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Abstract

In this paper the homogenization method is improved to develop one kind of

dual coupled approximate method, which reflects both the macro-scope properties

of whole structure and its loadings, and micro-scope configuration properties of

composite materials. The boundary value problem of woven membrane is con-

sidered, the dual asymptotic expression of the exact solution is given, and its

approximation and error estimation are discussed. Finally the numerical example

shows the effectiveness of this dual coupled method.

1. Introduction

The mechanical performance analysis of the structures made of woven composite

material and periodically perforated material is often encountered in the modern engi-

neering analysis. Since this kind of composite material has periodically basic configu-

rations, the static analysis of the structures made from this composite material leads

to the boundary value problem of elliptic PDE with periodic coefficients, for example,

the equilibrium problem of woven membrane under traverse loadings can be expressed

in the boundary value problem of two dimension two order elliptic PDE as follows:

(P)





−
∂

∂xi
(aǫ

ij(x)
∂uǫ

∂xj
) = f(x), x ∈ Ω

uǫ|∂Ω = 0

Ω is shown in Figure 1, x represents both global coordinates of the structure and macro-

scope properties of its geometry and loadings, ǫ is the length of basic configuration of

composite material which is shown in Figure 2, and aǫ
ij(x) has periodicity, symmetry

and ellipticity. Let y =
x

ǫ
and aij(y) = aǫ

ij(x), and then aij(y) has periodicity with
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Figure 1. Weaved membrane

length 1. Engineers are often concerned with the stress state in some basic configuration

due to stress concentration, and then most of breakages of structures happen locally.

In order to obtain accurate stress results in the basic configuration the whole structure

must be partitioned into very small meshes using finite element method, this leads to

very large scale computation.

For this kind of problems of elliptic PDE, A. Bensoussan, J.L. Lions and

G. Papanicolaou[1] proposed one kind of homogenization methods. The solution uǫ(x)

of problem (P ) is asymptotically expanded in dual (x, y) form as follows:

uǫ(x) = u0(x) + ǫu1(x, y) + ǫ2u2(x, y) + · · · , (1.1)

where u0(x) is called as homogenization solution, and represents global mechanical and

physical properties of structure, and ui(x, y) reflects both global mechanical behavior

and the effect of micro-configuration of composite material. Formally the solution uǫ(x)

is considered as one homogenization solution plus a series of relative periodic functions

with high order coefficients ǫi.

In [1] the main results of homogenization method achieved are following:
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Figure 2. Some basic configurations

1. u1(x, y) =
∂u0

∂xk
wk(y) + c(x), wk exists uniquely such that,





∃ wk ∈ V = {v ∈ H1(Ω), v has periodicity with length 1}

w̃k(y)
∣∣∣
∂Y

= 0
∫

Y
aij(y)

∂wk

∂yj

∂v

∂yi
dy =

∫

Y

∂aik

∂yi
vdy,∀v ∈ V.

where Y is the subdomain of basic configuration, and ∼ donates homogenization oper-

ator, Φ̃ =

∫

Y
Φdy.

2. As ǫ → 0, the homogenization solution u0(x) weakly converges to solution uǫ(x),

and u0(x) satisfies 



a∗ik = [aij(y)(δjk +
∂wk(y)

∂yj
)]∼

−
∂

∂xi
(a∗ik

∂u0

∂xk
) = f(x), x ∈ Ω

u0|∂Ω = 0.

The results of homogenization method only show how to determine homogenization

solution u0(x) and how it approximates uǫ(x) as ǫ → 0. In practical engineering
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analysis, however, ǫ can’t be regared as zero and is a finite value. For this case, how

using asymptotic expression (1.1) approaches exact solution uǫ(x) of problem (P) ?

How many terms in (1.1) should be considered to obtain enough approximate solution

un(x), and how to define and evaluate every ui(x, y) ? What about the error estimation

of the approximate solution un(x) ? We will discuss all these problems in this paper.

At first we improve dual asymptotic expression (1.1) in macro-scope and micro-scope

properties of composite material structure, and show out a definite problem for every

ui(x, y) to form a dual coupled method. The approximation and error estimation of

un(x) to uǫ(x) are shown. Finally our algorithm is applied to the equilibrium problem

of woven membrane, and relative numerical results are also shown out in the last section

of this paper.

2. The Macro-Micro Coupled Method

First it shows out that for problem (P), if f(x) belongs to L2(Ω) and does not

belong in C∞(Ω), then there exsists an operator Jτ such that Jτ (f) ∈ C∞(Ω), and

‖Jτf − f‖L2 → 0 as τ → 0.

And then for problem (P ) we construct the following problem:





−
∂

∂xi
(aǫ

ij(x)
∂Uǫ

∂xj
) = Jτf(x) x ∈ Ω

Uǫ|∂Ω = 0.

Obviously from the regularity theorem of solution it follows that

‖Uǫ − uǫ‖H2 ≤ C ‖Jτf − f‖L2 → 0, (τ → 0).

Therefore it only needs to consider the problem with smooth f(x). For short, we

first consider the problem of one dimension.

2.1. The dual expression for one dimension problem

The problem of one dimension is following:

(P1)





−
∂

∂x
(aǫ(x)

∂uǫ

∂x
) = f(x) x ∈ (0, 1)

uǫ(0) = uǫ(1) = 0

where aǫ(x) satisfies ellipticity and suppose that

1. aǫ(x) has periodicity with length ǫ, let y =
x

ǫ
, so a(y) is periodic function with

length 1.

2. [
1

ǫ
] =

1

ǫ
. (Suppose it just for the boundary simplicity.)

According to (1.1), we suppose that uǫ(x) can be expressed with separated macro-

scope variable x and micro-scope variable y,
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uǫ(x) = u0(x) + ǫu1(x)v1(y) + ǫ2u2(x)v2(y) + · · · , (2.1 − 1)

and u0(x) and vi(y) satisfy the boundary conditions as follows:

u0(0) = u0(1) = 0, u0(x) is smooth. (2.1 − 2)

vi(0) = vi(1) = 0, vi(y) has periodicity with length 1. (2.1 − 3)

From derivatives of parametric variables it follows that

duǫ

dx
=

du0

dx
+ ǫ

(du1

dx
v1 + ǫ−1u1

dv1

dy

)
+ ǫ2

(du2

dx
v2 + ǫ−1u2

dv2

dy

)

+ǫ3
(du3

dx
v3 + ǫ−1u3

dv3

dy

)
+ ǫ4

(du4

dx
v4 + ǫ−1u4

dv4

dy

)
+ · · ·

=
(du0

dx
+ u1

dv1

dy

)
+ ǫ

(du1

dx
v1 + u2

dv2

dy

)
+ ǫ2

(du2

dx
v2 + u3

dv3

dy

)

+ǫ3
(du3

dx
v3 + u4

dv4

dy

)
+ · · · .

Let

P0 = a(y)
(du0

dx
+ u1

dv1

dy

)
.

P1 = a(y)
(du1

dx
v1 + u2

dv2

dy

)
.

P2 = a(y)
(du2

dx
v2 + u3

dv3

dy

)
.

P3 = a(y)
(du3

dx
v3 + u4

dv4

dy

)
.

· · · · · · .

It follows that

a
duǫ

dx
= P0 + ǫP1 + ǫ2P2 + ǫ3P3 + · · · .

d

dx

(
a
duǫ

dx

)
= ǫ−1 ∂P0

∂y
+ ǫ0

(∂P0

∂x
+

∂P1

∂y

)
+ ǫ1

(∂P1

∂x
+

∂P2

∂y

)
+ ǫ2

(∂P2

∂x
+

∂P3

∂y

)
+ · · · .

If




∂P0

∂y
= 0 (2.2 − 1)

∂P0

∂x
+

∂P1

∂y
= −f(x) (2.2 − 2)

∂P1

∂x
+

∂P2

∂y
= 0 (2.2 − 3)

∂P2

∂x
+

∂P3

∂y
= 0 (2.2 − 4)

· · · · · · ,
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and then the problem (P 1) is satisfied. Considering the homogeneous boundary condi-

tion of u0(x) and vi(y), uǫ(x) defined by (2.1) is the formal solution of problem (P 1).

For (2.2-1), if let u1(x) =
du0

dx
, then (2.2-1) is changed to

−
d

dy

(
a(y)

dv1

dy

)
=

da

dy
.

Considering the homogeneous boundary condition of v1(y) in (2.1-3), and then v1(y)

exists and is unique.

By using the homogenization operator on both sides of (2.2-2), it follows that

−
∂P̃0

∂x
= f(x),

−
∂

∂x

(
a(

du0

dx
+

du0

dx

dv1

dy
)
)
∼

= f(x),

a∗
d2u0

dx2
= f(x).

where a∗ = (a + av′1)
∼.

Considering the homogeneous boundary condition of u0(x), u0(x) exists and is unique,

and smooth inside [0,1].

And from (2.2-2) we have

−u2(x)(av′2)
′ = f(x) + au′′

0 + au′′

0v
′

1 + u′′

0(av1)
′

= u′′

0(−a∗ + a + av′1 + (av1)
′).

If let u2(x) = u
(2)
0 , then

−(av′2)
′ = −a∗ + a + av′1 + (av1)

′.

Considering the homogeneous boundary condition of v2(y) , and then v2(y) exists and

is unique.

From (2.2-3), we have

−u3(av′3)
′ = u

(3)
0 {(av1 + av′2 + (av2)

′}.

If let u3(x) = u
(3)
0 , then

−(av′3)
′ = av1 + av′2 + (av2)

′.

Considering homogeneous boundary condition of v3(y) , and then v3(y) exists and is

unique.

· · · · · ·

Let us sum up all above, it follows that :
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Theorem 2.1. There exists an dual expression

u0(x) +
∞∑

i=1

ǫiu
(i)
0 (x)vi(y), (2.3)

where u0(x), vi(y)(i = 1, 2, · · ·) satisfy the following




−a∗(u0)
′′ = f(x),

−(a(y)v′1)
′ = a(y)′, (2.4)

−(a(y)v′2)
′ = −a∗ + a + av′1 + (av1)

′,

−(a(y)v′i)
′ = avi−2 + av′i−1 + (avi−1)

′,∀i ≥ 3.

and homogeneous boundary condition (2.1-2), (2.1-3), and then the dual expression (2.3)

is a formal solution of the problem (P1).

2.2. The dual expression in high dimension problem

It is obvious that the above process can be extended to high dimension problem (2,

3 dimension).

The high dimension problem can be described as

(PN)





−
∂

∂xi
(aǫ

ij(x)
∂uǫ

∂xj
) = f(x), x ∈ Ω

uǫ|∂Ω = 0.

where aǫ
ij(x) = aij(

x

ǫ
) satisfies ellipticity, and suppose that:

1. aǫ
ij(x) has periodicity with length ǫ. Let yi =

xi

ǫ
, and then aij(y) has periodicity

with length 1.

2. [
1

ǫ
] =

1

ǫ
.

Similarly, the solution uǫ(x) of problem (PN ) is expressed in dual form as

uǫ(x) = u0(x) + ǫu1(x, y) + ǫ2u2(x, y) + · · · .

and then

∂

∂xi

(
aij

∂uǫ

∂xj

)
= ǫ−1

∂P 0
ij

∂yi
+ ǫ0

(∂P 0
ij

∂xi
+

∂P 1
ij

∂yi

)
+ ǫ1

(∂P 1
ij

∂xi
+

∂P 2
ij

∂yi

)
+ · · ·

where

P 0
ij = aij(y)

(∂u0

∂xj
+

∂u1

∂yj

)
,

P 1
ij = aij(y)

(∂u1

∂xj
+

∂u2

∂yj

)
, (2.5)

P 2
ij = aij(y)

(∂u2

∂xj
+

∂u3

∂yj

)
,

· · · · · · .
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And from problem (PN), if u0(x),ui(x, y), (i = 1, 2, · · ·) satisfy the following equations




∂P 0
ij

∂yi
= 0 (2.6 − 1)

∂P 0
ij

∂xi
+

∂P 1
ij

∂yi
= −f(x) (2.6 − 2)

∂P 1
ij

∂xi
+

∂P 2
ij

∂yi
= 0 (2.6 − 3)

· · · · · · ,

and homogeneous boundary conditions, then the solution uǫ(x) of problem (PN) is

formally worked out.

For (2.3-1), if let u1(x, y) = wl(y)
∂u0

∂xl
, (l = 1, 2, · · · , N), a form with separated

variables, then

−
∂

∂yi

(
aij(y)

∂wl

∂yj

)
=

∂ail

∂yi
, y ∈ Y (2.7)

where Y is micro-scope doamin of basic configuration, and if let wl(y)|∂Y = 0, and

then wl(y) exists and is unique.

Using homogenization operator on both sides of (2.6-2), and considering the peri-

odicity of P 1
ij on y,we have

−
∂P 0∼

ij

∂xi
= f(x),

−
∂

∂xi

(
(aij + aik

∂wj

∂yk
)∼

∂u0

∂xj

)
= f(x).

Define a∗ij = (aij +aik
∂wj

∂yk
)∼, and in [1] it has been proved that {a∗ij} is symmetric and

positive definite . Therefore if u0(x) satisfies the following equation

−
∂

∂xi

(
a∗ij

∂u0

∂xj

)
= f(x), (2.8)

with homogeneous boundary conditions, then u0(x) exists and is unique, and if f(x) ∈

C∞(Ω), u0(x) is also smooth inside Ω.

For (2.6-2), if let u2(x, y) = wkl(y)
∂2u0

∂xk∂xl
(k, l = 1, 2, · · · , N), and then (2.6-2) is

changed into

−
∂

∂yi

(
aij

∂wkl

∂yj

∂2u0

∂xk∂xl

)

= f +
∂

∂xi

(
aij

∂u0

∂xj

)
+

∂

∂xi

(
aij

∂u0

∂xl

∂wl

∂yj

)
+

∂

∂yi

(
aij

∂2u0

∂xj∂xl
wl

)

= −
∂

∂xk

(
a∗kl

∂u0

∂xl

)
+

∂

∂xk

(
akl

∂u0

∂xl

)
+

∂

∂xk

(
akj

∂u0

∂xl

∂wl

∂yj

)
+

∂

∂yi

(
aik

∂2u0

∂xk∂xl
wl

)
.
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For wkl we obtain that

−
∂

∂yi

(
aij

∂wkl

∂yj

)
= −a∗kl + akl + akj

∂wl

∂yj
+

∂

∂yi
(aikwl), (2.9)

considering the homogeneous boundary condition of wkl(y)|∂Y = 0, wkl(y) exists and

is unique.

For (2.6-3), if let u3(x, y) = whkl
∂3u0

∂xh∂xk∂xl
(h, k, l = 1, 2, · · · , N), then (2.6-3) is

changed into

−
∂

∂yi

(
aij

∂whkl

∂yj

∂3u0

∂xh∂xk∂xl

)

=
∂

∂xi

(
aij(

∂u1

∂xj
+

∂u2

∂yj
)
)

+
∂

∂yi

(
aij

∂u2

∂xj

)

=
∂

∂xi

(
aij(wl

∂2u0

∂xj∂xl
+

∂wkl

∂yj

∂2u0

∂xk∂xl
)
)

+
∂

∂yi

(
aijwkl

∂3u0

∂xj∂xk∂xl

)

=
∂

∂xh

(
ahkwl

∂2u0

∂xkxl
+ ahj

∂wkl

∂yj

∂2u0

∂xk∂xl

)
+

∂

∂yi

(
aihwkl

∂3u0

∂xh∂xk∂xl

)
.

Therefore for definite h,k,l, there is

−
∂

∂yi

(
aij

∂whkl

∂yj

)
= ahkwl + ahj

∂wkl

∂yj
+

∂

∂yi
(aihwkl), (2.10)

considering the homogeneous boundary condition of whkl(y)|∂Y = 0, whkl(y) exists and

is unique.

· · · · · ·

Summing up all above, we obtain the following results.

Theorem 2.2. There exists an expression

u0(x) +
∞∑

n=1

∂nu0

∂xin · · · ∂xi1

win···i1(y), (2.11)

which is the formal solution of problem (PN) where u0(x) satisfies (2.8), and wkl(y)

satisfy (2.9) and w∗(y) satisfy

−
∂

∂yi

(
aij

∂win···i1

∂yj

)
= ainin−1win−2···i1 + ainj

∂win−1···i1

∂yj
+

∂

∂yi
(aiinwin−1···i1), n ≥ 3

and u0(x) on Ω and w∗(y) on Y satisfy the homogeneous boundary conditions.

3. Approximation and Error Estimation

In practical computation the formal expression of solution uǫ(x) previously can not

be evaluated completely. It means that only the sum of the first several terms in formal
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expression of uǫ(x) can be evaluated, it is, for one dimension, only evaluate

un(x) = u0(x) +
n∑

i=1

ǫiu
(i)
0 (x)vi(y), (3.1)

for high dimension, only evaluate

um(x) = u0(x) +
m∑

n=1

ǫn ∂nu0(x)

∂xin · · · ∂xi1

win···i1 . (3.2)

The approximation and error estimation of them will be discussed following.

3.1. Approximation

For problem (P1), if ‖a‖H1 and ‖f‖L2 are bounded, by Lax-Milgram theorem we

have

‖v1‖H1 ≤ C ‖a′‖L2 ,

‖v2‖H1 ≤ C ‖−a∗ + a + av′1 + (av1)
′‖L2 ≤ C + C ‖v1‖H1 ,

‖vi‖H1 ≤ C ‖avi−2 + avi−1 + (avi−1)
′‖L2

≤ C(‖vi−1‖H1 + ‖vi−2‖H1),∀i ≥ 3. (3.3)

Following discussing proceeds in two case respectively:

(1) If
∣∣∣u(i)

0 (x)
∣∣∣ ≤ C, ∀i, then

∥∥∥∥∥

∞∑

i=n

ǫiu
(i)
0 (x)vi(y)

∥∥∥∥∥
H1(Ω)

≤ C
∞∑

i=n

ǫi |vi(y)|H1(Ω)

≤ C
∞∑

i=n

ǫi(

∫ 1

0
v′i(

x

ǫ
)2dx)1/2

= C
∞∑

i=n

ǫiǫ−1(

∫ 1

0
v′i(y)2dy)1/2

≤ C
∞∑

i=n

ǫi−1 ‖vi(y)‖H1(Y )

from (3.3) it follwos that

∥∥∥∥∥

∞∑

i=n

ǫiu
(i)
0 (x)vi(y)

∥∥∥∥∥
H1(Ω)

≤ C1(C2ǫ)
n−1. (3.4)
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(2) If
∣∣∣u(i)

0 (x)
∣∣∣ ≤ C

∣∣∣u(i−1)
0 (x)

∣∣∣ , ∀i, then

∥∥∥∥∥

∞∑

i=n

ǫiu
(i)
0 (x)vi(y)

∥∥∥∥∥
H1(Ω)

≤ C
∞∑

i=n

ǫi
∣∣∣u(i)

0 vi

∣∣∣
H1(Ω)

≤ C
∞∑

i=n

ǫi
∣∣∣u(i)

0

∣∣∣ |vi|H1(Ω)

≤ C |u0|
∞∑

i=n

(Cǫ)i−1 |vi(y)|H1(Y ) ,

from (3.3) it follows that

∥∥∥∥∥

∞∑

i=n

ǫiu
(i)
0 (x)vi(y)

∥∥∥∥∥
H1(Ω)

≤ C1(C3ǫ)
n−1. (3.5)

Therefore the following theorem is obtained:

Theorem 3.1. Under the suppositions of small periodicity of coefficients and the

above condition (1) or (2), the approximation solution expressed in (3.1) converges to

exact solution uǫ(x) of problem (P1) by H1 norm ,and ‖un(x) − uǫ(x)‖H1(Ω) has the

same order as (Cǫ)n−1.

The similar result will be got in high dimension analysis.

For problem (PN ), if ‖a‖H1 and ‖f‖L2 are bounded, by Lax-Milgram theorem we

obtain that

‖win···i1‖H1

≤ C

∥∥∥∥∥ainin−1win−2···i1 + ainj
∂win−1···i1

∂yj
+

∂

∂yi
(aiinwin−1···i1)

∥∥∥∥∥
L2

≤ C(
∥∥win−2···i1

∥∥
L2

+
N∑

j=1

∥∥∥∥∥
∂win−1···i1

∂yj

∥∥∥∥∥
L2

+
N∑

i=1

∥∥∥∥
∂

∂yi
win−1···i1

∥∥∥∥
L2

)

≤ C(
∥∥win−2···i1

∥∥
H1 +

∥∥win−1···i1

∥∥
H1),∀i ≥ 3. (3.6)

Under conditions

(1)

∣∣∣∣
∂nu0

∂xin · · · ∂xi1

∣∣∣∣ ≤ C

or

(2)

∣∣∣∣
∂nu0

∂xin · · · ∂xi1

∣∣∣∣ ≤ C

∣∣∣∣∣
∂n−1u0

∂xin−1 · · · ∂xi1

∣∣∣∣∣,

we obtain that
∥∥∥∥∥

∞∑

n=m

ǫn ∂nu0

∂xin · · · ∂xi1

win···i1(y)

∥∥∥∥∥
H1

≤ C1(C2ǫ)
m−1. (3.7)
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From this it follows that:

Theorem 3.2. Under the suppositions of small periodicity of coefficients and above

condition (1) or (2), the approximation solution expressed in (3.2) converges to the exact

solution uǫ(x) of problem (PN ) by H1 norm ,and ‖um(x) − uǫ(x)‖H1(Ω) has the same

order as (Cǫ)n−1.

3.2. Error estimation in H2(Ω) norm

If uǫ is the exact solution of problem (P 1), since

d

dx

(
a
d(ǫiu

(i)
0 vi)

dx

)

=
d

dx
(aǫiu

(i+1)
0 vi + aǫ(i−1)u

(i)
0 v′i)

= ǫiu
(i+2)
0 avi + ǫi−1u

(i+1)
0 ((avi)

′ + av′i) + ǫi−2u
(i)
0 (av′i)

′,

then

d

dx

(
a
d(uǫ − un)

dx

)

=
d

dx
(a

duǫ

dx
) −

d

dx
(a

du0

dx
) −

n∑

i=1

d

dx

(
a
d(ǫiu

(i)
0 vi)

dx

)

= −f −
d

dx
(a

du0

dx
) −

n+2∑

i=3

ǫi−2u
(i)
0 avi−2 −

n+1∑

i=2

ǫi−2u
(i)
0 ((avi−1)

′ + av′i−1)

−
n∑

i=1

ǫi−2u
(i)
0 (av′i)

′

= −f −
d

dx
(a

du0

dx
) −

n+1∑

i=3

ǫi−2u
(i)
0 (avi−2 + av′i−1 + (avi−1)

′)

−
n∑

i=1

ǫi−2u
(i)
0 (av′i)

′ − ǫnu
(n+2)
0 avn − u

(2)
0 ((av1)

′ + av′1).

According to theorem 2.1, we have

d

dx

(
a(x)

d(uǫ − un)

dx

)
= ǫn−1u

(n+1)
0 (av′n+1)

′ − ǫnu
(n+2)
0 avn,

then uǫ − un satisfies





−
∂

∂x

(
aǫ(x)

∂(uǫ − un)

∂x

)
= ǫn−1u

(n+1)
0 (av′n+1)

′ − ǫnu
(n+2)
0 avn, x ∈ Ω

(uǫ − un)|∂Ω = 0.

(3.8)
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By regularity theorem of solution,

‖uǫ − un‖H2 ≤ C
∥∥∥ǫn−1u

(n+1)
0 (av′n+1)

′ − ǫnu
(n+2)
0 avn

∥∥∥
L2

= C
∥∥∥ǫn−1u

(n+1)
0 (−avn−1 − av′n − (avn)′) − ǫnu

(n+2)
0 avn

∥∥∥
L2

≤ Cǫn−1
∥∥∥u

(n+1)
0

∥∥∥
L2

(‖vn−1‖H1 + ‖vn‖H1) + Cǫn
∥∥∥u

(n+2)
0

∥∥∥
L2

‖vn‖H1 .

Since ‖vn‖H1 ≤ C(‖vn−1‖H1 + ‖vn−2‖H1), we have

‖uǫ − un‖H2 ≤ C(
∥∥∥u

(n+1)
0

∥∥∥
L2

+ ǫ
∥∥∥u

(n+2)
0

∥∥∥
L2

)(Cǫ)n−1 ‖v2‖H1 .

Now we obtain the following conclusion:

Theorem 3.3. If ‖a‖H1 , ‖f‖L2 ,
∥∥∥u

(n+1)
0

∥∥∥
L2

and
∥∥∥u

(n+2)
0

∥∥∥
L2

are bounded, then the

difference between the exact solution of problem (P1) and the approximation solution

composed from the first n+1 terms u0 +
n∑

i=1

ǫiu
(i)
0 vi has the order (Cǫ)n−1 by H2 norm.

For high dimension problem, similarly, uǫ − um satisfies homogeneous boundary

condition and

−
∂

∂xi
(aij

ǫ(x)
∂(uǫ − um)

∂xj
) = ǫm−1 ∂m+1u0

∂xim+1 · · · ∂xi1

∂

∂yi
(aij

∂wim+1···i1

∂yj
)

−ǫm ∂m+2u0

∂xim+2 · · · ∂xi1

aim+2im+1wim···i1 .

And then

‖uǫ − um‖H2 ≤ C
( ∥∥∥∥∥

∂m+1u0

∂xim+1 · · · ∂xi1

∥∥∥∥∥
L2

+ ǫ

∥∥∥∥∥
∂m+2u0

∂xim+2 · · · ∂xi1

∥∥∥∥∥
L2

)
(Cǫ)m−1 ‖wi2i1‖H1 .

Theorem 3.4. If

∥∥∥∥∥
∂m+1u0

∂xim+1 · · · ∂xi1

∥∥∥∥∥
L2

,

∥∥∥∥∥
∂m+2u0

∂xim+2 · · · ∂xi1

∥∥∥∥∥
L2

, ‖a‖H1 and ‖f‖L2 are

bounded, then the difference between the exact solution of problem (PN) and approxi-

mation solution u0(x) +
m∑

n=1

ǫn ∂nu0

∂xin · · · ∂xi1

win···i1 has the order (Cǫ)m−1 by H2 norm.

From previous results it is easy to see that if the period of PDE’s coefficients is so

small that Cǫ ≤ 1, the formal solution in theorem 2.1 and Theorem 2.2 are the exact

solution of problem (P1) and (PN) respectively, and then un(x) expressed in (3.1) and

um(x) in (3.2) are approximate solution of them respectively, and the approximate is

improved rapidly when the number of the terms included raises.

4. Numerical Experiment

Using previous methods we have made some numerical experiment for model prob-
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lem of woven membrane




−
∂

∂xi
(aǫ

ij(x)
∂uǫ

∂xj
) = f(x1, x2), x ∈ Ω = [0, 1] × [0, 1]

uǫ|∂Ω = 0

(4.1)

where

aǫ
ij(x) =





λδij , the other

δij , in shadow

and u0(x1, x2) = x1x2(1 − x1)(1 − x2) satisfies homogenization equation, f(x1, x2) is

designated and the problem is now definite.

According to our method, we need to compute

u4(x) = u0(x) + ǫ
{∂u0

∂x1
w1 +

∂u0

∂x2
w2

}

+ǫ2
{ ∂2u0

∂x1∂x1
w11 +

∂2u0

∂x1∂x2
w12 +

∂2u0

∂x2∂x1
w21 +

∂2u0

∂x2∂x2
w22

}

+ǫ3
{ ∂3u0

∂x1∂x1∂x1
w111 +

∂3u0

∂x1∂x1∂x2
w112 +

∂3u0

∂x1∂x2∂x1
w121 +

∂3u0

∂x1∂x2∂x2
w122

+
∂3u0

∂x2∂x1∂x1
w211 +

∂3u0

∂x2∂x1∂x2
w212 +

∂3u0

∂x2∂x2∂x1
w221 +

∂3u0

∂x2∂x2∂x2
w222

}

+ǫ4
{ ∂4u0

∂x1∂x1∂x2∂x2
w1122 +

∂4u0

∂x2∂x2∂x1∂x1
w2211 +

∂4u0

∂x1∂x2∂x1∂x2
w1212

+
∂4u0

∂x2∂x1∂x2∂x1
w2121 +

∂4u0

∂x1∂x2∂x2∂x1
w1221 +

∂4u0

∂x2∂x1∂x1∂x2
w2112

}
.

Considering the symmetry of the problem, we can delete the zero terms and incoor-

perate the equal terms, and then only need to compute

u4(x) = u0(x) − 2ǫ2(x1 + x2 − x2
1 − x2

2)w11(y1, y2)+

4ǫ3(x2 + x1 − 1)w211(y1, y2) + 8ǫ4w2211(y1, y2),

where w11(y), w211(y), w2211(y) satisfy homogeneous conditions on the boundary of ba-

sic configuration Y and the following equations respectively





−
∂

∂yi

(
aij(y)

∂w11

∂yj

)
= −ã11 + a11,

−
∂

∂yi

(
aij(y)

∂w211

∂yj

)
= 2a11

∂w11

∂y2
,

−
∂

∂yi

(
aij(y)

∂w2211

∂yj

)
= a11w11 + 2a11

∂w211

∂y2
.



A Dual Coupled Method for Boundary Value Problems of PDE with Coefficients of Small Period 173

Using FEM u0(x) is solved in the whole domain Ω, and w11(y), w211(y), w2211(y)

on one basic configuration are solved.

The following table shows the numerical results on ǫ = 1/3, x2 = 0.5,λ = 6, and

Figure 3 shows the correspondent curves.

x1 Direct solution Homogenizaion solution Macro-micro coupled solution

1/18 0.11004E-01 0.13117E-01 0.13042E-01

2/18 0.17737E-01 0.24691E-01 0.25594E-01

3/18 0.39724E-01 0.34722E-01 0.39513E-01

4/18 0.52016E-01 0.43210E-01 0.44304E-01

5/18 0.54571E-01 0.50154E-01 0.50418E-01

6/18 0.58789E-01 0.55556E-01 0.55556E-01

7/18 0.62069E-01 0.59414E-01 0.59699E-01

8/18 0.64305E-01 0.61728E-01 0.63014E-01

9/18 0.70099E-01 0.62500E-01 0.68659E-01

From the numerical results and solving process it follows that using dual coupled

method described previously the precision of the numerical results can be greatly im-

proved after adding the effect of w∗(y) to the homogenization solution u0(x). As all

periodical solutions w∗(y) are evaluated on same basic configuration, the global stiff-

ness matrix is assembled and decomposed only one time, and then the nodal loading

corresponding to w∗(y) can be evaluated recurrently, and then forward substitution

and backward substitution are performed for every FE equations of w∗(y). Therefore

additional amount of computing is very small. In comparison with directly refining FE

meshes, the dual coupled method in this paper has very small computing amount and

high accuracy, and thus it is available method.

Obviously the above method can be extended to mechanical analysis of other struc-

ture with periodical configuration.

This paper only discussed the dual coupled method and its approximation analysis

theoretically. The numerical analysis is dealt with in rough. There are several problems

in numerical analysis on this method, which have not been discussed, while this method

is used to analyse practical problems, such as, how to evaluate higher order derivatives

u
(i)
0 (x), how to calculate the right sides of equation for every win···i1(y), and what

about their approximation, and how to deal with Newman boundary problam, and

if the domain Ω contains some incomplete basic configurations and how to treat the

problem, and so on. All of these problems need to be discussed in other paper.

Finally an important remark is about O.A. Oleinik’s book[2]. When we finish this pa-

per, we are very pleased to find that O.A. Oleinik has also used almost similar method,



174 J.Z. CUI AND H.Y. YANG

while there are some obvious differences between our paper and her book. In one hand,

we give a relatively simple mathematical expression and practical numerical method

based on FEM, therefore numerical effect is clearly shown. In the other hand, O.A.

Oleinik’s work concentrates on detailed and beautiful mathematical analysis, which will

help to deepen our future research on this field.

� Homogenization solution� Refined FEM solution� Macro-Micro Coupled Method solution

Figure 3. Numerical Results

References

[1] A. Bensoussan, J.L. Lions, Asymptotic Analysis For Periodic Structures, North

Holland, 1978.

[2] O.A. Oleinik, Mathematical Problems in Elasticity and Homogenization, North

Holland, 1992.


