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Abstract

In the paper we are concerned with double S-breaking cubic turning points of
two-parameter nonlinear problems in the presence of Z2-symmetry. Three extended
systems are proposed to determine double S-breaking cubic turning points. We
show that there exist two kinds of singular point path passing through double S-
breaking cubic turning point, One is the simple quadratic turning point path, the
other is the pitchfork bifurcation point path.

1. Introduction

Many natural phenomena possess more or less exact symmetries, which are likely
to be reflected in any sensible mathematical model. Idealizations such as periodic
boundary conditions can produce additional symmetries. Phenomena whose models
exhibit both symmetry and nonlinearity lead to problems which are challenging and rich
in complexity. Problems with symmetries can show a rich bifurcation behaviour. The
occurrence of multiple steady state bifurcation is mostly due to underlying symmetries.
This gives rise to the difficulties to numerical computation. However, in the recent
years, the tools provided by group theory and representation theory have proven to
be highly effective in treating nonlinear problem involving symmetry. By these means,
highly complicated situations may be decomposed into a number of simpler ones which
are already understood or are at least easier to handle. In the presence of symmetries,
the codimension of singularity reduces considerably and the symmetric systems have
some special equivariance (see Golubitsky et al. [2], Werner and Spence[6]), which can
simplify the bifurcation analysis near the multiple singular points and the numerical
computation.

For the bifurcation analysis and numerical computation of double S-breaking
quadratic turning points, See Werner[5], [6], also see recently Wu et al. [7] in which
the authors presented a detail discussion in two-parameter dependent equations with
Z2-symmetry. However, the bifurcation analysis and numerical computation of double
S-breaking cubic turning points seems to be rarely considered. The major aim of this
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paper is to present an approach for the computation of double S-breaking cubic turning
points. The main idea is that, in a sense to be precise in Theorem 2.2 of Section 2, the
double S-breaking cubic turning point is a simple quadratic turning point of the large
extended system (1.13) provided certain conditions are satisfied. Hence, we can use the
standard methods for simple turning points on this large extended system to give the
required double S-breaking cubic turning points.

Consider the nonlinear problem

f(x, λ, µ) = 0, f : X ×R2 → X , (1.1)

where X is a Hilbert space and f ∈ C3. We assume that f satisfies Z2- symmetry:
there exist a linear operator S ∈ L(X) such that S 6= I, S2 = I and

Sf(x, λ, µ) = f(Sx, λ, µ), ∀(x, λ, µ) ∈ X ×R2 . (1.2)

Then X and its dual space X ′ are naturally splitted into

X = Xs ⊕Xa, X ′ = X ′
s ⊕X ′

a (1.3)

where
Xs = {x ∈ X | Sx = x}, Xa = {x ∈ X | Sx = −x},
X ′

s = {ψ ∈ X ′ | ψS = ψ}, X ′
a = {ψ ∈ X ′ | ψS = −ψ}.

It is easy to show that

ψx = 0, if (ψ, x) ∈ X ′
s ×Xa or (ψ, x) ∈ X ′

a ×Xs . (1.4)

We specify λ as the bifurcation parameter, and µ the auxiliary parameter. (x, λ, µ)
is called a singular point of (1.1) if f(x, λ, µ) = 0 and dimN((fx(x, λ, µ)) ≥ 1. In this
paper, we are concerned with double S-breaking cubic turning point.

Definition 1.1. A point (x0, λ0, µ0) is a double S-breaking turning point of (1.1)
with respect to λ if

f(x0, λ0, µ0) = 0, x0 ∈ Xs, (1.5a)

N(f◦x) = span{φ1, φ2}, φ1 ∈ Xs\{0}, φ2 ∈ Xa\{0}, (1.5b)

R(f◦x) = {x ∈ X | ψ1x = ψ2x = 0}, ψ1 ∈ X ′
s\{0}, ψ2 ∈ X ′

a\{0}, (1.5c)

ψ1f
◦
λ 6= 0, ψiφi 6= 0, i = 1, 2 (1.5d)

where N(f◦x) is the null space of fx(x0, λ0, µ0). R(f◦x) is the range of fx(x0, λ0, µ0).
A double S-breaking turning point is called a double S-breaking quadratic turning

point of (1.1) if
D111 6= 0, D122 6= 0, D212 6= 0. (1.6)

A double S-breaking turning point is called a double S-breaking cubic turning point of
(1.1) if

D111 = 0, D122 = 0, D212 = 0, (1.7)
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where
Dijk := ψif

◦
xxφjφk, i, j, k = 1, 2.

Definition 1.2. A point (x0, λ0, µ0) is called a simple quadratic turning point of
(1.1) with respect to λ if

f(x0, λ0, µ0) = 0, (1.8a)

N(f◦x) = span{φ}, φ ∈ X\{0}, (1.8b)

R(f◦x) = {x ∈ X | ψx = 0}, ψ ∈ X ′\{0}, (1.8c)

ψf◦λ 6= 0, (1.8d)

ψf◦xxφφ 6= 0, (1.8e)

ψφ 6= 0. (1.8f)

Definition 1.3. (x0, λ0, µ0) is called a pitchfork bifurcation point of (1.1) if

f(x0, λ0, µ0) = 0, x0 ∈ Xs, (1.9a)

N(f◦x) = span{φ}, φ ∈ Xa\{0}, (1.9b)

R(f◦x) = {x ∈ X | ψx = 0}, ψ ∈ X ′
a\{0}, (1.9c)

bλ := ψ(f◦xxφvλ + f◦xλφ) 6= 0, (1.9d)

ψφ 6= 0 (1.9e)

where vλ is defined by
f◦xvλ + f◦λ = 0, vλ ∈ Xs. (1.10)

A pitchfork bifurcation point (x0, λ0, µ0) is called a quadratic pitchfork bifurcation
point if

bz := ψ(fxxxφ3 + 3fxxvzφ) 6= 0 (1.11)

where vz is defined by
f◦xvz + f◦xxφφ = 0, vz ∈ Xs. (1.12)

In [5], [6], the following two extended systems were used to compute double S-
breaking quadratic turning point.

Fi(x, φ, λ, µ) =




f(x, λ, µ)
fxφ

liφ− 1


 = 0, i = 1, 2 (1.13)

where l1 ∈ X ′
s, l2 ∈ X ′

a such that l1φ1 − 1 = 0 and l2φ2 − 1 = 0 respectively.
The following theorem ensures that the double S-breaking quadratic turning point

can be detected by solving (1.13) via Newton’s method.
Theorem 1.1.[6] Let (x0, λ0, µ0) be a double S-breaking quadratic turning point

of f(x, λ, µ) = 0 with respect to λ. With Fi(x, φ, λ, µ) given by (1.13) considered as
a mapping on Xs × Xσ × R for fixed µ = µ0, then Fi(x, φ, λ, µ) = 0 is regular at
(x0, φi, λ0, µ0), i = 1, 2. Here and below σ = s if i = 1 and σ = a if i = 2.
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An outline of the paper is as follows. Section 2 contains a discussion about double S-
breaking cubic turning point. We show that there exist two kinds of singular point path
passing through the double S-breaking cubic turning point, one pitchfork bifurcation
point path and one simple quadratic turning point path. In Section 3, we propose three
extended systems, which could be used to calculate double S-breaking cubic turning
point. Two numerical examples are given in Section 4.

2. Double S-Breaking Cubic Turning Points

Lemma 2.1. Let (x0, λ0, µ0) be a double S-breaking cubic turning point. With
Fi(y, µ) mapping Y ×R → Y = Xs ×Xσ ×R, we have

(i). For σ = s, N(F ◦
y ) = span{Φs

1}, R(F ◦
y ) = {y ∈ Y | Ψs

1y = 0}, where

F ◦
y = F1y(y0, µ0), y0 = (x0, φ1, λ0), (2.1a)

Φs
1 = (φ1, z1, 0)T , Ψs

1 = (ζ1, ψ1, 0), (2.1b)

f◦xz1 + f◦xxφ1φ1 = 0, z1 ∈ Xs, l1z1 = 0, (2.1c)

ζ1f
◦
x + ψ1f

◦
xxφ1 = 0, ζ1f

◦
λ + ψ1f

◦
λxφ1 = 0, ζ1 ∈ X ′

s (2.1d)

(ii). For σ = a, N(F ◦
y ) = span{Φa

1}, R(F ◦
y ) = {y ∈ Y | Ψa

1y = 0}
where

F ◦
y = F2y(y0, µ0), y0 = (x0, φ2, λ0), (2.2a)

Φa
1 = (φ1, z0, 0)T , Ψa

1 = (ζ0, ψ2, 0), (2.2b)

f◦xz0 + f◦xxφ1φ2 = 0, z0 ∈ Xa, l2z0 = 0, (2.2c)

ζ0f
◦
x + ψ2f

◦
xxφ2 = 0, ζ0f

◦
λ + ψ2f

◦
λxφ2 = 0, ζ0 ∈ X ′

s. (2.2d)

We notice that ζ1 in (2.1d) and ζ0 in (2.2d) are determined uniquely.
Proof.
(i) For σ = s, consider

F ◦
1yW = 0, w = (w1, w2, c0)T , w1 ∈ Xs, w2 ∈ Xs, c0 ∈ R. (2.3)

Expanding (2.3) we have

f◦xw1 + c0f
◦
λ = 0 (2.4a)

f◦xxφ1w1 + f◦xw2 + c0f
◦
λxφ1 = 0 (2.4b)

l1w2 = 0 (2.4c)

Applying < ψ1, · > to (2.4a), we have c0ψ1f
◦
λ = 0. Thus c0 = 0 since ψ1f

◦
λ 6= 0. We

may assume w1 = α1φ1. Substituting w1 = α1φ1 and c0 = 0 into (2.4b) we derive

α1f
◦
xxφ1φ1 + f◦xw2 = 0 (2.5b)

Due to (2.5b) together with (2.4c), we may assume w2 = α1z1, where z1 is defined by

f◦xxφ1φ1 + f◦xz1 = 0, z1 ∈ Xs, l1z1 = 0.
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Therefore
N(F ◦

1y) = span{Φs
1}, Φs

1 = (φ1, z1, 0)T .

Consider
ξ · F ◦

1y = 0 (2.6)

where ξ = (ξ1, ξ2, c1) ∈ X ′
s ×X ′

s ×R. Expanding (2.6) we derive

ξ1f
◦
x + ξ2f

◦
xxφ1 = 0, (2.7a)

ξ2f
◦
x + c1l1 = 0, (2.7b)

ξ1f
◦
λ + ξ2f

◦
λxφ1 = 0. (2.7c)

From (2.7b), we obtain c1l1φ1 = 0, thus c1 = 0 and we may assume ξ2 = β1ψ1.
Substituting ξ2 into (2.7a), (2.7c), we then assume ξ1 = β1ζ1 where ζ1 ∈ X ′

s is defined
by

ζ1f
◦
x + ψ1f

◦
xxφ1 = 0, ζ1f

◦
λ + ψ1f

◦
λxφ1 = 0.

The proof of (i) is completed. Similarly we could prove (ii).
From Lemma 2.1 we know that Fiy(y0, µ0) = 0, with y ∈ Y = Xs × Xσ × R, has

one dimensional null space spanned by Φσ
1 . To guarantee (y0, µ0) = (x0, φi, λ0, µ0) is a

simple quadratic turning point of Fi(y, µ) = 0 with respect to µ, the following condition
is assumed

F ◦
µ /∈ R(F ◦

iy) (2.8)

which is equivalent to Ψσ
1F ◦

µ 6= 0, i.e.

ds
0 := ζ1f

◦
µ + ψ1f

◦
µxφ1 6= 0, for σ = s, (2.8a)

da
0 := ζ0f

◦
µ + ψ2f

◦
µxφ2 6= 0, for σ = a, (2.8b)

Now, we are in a position to state our main results.
Theorem 2.2. Assume (2.8). Let (x0, λ0, µ0) be a double S-breaking cubic turning

point of (1.1) with respect to λ. Then
(i) For σ = s, (y0, µ0) = (x0, φ1, λ0, µ0) is a simple quadratic turning point of

F1(y, µ) |Xs×Xs×R2= 0 with respect to µ if

Ds
0 := ψ1(f◦xxxφ3

1 + 3f◦xxφ1z1) 6= 0 (2.9)

(ii) For σ = a, (y0, µ0) = (x0, φ2, λ0, µ0) is a simple quadratic turning point of
F2(y, µ) |Xs×Xa×R2= 0 with respect to µ if

Da
0 := ψ2(f◦xxxφ2

1φ2 + 2f◦xxφ1z0 + f◦xxφ2z1) 6= 0 (2.10)

Proof.
(i) By a direct calculation, with Φs

1 = (φ1, z1, 0)T , and Ψs
1 = (ζ1, ψ1, 0), we obtain

Ψs
1F

◦
1yyΦ

s
1Φ

s
1 = ζ1f

◦
xxφ1φ1 + ψ1(f◦xxxφ3

1 + 2f◦xxφ1z1).
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According to (2.1d) and (2.1c), we derive

ζ1f
◦
xxφ1φ1 = −ζ1f

◦
xz1 = ψ1f

◦
xxφ1z1

Due to (2.9),
Ψs

1F1yy(y0, µ0)Φs
1Φ

s
1 = Ds

0 6= 0

and we complete the proof of (i).
(ii) Similarly,

Ψa
1F2yy(y0, µ0)Φa

1Φ
a
1 = ζ0f

◦
xxφ1φ1 + ψ2(f◦xxxφ2

1φ2 + 2f◦xxφ1z0)

According to (2.1c) and (2.2d), we have

ζ0f
◦
xxφ1φ1 = −ζ0f

◦
xz1 = ψ2f

◦
xxφ2z1

Due to (2.l0),

Ψa
1F2yy(y0, µ0)Φa

1Φ
a
1 = ψ2f

◦
xxxφ2

1φ2 + 2ψ2f
◦
xxφ1z0 + ψ2f

◦
xxφ2z1 6= 0.

The proof of (ii) is completed.
The following corollary is the consequence of Theorem 2.2.
Corollary 2.3. Assume (2.8), (2.9) and (2.10). Let (x0, λ0, µ0) be a double S-

breaking cubic turning point of (1.1) with respect to λ. Then there exist only solution
branch lσ of Fi(y, µ) |Xs×Xσ×R2= 0 passing through (y0, µ0). Moreover the solution
branch has tangent (Φσ

1 , 0) at (y0, µ0).
Theorem 2.2 is important practically as well as theoretically. It indicates clearly

a procedure to be followed for the calculation of the double S-breaking cubic turning
point (x0, λ0, µ0). We apply the idea of the extended system once again. The twice
extended system

F 2
i (y, Φσ

1 , µ) ≡




Fi(y, µ)
Fiy(y, µ)Φσ

1

LiΦσ
1 − 1


 = 0

is regular at double S-breaking cubic turning point. Implicit function theorem insures
that there are singular solution branches ls and la of (1.1), which pass crossly through
double S-breaking cubic turning point. Therefore, along ls and la, 0 is always an
eigenvalue of fx.

We shall assume the following condition

∆ := det k 6= 0 (2.11)

where

k :=

(
Ds

0 ds
0

Da
0 da

0

)
. (2.12)

Theorem 2.4. In addition to the conditions in Corollary 2.3, we assume that
(2.11) holds. Then ls and la in Corollary 2.3 correspond to simple quadratic turning
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point and pitchfork bifurcation point of (1.1) with respect to λ respectively, except for
(x0, λ0, µ0).

Proof. We divide the proof into two steps.
(a). Let (y(ε), µ(ε)) = (x(ε), φ(ε), λ(ε), µ(ε)) ∈ Xs × Xσ × R2 be the solution

branch lσ in Corollary 2.3. We first show that zero is a simple eigenvalue of fx(ε) :=
fx(x(ε), λ(ε), µ(ε)) for ε 6= 0.

Consider the following system

M(m, ε) =

(
fx(ε)θ(ε)− β(ε)θ(ε)

ljθ(ε)− 1

)
= 0 (2.13)

where

j = 2 if σ = s and j = 1 if σ = a. m = (θ, β), m0 = (φj , 0), M : Xδ ×R2 → Xδ ×R,

δ = a if σ = s and δ = s if σ = a.

It is easy to check that M(m0, 0) = 0 and Mm(m0, 0) : Xδ × R → Xδ × R is regular
and hence there exists a unique solution path m(ε) = (θ(ε), β(ε)) such that m(0) =
m0, M(m(ε), ε) = 0.

As for ls it follows from Corollary 2.3 that ẋ(0) = φ1, λ̇(0) = 0, µ̇(0) = 0, φ̇(0) = z1.
Differentiating fx(ε)θ(ε)− β(ε)θ(ε) = 0 with respect to ε at ε = 0 and multiplying by

ψ2(ẋ(0) =
dx(ε)

dε
|ε=0 etc.) yields

β̇(0) = 0, f◦xxφ1φ2 + f◦x θ̇(0) = 0. (2.14)

(2.14) implies that θ̇(0) = z0.
Differentiating fx(ε)θ(ε) − β(ε)θ(ε) = 0 with respect to ε at ε = 0 twice and

multiplying by ψ2 yields

ψ2f
◦
xxxφ2

1φ2 +2ψ2f
◦
xxφ1z0 +ψ2(f◦xxẍ(0)+f◦xλλ̈(0)+fxµµ̈(0))φ2− β̈(0)ψ2φ2 = 0. (2.15)

Differentiating f(x(ε), λ(ε), µ(ε)) = 0 twice with respect to ε at ε = 0 and multiplying
by ζ0 yields

ζ0f
◦
xxφ1φ1 + ζ0(f◦x ẍ(0) + f◦λ λ̈(0) + f◦µµ̈(0)) = 0. (2.16)

(2.15) together with (2.16) yields

ψ2f
◦
xxxφ2

1φ2 + 2ψ2f
◦
xxφ1z0 + ψ2f

◦
xxφ2z1 + da

0µ̈(0)− β̈(0)ψ2φ2 = 0. (2.17)

Generally,

d2

dε2 F1(y(ε), µ(ε)) |ε=0= F ◦
1yyẏ(0)2 + 2F1yµẏ(0)µ̇(0) + F1µµµ̇(0)2

+F ◦
1yÿ(0) + F ◦

1µµ̈(0) = 0.
(2.18)

Since ẏ(0) = (ẋ(0), φ̇(0), λ̇(0)) = (φ1, z1, 0), µ̇(0) = 0, we obtain

f◦xxφ1φ1 + f◦x ẍ(0) + f◦λ λ̈(0) + f◦µµ̈(0) = 0, (2.19a)

f◦xxxφ3
1 + 2f◦xxφ1z1 + f◦xxφ1ẍ(0) + f◦x φ̈(0) + f◦λxφ1λ̈(0) + f◦µxφ1µ̈(0) = 0. (2.19b)
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Multiplying (2.19a) by ζ1 and (2.19b) by ψ1 leads to

ψ1f
◦
xxxφ3

1 + 2ψ1f
◦
xxφ1z1 + ζ1f

◦
xxφ1φ1 + ds

0µ̈(0) = 0.

Therefore,
ψ1(f◦xxxφ3

1 + 3f◦xxφ1z1) + ds
0µ̈(0) = 0, (2.20)

µ̈(0) = −Ds
0

ds
0

. (2.21)

Substituting (2.21) into (2.17) yields

β̈(0) = −(Ds
0d

a
0 −Da

0ds
0)/(ψ2φ2 · ds

0) = −det k/(ψ2φ2 · ds
0) 6= 0. (2.22)

Similarly for la, we have

β̈(0) = det k/(ψ1φ1 · da
0) 6= 0. (2.23)

(2.22) and (2.23) imply that fx(ε) has a small but nonzero eigenvalue β(ε) for ε 6= 0.
Notice that f◦x has n−2 nonzero eigenvalues, thus the zero eigenvalue of fx(ε) for ε 6= 0
must be simple.

Let ψ(ε) and φ(ε) be the left and right null vectors of fx(ε) respectively such that

ψ(ε)fx(ε) = 0, ψ(ε) ∈ X ′
σ\{0}, ψ(0) = ψi, i = 1, 2, (2.24a)

fx(ε)φ(ε) = 0, φ(ε) ∈ Xσ\{0}, φ(0) = φi, i = 1, 2. (2.24b)

(b). In order to prove (x(ε), φ(ε), λ(ε), µ(ε)) ∈ ls correspond to single quadratic turning
points of f(x, λ, µ) = 0 for ε 6= 0, we need only to confirm that, for ε 6= 0,

ψ(ε)fλ(ε) 6= 0, ψ(ε)φ(ε) 6= 0, (2.25a)

d(ε) := ψ(ε)fxx(ε)φ(ε)φ(ε) 6= 0. (2.25b)

(2.25a) holds since ψ1f
◦
λ 6= 0, ψ1φ1 6= 0. We now prove (2.25b). Obviously,

d(0) = ψ1f
◦
xxφ1φ1 = 0.

The first derivative of d(ε) with respect to ε at ε = 0 yields

ḋ(0) = ψ̇(0)f◦xxφ1φ1 + ψ(0)(f◦xxxẋ(0)φ1φ1 + 2f◦xxφ1φ̇(0)). (2.26)

Differentiating ψ(ε)fx(ε) = 0 with respect to ε at ε = 0 leads to

ψ̇(0)f◦x + ψ1f
◦
xxφ1 = 0.

Recalling ẋ(0) = φ1, φ̇(0) = z1, f◦xxφ1φ1 + f◦xz1 = 0, we obtain

ḋ(0) = −ψ̇(0)f◦xz1 + ψ1(f◦xxxφ3
1 + 2f◦xxφ1z1)

= ψ1(f◦xxxφ3
1 + 3f◦xxφ1z1) = Ds

0 6= 0.

So (2.25b) holds for ε 6= 0.
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Next, we deal with la. In this case, ψ(ε) ∈ X ′
a, φ(ε) ∈ Xa, x(ε) ∈ Xs. To prove

(x(ε), λ(ε), µ(ε)) ∈ la is pitchfork bifurcation point of f(x, λ, µ) = 0 for ε 6= 0, we need
only to confirm

ψ(ε)φ(ε) 6= 0, (2.27a)

ψ(ε)(fxx(ε)vλ(ε) + fλx(ε))φ(ε) 6= 0 (2.27b)

where vλ(ε) is defined by

fx(ε)vλ(ε) + fλ(ε) = 0, vλ(ε) ∈ Xs. (2.28)

(2.27a) is obviously satisfied since ψ2φ2 6= 0.
The difficulty here is that vλ(ε) does not exist for ε = 0. To overcome the trouble,

we introduce the following system

S(ζ, ε) =

(
fx(ε)v(ε) + τ(ε)fλ(ε)

l1v(ε)− 1

)
= 0 (2.29)

where ζ = (v(ε), τ(ε)), ζ0 = (φ1, 0), S : Xs × R2 → Xs × R. It is easy to show that
S(ζ0, 0) = 0, Sζ(ζ0, 0) : Xs ×R → Xs ×R is regular and there exists a unique solution
path ζ(ε) = (v(ε), τ(ε)) of (2.29) such that ζ(0) = ζ0. Notice that τ(ε) 6= 0 for ε 6= 0,
otherwise fx(ε) would have an extra null vector which contradicts (a). Hence

vλ(ε) =
v(ε)
τ(ε)

, for ε 6= 0

and
v(0) = φ1.

Denote
B(ε) := ψ(ε)fxx(ε)v(ε)φ(ε) + τ(ε)ψ(ε)fxλ(ε)φ(ε) (2.30)

From the following lemma 2.5, we know Ḃ(0) = Da
0 6= 0. Thus (2.27) holds for ε 6= 0.

The proof is completed.
Lemma 2.5. Let B(ε) be defined by (2.30). Then

Ḃ(0) = ψ2(f◦xxxφ2
1φ2 + 2f◦xxφ1z0 + f◦xxφ2z1) = Da

0 .

Proof. A direct calculation, with ẋ(0) = φ1, φ̇(0) = z0, λ̇(0) = µ̇(0) = 0, shows
that

Ḃ(0) = τ̇(0)ψ2f
◦
xλφ2 + ψ̇(0)f◦xxφ1φ2 + ψ2f

◦
xxxφ2

1φ2 + ψ2f
◦
xxφ1z0 + ψ2f

◦
xxφ2v̇(0). (2.31)

Since ζ0f
◦
x + ψ2f

◦
xxφ2 = 0, ζ0f

◦
λ + ψ2f

◦
λxφ2 = 0, hence

Ḃ(0) = −τ̇(0)ζ0f
◦
λ − ζ0f

◦
x v̇(0) + ψ̇(0)f◦xxφ1φ2 + ψ2(f◦xxxφ2

1φ2 + f◦xxφ1z0). (2.32)

Differentiating ψ(ε)fx(ε) = 0 with respect to ε at ε = 0 yields

ψ̇(0)f◦x + ψ2f
◦
xxφ1 = 0. (2.33)
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Differentiating fx(ε)v(ε) + τ(ε)fλ(ε) = 0 with respect to ε at ε = 0 leads to

f◦xxφ1φ1 + f◦x v̇(0) + τ̇(0)f◦λ = 0. (2.34)

Thus

ζ0f
◦
xxφ1φ1 + ζ0f

◦
x v̇(0) + ζ0f

◦
λ τ̇(0) = 0. (2.35)

By (2.35), (2.33) and (2.32), we obtain

Ḃ(0) = ζ0f
◦
xxφ1φ1 + ψ2f

◦
xxxφ1φ1φ2 + 2ψ2f

◦
xxφ1z0

= ψ2(f◦xxxφ2
1φ2 + 2f◦xxφ1zo + f◦xxφ2z1) = Da

0 .

3. Extended Systems

We introduce the following three extended systems. Their regularity at the double
S-breaking cubic turning point ensures that conventional Newton’s method can be
applied. In the sequel, we assume that (x0, λ0, µ0) is a double S-breaking cubic turning
point with null vector φ1 ∈ Xs, φ2 ∈ Xa.
The first one is

H1(y) =




f(x, λ, µ)
fxφ

fxz + fxxφφ

l1φ− 1
l1z




= 0,

H1 : Xs ×Xs ×Xs ×R2 → Xs ×Xs ×Xs ×R2,

y = (x, φ, z, λ, µ),
y0 = (x0, φ1, z1, λ0, µ0).

(3.1)
Then H1(y0) = 0, where z1 is defined in (2.1c) l1 ∈ X ′

s such that l1φ1 − 1 = 0, l1u = 0
for u ∈ Xs\R{φ1}.
The second one is

H2(y) =




f(x, λ, µ)
fxφ

fxz + fxxφφ

l2φ− 1
l1z




= 0,

H2 : Xs ×Xa ×Xs ×R2 → Xs ×Xa ×Xs ×R2,

y = (x, φ, z, λ, µ),
y0 = (x0, φ2, z2, λ0, µ0).

(3.2)
Then H2(y0) = 0, where z2 is defined by

f◦xz2 + f◦xφ2φ2 = 0, z2 ∈ Xs, l1z2 = 0.

l2 ∈ X ′
a such that l2φ2 − 1 = 0, l2u = 0 for u ∈ Xa\R{φ2}.
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The third one is

H3(y) =




f(x, λ, µ)
fxφs + αφs

fxφa

fxz + fxxφsφa

l1φs − 1
l2φa − 1

l2z




= 0,

H3 : Xs ×Xs ×Xa ×Xa ×R3

→ Xs ×Xs ×Xa ×Xa ×R3,

y = (x0, φs, φa, z, λ, µ, α),
y0 = (x0, φ1, φ2, z0, λ0, µ0, 0).

(3.3)

Then H3(y0) = 0, where z0 is defined in (2.2c).
The following theorems describe the regularity of the extended systems.
Theorem 3.1. Assume (2.8) and Ds

0 6= 0. Then H1(y) = 0 is regular at y0 =
(x0, φ1, z1, λ0, µ0).

Theorem 3.2. Assume (2.8) and Das
0 := ψ1f

◦
xxxφ1φ2φ2+2ψ1f

◦
xxφ2z0+ψ1f

◦
xxφ1z2 6=

0. Then H2(y) = 0 is regular at y0 = (x0, φ2, z2, λ0, µ0).
Theorem 3.3. Assume (2.8) and Da

0 6= 0. Then H3(y) = 0 is regular at y0 =
(x0, φ1, φ2, z1, λ0, µ0, 0).

We only prove Theorem 3.1. The proofs of Theorem 3.2 and Theorem 3.3 are
similar.

Proof of Theorem 3.1.
We consider

DH◦
1 · Y = W (3.4)

where DH◦
1 denote the Jacobian of H1(y) at y0, W = (w1, w2, w3, α, β) ∈ Xs ×Xs ×

Xs ×R2, Y = (y1, y2, y3, λ, µ) ∈ Xs ×Xs ×Xs ×R2. Expanding (3.4) yields

f◦xy1 + λf◦λ + µf◦µ = w1, (3.5a)

f◦xxφ1y1 + f◦xy2 + λf◦λxφ1 + µf◦µxφ1 = w2, (3.5b)

(f◦xxz1 + f◦xxxφ1φ1)y1 + 2f◦xxφ1y2 + f◦xy3 + λ(f◦λxz1 + f◦λxxφ1φ1) (3.5c)

+µ(f◦µxz1 + f◦µxxφ1φ1) = w3,

l1y2 = α, (3.5d)

l1y3 = β. (3.5e)

Multiplying (3.5a) by ζ1 and (3.5b) by ψ1 and using ζ1f
◦
x + ψ1f

◦
xxφ1 = 0, ζ1fλ +

ψ1f
◦
λxφ1 = 0 yields

µ · ds
0 = ζ1w1 + ψ1w2. (3.6)

Since ds
0 6= 0 we can uniquely determine µ = (ζ1w1 + ψ1w2)/ds

0. Substituting µ into
(3.5a) and multiplying it by ψ1 yields λ = ψ1(w1 − µf◦µ)/ψ1f

◦
λ . Then we may assume

that y1 = c1φ1+ỹ1, ỹ1 ∈ Xs is uniquely determined by f◦x ỹ1 = w1−λf◦λ−µf◦µ, l1ỹ1 = 0.
Substituting y1, λ and µ into (3.5b), we derive

c1f
◦
xxφ1φ1 + f◦xy2 = w̄2 (3.7)
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where w̄2 = w2 − f◦xxφ1ỹ1 − λf◦λxφ1 − µf◦µxφ1.
From (3.7) and (3.5d), we may assume that y2 = αφ1 + c1z1 + ỹ2, ỹ2 ∈ Xs is uniquely
determined by f◦x ỹ2 = w̄2 l1ỹ2 = 0. Substituting y1, y2, λ, µ into (3.5c) we have

c1(f◦xxxφ3
1 + 3f◦xxφ1z1) + αf◦xxφ1φ1 + f◦xy3 = w̄3 (3.8)

where w̄3 = w3 − λ(f◦λxz1 + f◦λxxφ1φ1)− µ(f◦µxz1 + f◦µxxφ1φ1)− (f◦xxz1 + f◦xxφ1φ1)ỹ1 −
2f◦xxφ1ỹ2.
Since Ds

0 6= 0, c1 = ψ1w̄3/Ds
0. Substituting c1 into (3.8), we derive

f◦xy3 = w̄3 − c1(f◦xxxφ3
1 + 3f◦xxφ1z1).

Together with (3.5e), we may determine y3 uniquely.
From the preceding procedure, we can easily show that if W = 0 then Y = 0.

Applying the open mapping theorem, theorem 3.1 is completed.
To compute the double S-breaking cubic turning point, we first restrict our attention

in Xs ×Xs × R2 and use the extended system F1(x, φ, λ, µ) = 0 to get the quadratic
turning points, which are on ls, by Newton’s method. When Newton’s method does
not work for F1 = 0 for some µ0, we turn to use system (3.1) to find some high
singular point (x0, λ0, µ0). Just as shown theoretically, (3.1) can be solved by Newton’s
method practically due to its regularity at the double S-breaking cubic turning point.
Similarly, we use F2(x, φ, λ, µ) = 0 to obtain pitchfork bifurcation points, which are on
la, by Newton’s method near (x0, λ0, µ0) and expect to find the signal that Newton’s
method does not solve F2 = 0. If it is so, we use (3.2) to find the solution (x1, λ1, µ1).
It should holds that x0 = x1, λ0 = λ1, µ0 = µ1 at double S-breaking cubic turning
point. We finally solve (3.3) to make sure that (x0, λ0, µ0) is a double S-breaking cubic
turning of f(x, λ, µ) = 0, namely, the solution of (3.3) should be consistent with those
of (3.1) and (3.2). We will give a numerical example to show the procedure in section
4.

4. Numerical Examples

Example 4.1. Let h : Rn ×R2 → Rn possess a complex analytic extension H

H : Cn ×R2 → Cn,H(z̄, λ, µ) = H(z, λ, µ), z ∈ Cn, (λ, µ) ∈ R2.

Identifying z = u+iv ∈ Cn with x = (u, v) ∈ R2n, H is transformed into g : R2n×R2 →
R2n, where

g(u, v, λ, µ) =

(
gr(u, v, λ, µ)
gi(u, v, λ, µ)

)
=

1
2

(
H(u + iv, λ, µ) + H(u− iv, λ, µ)

−i(H(u + iv, λ, µ)−H(u− iv, λ, µ))

)
.

(4.1)

Then g(u, v, λ, µ) satisfies Z2-symmetry, with S =

[
I 0
0 −I

]
, since

gr(u,−v, λ, µ) = gr(u, v, λ, µ), gi(u,−v, λ, µ) = −gi(u, v, λ, µ).
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It is easy to check that

Xs = {(u, 0) | u ∈ Rn}, Xa = {(0, v) | v ∈ Rn}.
It can be shown that, (u0, 0, λ0, µ0) is a double S-breaking cubic turning point if

and only if (u0, λ0, µ0) is a simple cubic turning point of h(u, λ, µ) = 0 ([1]).

For example, consider n = 2, and let h(u, λ, µ) =

[
u3

1 − λ + µeu1 + 1
(µ + 1)u2 + u3

2,

]
. where

u = (u1, u2), (0, 0, 1, 0) is a simple cubic turning point of h(u, λ, µ) = 0 with respect to
λ. Consider the complexification of h.

H(x, λ, µ) =




u3
1 − 3u1v

2
1 − λ + µeu1 cos v1 + 1

(µ + 1)u2 + u3
2 − 3u2v

2
2

3u2
1v1 − v3

1 + µeu1 sin v1

(µ + 1)v2 − v3
2 + 3u2

2v2


 = 0 (4.2)

where x = (u1, u2, v1, v2). Let x = (u1, u2, 0, 0) ∈ Xs, φs = (t1, t2, 0, 0) ∈ Xs, φa =
(0, 0, t3, t4) ∈ Xa, z = (0, 0, z1, z2) ∈ Xa. Then (3.3) can be written in the form

H3(y) =




u3
1 − λ + µeu1 + 1
(µ + 1)u2 + u3

2

(3u2
1 + µeu1)t1 + αt1

(µ + 1 + 3u2
2)t1 + αt2

(3u2
1 + µeu1)t3

(µ + 1 + 3u2
2)t4

(3u2
1 + µeu1)z1 + (6u1 + µeu1)t1t3
(µ + 1 + 3u2

2)z2 + 6u2t2t4
t1 − 1
t3 − 1

z1




= 0

where y = (u1, u2, t1, t2, t3, t4, z1, z2, λ, µ, α). Newton’s method is applied. The numer-
ical results are shown in Table 4.1.

Table 4.1

iteration u1 u2 λ µ α ‖δy‖
0 0.500000 0.500000 1.500000 0.500000 0.200000
1 -0.249999 -0.063287 2.062497 1.284792 0.000000 0.784E+00
2 -0.025000 -0.038281 1.176562 -0.096473 -0.000001 0.308E+00
3 -0.000000 0.000018 1.000000 -0.000001 -0.000000 0.332E-01
4 0.000000 0.000000 1.000000 -0.000000 0.000000 0.140E-03
5 0.000000 0.000000 1.000000 0.000000 0.000000 0.116E-09

Example 4.2. Consider the following two-point boundary value problem
{

x′′ + 4π2λx + (x− λ cos 2πt)3 + 100πµ cos 2πt + 4µx = 0, 0 < t < 1,

x(0) = x(1), x′(0) = x′(1).
(4.3)
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Let
X = {x ∈ C2(0, 1)|x(0) = x(1), x′(0) = x′(1)}.

It is easy to check that (4.3) is Z2-symmetric with S : Sx(t) = x(1− t). Thus X is
splitting into:

X = Xs ⊕Xa

where
Xs = {x ∈ X|x(1− t) = x(t), x′(0) = x′(1) = 0}
Xa = {x ∈ X|x(1− t) = −x(t), x(0) = x(1) = 0}

In order to discretize (4.3) we use the central differences on the mesh points xj =
jh (j = 1, · · · , N − 1), where Nh = 1, and we use the following to discretize x′(0),

2 · x1 − x0

h
− x2 − x0

2h
.

Similarly to x′(1), we take N = 60.
First we use the extended system F1(x, φ, λ, µ) = 0 restricted on Xs × Xs × R2

(cf (3.13)). We can get the following quadratic turning points of f(x, λ, µ) = 0 with
respect to λ, which are on ls, as follows by varying µ:

Table 4.2

µ λ x(0) x(1
2)

0.06 0.765439 2.766062 -2.766062
0.04 0.832624 2.522726 -2.522726
0.02 0.906216 2.170575 -2.170575
0.01 0.947741 1.889519 -1.889519
0.005 0.971052 1.668516 -1.668516

when µ = 0.0, the system F1 = 0 is not solved by Newton’s method. Thus, we turn to
solve the system (3.1) by taking the last row of Table 4.2 as initial estimate. We get
the following solution:

Table 4.3

µ λ x(0) x(1
2)

0.000000 0.999268 0.999229 -0.999229

Similarly, the system F2(x, φ, λ, µ) = 0 restricted on Xs ×Xa × R2 is used to get the
following pitchfork bifurcation points of f(x, λ, µ) = 0 with respect to λ, which are on
la, by varying µ:

Table 4.4

µ λ x(0) x(1
2)

0.03 0.606641 5.171305 -5.171305
0.02 0.799543 4.037104 -4.037104
0.01 0.911529 3.049549 -3.049549
0.005 0.957533 2.428533 -2.428533
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At µ = 0.0, Newton’s method also doesn’t work for F2 = 0. The system (3.2) is applied
by taking the last row of Table 4.4 as the initial guess and the following solution is
obtained:

Table 4.5

µ λ x(0) x(1
2)

0.000023 0.999084 0.999197 -0.999197

Using the value in Table 4.3 and Table 4.5 as the initial guess for the system (3.3), we
can get the following solution by Newton’s method:

Table 4.6

µ λ x(0) x(1
2)

0.000023 0.999084 0.999016 -0.999016

Table 4.3, 4.5, 4.6 may be regarded as the same point, that is the double S-breaking
cubic turning point of f(x, λ, µ) = 0 with respect to λ under considering the perturba-
tion of discretization. In fact, we can check that (x, λ, µ) = (cos 2πt, 1, 0) is a double
S-breaking cubic turning point of (4.1) with φ1 = cos 2πt, φ2 = sin 2πt.
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