, \quad \|\phi^1\| \le c_0(\tau^2 + h^2).$$
 (12)

Z.Z. SUN

Therefore (11) is valid for k = 0 and k = 1. Now suppose that (11) is true for k from 0 to  $l(1 \le l \le K - 1)$ . It follows from the inductive assumption that

$$\left|\phi_{j}^{k}\right| \le c(\tau^{2} + h^{2})h^{-\frac{1}{2}} \le \tilde{c}(h^{2\epsilon} + h^{\frac{3}{2}}) \le 1, \quad 0 \le j \le M, 1 \le k \le l$$
 (13.1)

for small  $\epsilon$  and therefore

$$\left| w_j^k \right| = \left| W_j^k - \phi_j^k \right| \le \left| W_j^k \right| + \left| \phi_j^k \right| \le s + 1, \quad 0 \le j \le M, 1 \le k \le l. \tag{13.2}$$

For  $1 \leq k \leq l$ , multiplying (8.1-3) by  $\frac{1}{2}\bar{\phi}_0^{\hat{k}}$ ,  $\bar{\phi}_j^{\hat{k}}$  and  $\frac{1}{2}\bar{\phi}_M^{\hat{k}}$  respectively, then adding the results, we obtain

$$\begin{split} &\left(\frac{1}{2}\bar{\phi}_{0}^{\hat{k}}\Delta_{t}\phi_{0}^{k} + \sum_{j=1}^{M-1}\bar{\phi}_{j}^{\hat{k}}\Delta_{t}\phi_{j}^{k} + \frac{1}{2}\bar{\phi}_{M}^{\hat{k}}\Delta_{t}\phi_{M}^{k}\right)h \\ &= -(1+ic_{1})\sum_{j=0}^{M-1}\left|\frac{1}{h}(\phi_{j+1}^{\hat{k}} - \phi_{j}^{\hat{k}})\right|^{2}h + \left\|\phi^{\hat{k}}\right\|^{2} \\ &- (1+ic_{2})\left[\frac{1}{2}(W_{0}^{k}\bar{\phi}_{0}^{k} + \bar{w}_{0}^{k}\phi_{0}^{k})W_{0}^{\hat{k}}\bar{\phi}_{0}^{\hat{k}} \right. \\ &+ \left. \sum_{j=1}^{M-1}(W_{j}^{k}\bar{\phi}_{j}^{k} + \bar{w}_{j}^{k}\phi_{j}^{k})W_{j}^{\hat{k}}\bar{\phi}_{j}^{\hat{k}} + \frac{1}{2}(W_{M}^{k}\bar{\phi}_{M}^{k} + \bar{w}_{M}^{k}\phi_{M}^{k})W_{M}^{\hat{k}}\bar{\phi}_{M}^{\hat{k}}\right]h \\ &- (1+ic_{2})\left(\frac{1}{2}\left|w_{0}^{k}\right|^{2} \cdot \left|\phi_{0}^{\hat{k}}\right|^{2} + \sum_{j=1}^{M-1}\left|w_{j}^{k}\right|^{2} \cdot \left|\phi_{j}^{\hat{k}}\right|^{2} + \frac{1}{2}\left|w_{M}^{k}\right|^{2} \cdot \left|\phi_{M}^{\hat{k}}\right|^{2}\right)h \\ &+ \left(\frac{1}{2}P_{0}^{k} \cdot \bar{\phi}_{0}^{\hat{k}} + \sum_{j=1}^{M-1}P_{j}^{k} \cdot \bar{\phi}_{j}^{\hat{k}} + \frac{1}{2}P_{M}^{k} \cdot \bar{\phi}_{M}^{\hat{k}}\right)h, \quad 1 \leq k \leq l. \end{split}$$

Taking the real part and using (10), (13) and (9), we get

$$(\|\phi^{k+1}\|^{2} - \|\phi^{k-1}\|^{2})/(4\tau)$$

$$\leq \|\phi^{\hat{k}}\|^{2} + (1+|c_{2}|)(2s+1)s\left(\frac{1}{2}|\phi_{0}^{k}| \cdot |\phi_{0}^{\hat{k}}| + \sum_{j=1}^{M-1}|\phi_{j}^{k}| \cdot |\phi_{j}^{\hat{k}}| + \frac{1}{2}|\phi_{M}^{k}| \cdot |\phi_{M}^{\hat{k}}|\right) h$$

$$+ \|P^{k}\|^{2} + \|\phi^{\hat{k}}\|^{2}$$

$$\leq \|\phi^{\hat{k}}\|^{2} + \frac{1}{2}(1+|c_{2}|)(2s+1)s(\|\phi^{k}\|^{2} + \|\phi^{\hat{k}}\|^{2}) + \|P^{k}\|^{2} + \|\phi^{\hat{k}}\|^{2}$$

$$\leq \frac{1}{2}[2 + \frac{1}{2}(1+|c_{2}|)(2s+1)s](\|\phi^{k+1}\|^{2} + \|\phi^{k-1}\|^{2})$$

$$+ \frac{1}{2}(1+|c_{2}|)(2s+1)s\|\phi^{k}\|^{2} + [c_{0}(\tau^{2}+h^{2})]^{2}$$

that is,

$$\left\{1 - 2\left[2 + \frac{1}{2}(1 + |c_2|)(2s+1)s\right]\tau\right\} \left\|\phi^{k+1}\right\|^2 \\
\leq \left\{1 + 2\left[2 + \frac{1}{2}(1 + |c_2|)(2s+1)s\right]\tau\right\} \left\|\phi^{k-1}\right\|^2$$

$$+2(1+|c_2|)(2s+1)s\tau \|\phi^k\|^2 + 4\tau [c_0(\tau^2+h^2)]^2, \quad 1 \le k \le l.$$

Therefore, when  $6[2 + \frac{1}{2}(1 + |c_2|)(2s + 1)s]\tau \le 1$ ,

$$\|\phi^{k+1}\|^{2} \leq \left\{1 + 6\left[2 + \frac{1}{2}(1 + |c_{2}|)(2s+1)s\right]\tau\right\} \|\phi^{k-1}\|^{2} + 3(1 + |c_{2}|)(2s+1)s\tau \|\phi^{k}\|^{2} + 6\tau [c_{0}(\tau^{2} + h^{2})]^{2}, \quad 1 \leq k \leq l.$$

It follows easily from this inequality that

$$\max(\|\phi^{k+1}\|^2, \|\phi^k\|^2)$$

$$\leq \{1 + 6[2 + (1 + |c_2|)(2s+1)s]\tau\} \max(\|\phi^k\|^2, \|\phi^{k-1}\|^2)$$

$$+ 6\tau[c_0(\tau^2 + h^2)]^2, \quad 1 \leq k \leq l.$$

Applying Lemma 1 and noticing (12), we know

$$\max(\|\phi^{l+1}\|^2, \|\phi^l\|^2)$$

$$\leq \{\max(\|\phi^1\|^2, \|\phi^0\|^2) + \frac{[c_0(\tau^2 + h^2)]^2}{2 + (1 + |c_2|)(2s + 1)s}\} \exp\{6[2 + (1 + |c_2|)(2s + 1)s]l\tau\}$$

$$\leq [1 + \frac{1}{2 + (1 + |c_2|)(2s + 1)s}][c_0(\tau^2 + h^2)]^2 \exp\{6[2 + (1 + |c_2|)(2s + 1)s]T\}$$
or,

 $\left\|\phi^{l+1}\right\| \le c(\tau^2 + h^2).$ 

That means, (11) is valid for k = l + 1. This completes the proof.

## References

- [1] G.Z. Tsertsvadze, On the convergence of difference schemes for the Kuramoto-Tsuzuki equation and for systems of reaction-diffusion type, Zh. Vychisl. Mat. Mat. Fiz., 31: 5 (1991), 698–707.
- [2] Z.Z. Sun, On fictitious domain method for the numerical solution to heat conduction equation with derivative boundary conditions, *J. Southeast Univ.*, **9** : 2 (1993).
- [3] Z.Z. Sun, On finite difference method for parabolic differential equations with initial boundary value problems and with moving boundary value problems, doctoral dissertation, Computing Center of Academia Sinica, 1990.