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Abstract

In this paper, a linearized three-level difference scheme is derived for the mixed
boundary value problem of Kuramoto-Tsuzuki equation, which can be solved by
double-sweep method. It is proved that the scheme is uniquely solvable and second

order convergent in energy norm.

1. Introduction

Tsertsadzell) studied the finite difference method for the mixed boundary value

problem of Kuramoto-Tsuzuki equation
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where ¢; and ¢y are real constants, w(z,t) and wy(x) complex valued functions.
Divide [0, 1] intoM subintervals and [0,7] into K subintervals with meshsizes h and 7
respectively. Tsertsadzel!l constructed for (1.1)-(1.3) the following difference scheme
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w) =wo(z;), 0<j<M (2.4)
) . . k+1
where x; = jh,t, = kT, w? the approximation of w(x;,1), wj+2 = (ﬂu}?Jrl + wf)/2,
k4L
5twj+2 = (wf“—wf)/r, 5310;-“ = (wf+1—2wf+w§_1)/h2 and proved that the difference

scheme is convergent in energy norm with the convergence rate of order O(h3/ 2) when
7= O(h?*T) (¢ > 0). (2) is nonlinear.

In this paper, for generality, we consider inhomogeneous equation. In other words,
instead of (1.1), we consider
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ai: - (1+¢cl)a—;’ tw— (1+ic) |lwPw+ f(z,t), 0<z<1,0<t<T (L1
where f(z,t) is a known complex valued smooth function. We develop for (1.1") and
(1.2)-(1.3) the difference scheme
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ﬁ(wlf — wg) —l—wlg — (14 icg) ’wlg‘ wlg + f(§7tk),

1<k<K-1 (3.1)
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Al = (1+ien)8,2wh + wh — (1 +ico) |wh| wf + f(zj,t),

1<j<M-11<k<K-1 (3.2)
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Atwﬁ/f =(1+ 201)ﬁ(w§4_1 - wﬁ/[) + w% — (14 icg) ’wﬁ/[’ wﬁ/[ + f(1— g’tk)’
1<k<K-1 (3.3)
wi =wo(y), wj=wo(x;) +Twi(z;), 0<j<M (3.4)
where
_dPwo(x) . 9
wi(z) = (1+ ZCI)W + wo(z) — (1 +ice) |wo(x)|” wo(x) + f(x,0)
wi = Wit +wh /2, Al = (Wl — Wi /(27).

The scheme (3) is a tridiagonal system of linear algebraic equations, which can be
solved by double-sweep method. We suppose 7 = ahi“, where o« and ¢ are any two
positive constants. In next two sections, we will prove that (3) is uniquely solvable and
convergent in energy norm with convergence rate of order O(72 + h?). Farthermore, we
will see that the optimal choice is € = 3/4 or 7 = O(h).

Let u = {uj}jj\io be a net function on I = {x;}

j—0, define the Ly norm

M-1
1 1
lul| = |h (2u02 + E u;? + 2uM2) .
Jj=1

2. Solvability

Theorem 1. The difference scheme (3) is uniquely solvable.
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Proof. It is obvious that w® and w! are uniquely determined by (3). Now suppose

wow!, -, wF (1 <k < K—1) be solved uniquely. Consider the system of homogeneous
equations of (3) for w*+*! :
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Ewﬁfl 1+ zcl)h2 (Wil —whihy + WM whi! 2(1 +icg) ’wM‘ whrt, (4.3)

Multiplying (4.1)-(4.3) by wk+1 kaH and war1 respectively, then adding the results,

we obtain
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Taking the real part, we have
=i <
Thus Hwk+1H2 = 0 when 7 < 1. That is, (4) has only trivial solution. Therefore, (3)

determines w**1 uniquely. By the inductive principle, this completes the proof.

3. Convergence

Lemma 1. If a and b are positive and vy,v2, - - vy nonnegtive and satisfy
v < (1+ar)vk_1+br, k=2,3,---,1

then ,
v < (v1 + =) expla(k — V)71],k=1,2,---,1
a
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Theorem 2. Suppose (1.1°) and (1.2)-(1.3) have sufficiently smooth solution, then
the difference scheme (3) is convergent in energy norm with the convergence rate of
order O(12 + h?).

Proof. Differentiate (1.1") with respect to x, we obtain

0 ow Bw  Ow 9 Ow o 0w 0
LY 21 +ie) S+ Y atie) P L+l + L t) (5.1
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— =0 5.2
ar |, (5.2)
we have X
., 0 0
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0w 1 0
| == = fla,t .
o3| 1+ic; Ox (=, )33:0 (53)
Substituting (5.2) and (5.3) into Taylor expansion
B ow 1, 5 0w 1,5 Pw 4
w\z:h— W|$:0+h67x:0+§h W:ﬁ: +6h @ _ +O(h )
we obtain
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07| T 72 (Wlop = Wlomo) = 30 53 . + O(n7)
2 1 1 0
_~ _ “h—— L f(xt h?).
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Ow T , 2
Gl =) 5 _ wlmg = (L+ico) [wf*w| _ + f(0,7)
we get
ow 2 1 1 0
e B - “he Lt h?
G| = (rie) [l = vl + g ol +00)
+ W], = (1+ico) [wfw| _+ f(0,1)
.2 .
= (Lt ie1) 5 (W], = wlyg) + Wl — (L4 den) [wlPw|
h
+ /(3.0 + O(h?). (6.1)
Similarly, we have
ow L2 ) 2 h 2
ol = (1+zcl)ﬁ(w|x:1_h—w\x:1)+w|x:1—(1 +ic) |w| w‘z:1+f(1—§,t)+0(h ).

(6.2)
Define net functions

k k k k
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Averging the equations (6.1) when ¢ = t;_; and t = 441, we obtain
2

AWE = (Itic1) 3

- ~ ~ ) 2 ~ h
(WE W)+ W3 — (Lticn) [WE| W5 +1(5, ) +0(> +1%). (T.1)

Similarly, we have
2

AW, = (1+ic1) -

~ ~ ~ 2 “ h
(Whr 1= WED+ Wiy = (Lrico) (Wi | Wi+ (-5, 1) +O(2+1%),
(7.2)

Farthermore, from Taylor expansion, we have
ko , 211k B , k|2 11k , 2, 12
AW = (1 4ide1)0, Wi+ Wi — (1 +ico) (W | Wi+ f(zj,t,) +O(r" + h%). (7.3)
W]Q :wo(l'j), le :wo(mj)+7w1(mj)+0(7'2+h2). (74)
Subtracting (3) from (7), we obtain the error equations
N2 i ? . k| - i
Ao = (L-+ier) 15 (0F — 6F) + 66 — (1 -+ ica) [(Wof + i)Wy
2 ~
| B R 9 8.1)
At = (14 ie1)020F + ¢F — (1 + icy) [(Wf&? +ak bWk

2 I .
+ |wh] ¢§}+Pf, 1<j<M-1,1<k<K-1 (8.2)
Ay = (1 +ier) 15 (R — o) + 0y — (Lt ieo) [(Whdhy + @froh) Wy
k2 k k
—|—‘wM‘ b +PE, 1<k<K-1 (8.3)

$) =0, ¢;=Q;, 0<j<M (8.4)

where Pf and @; are the truncation errors of difference scheme (3) and there exists a
constant cg such that

]pf\gco(#m?), Qjl <co(r+h%), 0<j<M, 1<k<K-1 (9)

Denote
8= pmax |w(zx,t)]. (10)
We prove by inductive method that
|6H| <er? +h?), 0<k<K (11)
where
- CO\/1 o |Ci|)(28 17 PR+ (1 lea]) (25 + DsIT).

From (8.4) and (9), we have
ol -o. o] <atet 10 w
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Therefore (11) is valid for £k = 0 and k = 1. Now suppose that (11) is true for k£ from 0
to (1 <1< K —1). It follows from the inductive assumption that

6| <e(r?+ hHRTE <+ hT) <1, 0< <M 1<k<I (13.1)
for small € and therefore

‘wﬂ _ ’ij _ ¢,§‘ < ‘W]k’ i ‘(pﬂ <s+1, 0<j<M,1<k<lI (13.2)

For 1 < k <[, multiplying (8.1-3) by %qgg, q%“ and %Jﬁw respectively, then adding the
results, we obtain

1. M—-1 1_:
<2¢’5At¢>§ + 2 B + 2¢§4At¢§w) h
j=1

(ki — o) e o

M-1
= —(L+ic1) Y
j=0

~ (1 ica) | 5 (W + by W}

5 EeE +akobwhah + SOVhdh, + w’wwﬁéﬁ} h
j=1
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1 . M-1 . 1 .

+ (2 RS J@k-¢§+2pﬁ-¢ﬁ4) h, 1<k<I
j=1

Taking the real part and using (10), (13) and (9), we get
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k|2 2 12y12
+2(1 + |e2])(25 + 1)sT H¢ H +47lco(T7+ h))7, 1<EkE<L
Therefore, when 6[2 4+ 3 (1 + |ea)(2s + 1)s]T < 1,
2 1 2
|65 <1+ 612+ S+ [ea) (s + 1)s)ry || 0"
k|2 2 12y12
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It follows easily from this inequality that
2 2

et
<{1+ 62+ (1 + |eaf)(25 + 1)s]7} max(|¢*]
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2 2
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Applying Lemma 1 and noticing (12), we know
2 9 2
o'
2
A RAE
1
2+ (1+e2|)(2s+ 1)s

maX(H ¢z+1’

[co(T2 + h2))?
(1+|e2|)(2s 4+ 1)s

Jleo(r? + h?)]? exp{6[2 + (1 + |e2|)(25 + 1)s]T'}

S

exp{6[2 + (1 + |c2|)(2s + 1)s]iT}

<[1+

or,
H¢1+1H < C(TQJrhz)_

That means, (11) is valid for kK = + 1. This completes the proof.
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