INTERNATIONAL JOURNAL OF (© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Number 1, Pages 107-126

OPTIMAL UNIFORM CONVERGENCE ANALYSIS FOR A
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Abstract. In this paper, we consider a two-dimensional parabolic equation
with two small parameters. These small parameters make the underlying prob-
lem containing multiple scales over the whole problem domain. By using the
maximum principle with carefully chosen barrier functions, we obtain the point-
wise derivative estimates of arbitrary order, from which an anisotropic mesh
is constructed. This mesh uses very finer mesh inside the small scale regions
(where the boundary layers are located) than elsewhere (large scale regions). A
fully discrete backward difference Galerkin scheme based on this mesh with ar-
bitrary k-th (k > 1) order conforming rectangular elements is discussed. Note
that the standard finite element analysis technique can not be used directly
for such highly nonuniform anisotropic meshes because of the violation of the
quasi-uniformity assumption. Then we use the integral identity superconver-
gence technique to prove the optimal uniform convergence O(N_(’“"'1> +M~1
in the discrete L2-norm, where N and M are the number of partitions in the

spatial (same in both the z- and y-directions) and time directions, respectively.

Key Words. Singular perturbation, anisotropic mesh and uniform conver-

gence.

1. Introduction

Singular perturbation problems (SPPs) appear in many areas, such as in chemical
kinetics, heterogeneous flow in porous media, periodic structures, and plate and
shell problems, etc. Actually, ”Such a situation is relatively common in applications,
and this is one of the reasons that perturbation methods are a cornerstone of applied
mathematics” [16, Preface]. Those small parameters make the underlying problems
contain multiple scales spanning over the whole domain. It is well known that the
solutions of singular perturbation problems usually undergo rapid changes within
very thin layers near the boundary (boundary layers) or inside the problem domain
(interior layers), where the small scales are located.

However, direct numerical simulation by using the standard finite element method
to resolve such multiscale problems is very impractical due to the requirement of
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huge computer memory and CPU time. For example, by using a linear finite ele-
ment on a quasi-uniform mesh to solve the simple model

—e? Au+tu=f(r,y) inQCR? wulgpg =0,

where 0 < € < 1 is a perturbation parameter, we can obtain the following global
error estimate:

lu = unlle < Cle + h)hul| a2,

where ||ull. = (£2||Vu||%2(9) + ||u|\%2(ﬂ))1/2. Noticing the fact that [31, Lemma
2.1]:

(1) ull 20y < Ce 21 fllL2 @),

we see that, to ensure good approximation, the mesh size h must be in the order
of o(¢). Suppose that e = 107 (which is very common), then h = 0(10~%). Hence
we will end up with 102 unknowns, which is well out of the power of most today’s
computer resources.

In summary, solving SPPs is a very challenging task because of the fact that &
can be very small leads to notorious computational difficulties [25, pp.310]. Such
difficulties have also been emphasized by many researchers [30, 11]. The challenging
SPPs serve frequently as test models for new algorithms, e.g., in multigrid methods
[14, Ch.10], domain decomposition methods [12], collocation methods [4, Ch.10],
and adaptive methods [1, 32].

Recently, the standard finite element methods based on anisotropically refined
meshes, which use different scales of mesh size in different subdomains, were proved
to give uniform convergence, which is independent of the small perturbation param-
eters. However, most work was restricted to linear finite element and problems with
one perturbation parameter [3, 19, 22, 29, 37]. More details about the unsolved
problems in this area can be found in the most recent survey by Roos [28].

In this paper, we will consider the analysis of applying arbitrary order tensor-
product finite elements on such highly nonuniform anisotropic mesh to a two-
dimensional parabolic equation with two small parameters. The pointwise deriv-
ative estimates are essential in the construction of such an anisotropic mesh with
optimal uniform convergence. Here we use the maximum principle [26] as our pow-
erful tool to obtain those derivative estimates by carefully choosing all kinds of
barrier functions. Then we use the integral identity superconvergence technique
[23, 7, 37, 9] originally developed for superconvergence analysis on tensor-product
finite elements. We like to remark that uniform convergence can not be obtained di-
rectly by the standard finite element analysis for such highly nonuniform anisotropic
meshes because of the violation of the quasi-uniformity assumption [8, 5]. Special
interpolation estimates have to be obtained on such anisotropic meshes [2]. Also
asymptotical expansion or pointwise derivative estimates for the analytical solution
has to be investigated in order to obtain such uniform convergence [21, 22].

For simplicity, here we focus on the following parabolic equation

0
(2) Loyu= 58—1: —pfaANu+bu= f(x,yte,p) inD=Qx(0,T],
(3) ulgax o, =0, uli=0 =0,
where 2 = (0,1)2, and the coefficients a(z,y,t),b(z,y,t) and f are sufficiently
smooth functions. Here 0 < ¢ < 1,0 < p < 1 are small parameters. Furthermore
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we assume
b>aB; >0, b>p >0,

where 31 and (; are positive constants.

The asymptotic expansion for (2)-(3) was investigated in [6], which showed where
all the boundary layers are located. By the maximum principle, we also find all the
boundary layers’ exact locations, out of which our anisotropic mesh is built for the
standard arbitrary k-th (k > 1) order conforming tensor-product elements. Our
anisotropic mesh separates the boundary layers (small scale regions) totally from
other parts of the problem domain (large scale regions). We use very fine mesh
inside the boundary layers, and much coarse mesh elsewhere. The mesh ratio can
be as high as 1: e|Ine|. Use of such a mesh [34, 12, 17, 3, 22, 19] is more intuitive
than the widely discussed Shishkin type mesh [2, 11, 24, 30, 36, 37]. The fully
discrete backward difference [35, pp.748] Galerkin approximation is discussed and
optimal uniform convergence rates of O(N~*+1) 4 M~1) in the discrete L*norm
are proved for the k-th order conforming tensor-product elements, where N and
M are the number of discretization intervals in the spatial and time directions,
respectively. Here for simplicity, we use the same number of partitions in both the
x- and y-directions.

The rest of the paper is organized as follows. The derivative estimates of arbi-
trary order for the analytic solution of (2)-(3) are presented in section 2. Our mesh
and the Galerkin scheme are constructed in section 3. Section 4 are devoted to the
introduction of a special interpolation operator and its interpolation estimates. In
the last section, the optimal uniform convergence analysis in the discrete L2-norm
is given.

Throughout the paper, C (or C;) will denote a generic positive constant, which
may be of different value at each occurrence and independent of the mesh size and
the perturbation parameter €. We use the notation ||-||x p,- for the standard Sobolev
W*P(r) norm defined on the set 7, and vgr for the k-th order derivative of v with
respect to the variable €. For simplicity, we use || - ||x,» when p = 2.

2. The derivative estimates

Here we use the maximum principle [26] as our powerful tool to obtain derivative
estimates for the analytical solution of (2)-(3). Such technique has been proven to
be very useful for SPPs [27, 29, 19], the difficult is how to carefully choose all kinds
of barrier functions.

Because of the technical difficulty of applying the maximum principle, from now
on we assume that a is a positive constant. Such difficulty has been encountered
by other researchers ([29, pp.720], [27, pp.50]). Furthermore, we assume that f
satisfies the following conditions:

(4) | faien(z,y, b6, )| < CeF(1 4 pte P/ 4 =l P20=0)/ity on D,
(5) [ fyren (2,9, b8, 1) < CeF(1 4 plemP2v/k 4 =i 200011y on D,
(6) |fei (2.t e, 1) < C(1+e e /%) on D,

where D = [0,1]? x [0,T], i >0, k=0, 1.
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Theorem 2.1. Suppose the solution u of (2)-(3) is sufficiently smooth on D. Then
under the assumptions (4)-(6), we have
() Juss (@ 0)] < Ot e el 4 ke =500/ on DY > 1,
(i4) lugn (2, y,t)] < C(1+ p~ ke Pev/i 4 y=ke=R0=0)/1y  on D,V k> 1.
Proof. We only present the proofs of (i) for £ = 1,2,3, 4 in the following Lemmas
2.2-2.7. From the proofs given below, it is not difficult to see that other higher
order derivatives can be obtained by the inductive method. (ii) can be proved by
symmetry. O

Let 0D = 9Q x (0,T]JQ x {¢t = 0}. Here we will make repeated use of the
following weak maximum principle [26]:

Lemma 2.1. For any functions w(z,y,t) € C*(D) N C°(D), if w > 0 on dD and
Leyw >0 on D, then w >0 on D.

Lemma 2.2.

(7) Uz‘y:O,l = uw|t:0 = 0;
(8) |um|m:O,1 S Cuilv
(9) ul <C(1—e /1) < C, (a,y.t) € D.

Proof. By the boundary condition (3), i.e.,
|y=0,1 = t|t=0 = 0,

the proof of (7) follows directly.
Consider the barrier function ¢ = C(1 — e~ 2%/ we have

Loy(p+u) = aCpie 2o/t L pC(1 — e P2n/m) £ f
= aCP3 +C(1—e /1) (b—afy) + f
> 0, for sufficiently large C,
which along with Lemma 2.1 and the fact that (¢ + u)|sp > 0 gives us
lu| < ¢ =C(1—eP2%/1) onD,

which completes the proof of (9).
From (9) and the fact that u|,—¢ = 0, we have

u(x, Y, t) — U(O, Y, t) | u(x, Y, t) — U(Oa Y, t) |

(0,9, ¢ = li < 1l
| (0,9, 1) | lim . < lim -
C(1— e—Pasln
(10) < lim # = C@ < C;fl.
z—0+ xT 12

By the same technique, it is easy to prove that
lu| < C(1—e P0-2)/1y  on D,
from which and u|,—; = 0, we obtain

u(xaya t) — u(la y7t)

| U(Iay7t) — U(Lyvt) |

luz(1,9,8)] = | lim |< lim

x—1- z—1 z—1- T
C(1 = e~ B2(1—2)/pn
< lim ( € ) = C@ < C’,u_l,
z—1- 1—2z W

which together with (10) completes the proof of (8). O
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Lemma 2.3.
lug| < C(14 ptemPo/i 4 p=te=P20m0)/iy - (3 1y t) € D.

Proof. Consider the barrier function ¢ = C(1 4 pu~te=P22/1 4 y=le=B2(1=)/1y,
we have

Ley(p£tu,) = —aCu’l/Bg((ﬁzm/u + 67,62(17:5)/,1)
FHO(1 + ptePan/u 4 y=le=B2(l=2)/1y L (£, — b,u)
= WC+(b- aﬁ%)cu—l(e—ﬁzx/u + 6—62(1—@/“) © (fa — bou)
(11) > 0, for sufficiently large C,

where in the last step we used the assumption (4) and the estimate (9).
From Lemma 2.2, we have

(¢ £ug)lop >0, for sufficiently large C,
which along with (11) and Lemma 2.1 completes the proof. O
Lemma 2.4.
lug2| < C(14 p=2ePerli g =2 P20=0/) (3, y,1) € D.
Proof. From (2)-(3), we have

(12) Ug2|zm01 = —p 20" flozo,1,
(13) Ug2|y=0,1 = Uy2t=0 = 0,
from which we obtain
(14) | g2 |lop< Cu2.

Consider the barrier function ¢ = C(1 4 pu~2e=82/1 4 =2~ F(1=2)/1t) e have

Lep(¢ £ ug2)
= bC+ (b—af2)Cu~2(e P22/m 4 e P0=D)/1y 4 (f0 — boou — 2bpu,)

(15) > 0, for sufficiently large C,
where in the last step we used the assumption (4) and the obtained estimates for

u and u,.
The proof follows from Lemma 2.1, (14) and (15). O

Denote
1 — e B2(l—2)/n 1 — e P2/p
_ o —1,-2
9@y, te,p) = a” p T g O,y t e, p) + 5 f(Ly te, ),
and
(16) U = Ug2 +g($7y7t757/1’)'

Differentiating (2) twice with respect to x, it is not difficult to see that u satisfies

Ju _
Euﬂzaa—? —pPa AT+ bu = f(x,y,t,e,pn) in D,

(18) w=0 on dD,

—~
—_
EN{

~—
h
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where f = f,2 — 2byu,; — by2u + Le,g. To obtain (18), we used the following com-
patibility conditions:

(19) f(0707t,€7u) :f(071’t7€7u) :f(170’t7€7u):f(1’17t7€7u) :07
(20) f(0,4,0,e,p) = f(1,y,0,e,1) =0,
(21) f(xvovoagvﬂ) = f(xv]-vovgvﬂ) = 07

Similar compatibility conditions of (19) were obtained for a steady problem in
Section 3 of [15]. Let us show how (20) can be obtained. By letting ¢ = 0 in (2)
and using the boundary condition (3), we have

0
(22) E%'tzo = f(x?y707‘€7:u’)'
On the other hand, from the boundary conditions u|z—0,1 = 0, we have
(23) Ut|g=01 = 0.

Substituting (23) into (22) with = 0, 1 gives us (20). (19) and (21) can be obtained
similarly.

Lemma 2.5.

(24) Ez|y:0,1 = ﬂz|t:0 = 07
(25) |ﬂx|x=0,1 < Cleig-
Proof. The proof of (24) follows directly from the boundary conditions (18).

The proof of (25) can be obtained by the same technique used in Lemma 2.2.
Consider the barrier function ¢ = Cp=2(1 — e~ 72%/1) we have

Lep(p20) = aCHpu +Cp (1= e ) (b—af) + T
> 0, for sufficiently large C,

which along with Lemma 2.1 and the fact that (¢ +u)|sp > 0 gives us

(26) [u| < ¢=Cu2(1—eP2/")  onD.

From (26) and (18), we have

_ . ﬂ(x7y7t) - E(O,y,t)
0,y,0)] < 1
[2:(0,y,1)| Jim | . |
(27) < g CP0— )

- z—0t T

= C,u_zﬁ <Cps.
w

Similarly, it is not difficult to obtain
@ (1,y,1)] < Cu™?,
which along with (27) finishes the proof of (25). O
Lemma 2.6.
s < O(1 + p=eB20/h 4 y=3e=320-2)/) (34 1) € .

Proof. Similar to Lemma 2.3, by considering the barrier function ¢ = C(1 +
pSe=Par/i 4 =3e=B2(1=2)/1) " we have

Ley(¢£0,) = bC+ (b—af;)Cp~3 (e P/ 4 e 200y 4 (F — b,)
(28) > 0, for sufficiently large C,
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where in the last step we used the assumption (4) and the obtained estimates for
uwk,k = 0,1,2.
From Lemma 2.5, we have

(¢ +u,)|op >0, for sufficiently large C,
which along with (28) and Lemma 2.1 gives us
G| < C(1+ p3e=Pet/i 4 =3e=Rel=a) ity
which together with the definition @ of (16) gives us
ga] < [T — gol < [Tl + |gal < O(L+ 222/ 4 y=3e=Pal1=a)/)
which completes the proof. O
Lemma 2.7.
lugs| < C(14 p~tePem/m g =t P20m0/) (34 1) € D.

Proof. The proof is very similar to the one given for Lemma 2.4.

From (17)-(18), we have
(29) ﬂ12|z:0,1 = _/"L_2a‘_1?|:l):0,17
(30) Uy2|y=0,1 = Ug2|t=0 = 0,
from which and the estimate of f we obtain
(31) | U2 [op< Cpu™.

Consider the barrier function ¢ = C(14-p~te= 2%/t 4y ~4e=P2(1=2)/1) By simple
calculations, we obtain

Loy(¢ £y2)
= bC+ (b—ap)Cp~t(e P22/ 4 o= P2y 4 (F o — bl — 20,7T,)

(32) > 0, for sufficiently large C,
where in the last step we used the assumption (4), the definitions of @ and f, and
the obtained estimates for u x,0 < k < 3.

Lemma 2.1, (31) and (32) complete the proof. O

It is not difficult to see that the above proofs for Lemmas 2.5-2.7 can be carried
out repeatedly to obtain higher order derivative estimates of uzr (k > 4).

Lemma 2.8.
ug| < C(A+ere M%), (,y,t) € D.

Proof. Consider the barrier function ¢ = C(1 + e~ te~#1%/¢). By simple calcula-
tions, we obtain

Lep(@£u) = —Chre le P+ 001+ emMYE) £ (fy — byu)
= bC + CE_le_Blt/E(b — ﬁl) + (ft — btu)
(33) > 0, for sufficiently large C,

where we used the assumption (6) and the estimate (9).
On the other hand, letting ¢t = 0 in (2), we have

(34) u(z,y,0) = e fz,y,0,e,1) < Ce™ .
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From the boundary conditions (3), we have
(35) Ut|z=0,1 = Ut|y=0,1 = 0,
which along with (34) give us
(¢ £ ut)|op =0,

which together with (33) and Lemma 2.1 finishes the proof. O
Denote

(36) g(m, y7 t’ 67 M) = eilf(x7y7 07 67 u)eiﬂlt/67
(37) U= u(z,y,t) — §(z,y,t, &, ),
Differentiating (2) once with respect to ¢, it is not difficult to see that @ satisfies
i _
(38) Leyii= 56—7: —p2aDa+bi=f(z,yte,u) inD,
(39) @=0 ondD,

where f = f; — byu — L.,g. Note that the compability conditions (20)-(21), (34),
and (35) were used to obtain (39).

Lemma 2.9.
luge| < C(A+ e Fe PYe) (z,y,t) €D, k>2.
Proof. The proof is similar to the one given for Lemma 2.8. Consider the barrier
function ¢ = C(1 + e~2e~/1¥/¢). By simple calculations, we obtain
Loy(¢p+i) = bO+Ce2e (b~ 61) + (fi — bett)
(40) > 0, for sufficiently large C,

where we used the assumption (6), and the definitions of f and .
On the other hand, letting ¢t = 0 in (38), we have

(41) i (x,y,0) = e~ fx,y,0,e,p) < Ce™2.

From the boundary conditions (39), we have
(42) Ut]p=0,1 = Ut|y=0,1 = 0,
which along with (41) give us

(¢ £ i)lop > 0,

which together with (40) and Lemma 2.1 gives us
(43) i) < C(1+ e 2ePrt/e),

By the definition of @ and the fact (43), we have

e <l + el <[] +1ge] < C(L+ 72215,

which concludes the proof for k = 2.
It is not difficult to see that the above procedures can be used repeatedly for
higher order estimates of u,x for k > 3.0

Lemma 2.10. Suppose the solution u of (2)-(3) is sufficiently smooth on D. Then
under the assumptions (4)-(6), we have

(4) ughe(z, )] < Ce (1 + pFe=Pee/m 4 y=ke=P(=2)/y  on DV k> 1,
(i) luyrs (2, y)| < Ce (1 + p ke Bl oy mRe=B0=0) /iy on DY k> 1.
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Proof. Note that (38)-(39) are in the same form as our original problem (2)-(3),
except that the right hand side f satisfies

|foi (@, y,t, 6, p)| < Ce (14 ple™P2e/m 4 =i B2(1=2)/1y on Q) Vi > 0,
|y (@ y b8, )| < Ce™H (14 p~lem P/ 4 p=ie= 001y on Vi > 0,
fri(z,y, t, e, <Ce'(l+e e P onQ, Vi>0,

]

which differ from (4)-(6) only in a constant .
Hence by carrying out the same procedures used in Lemmas 2.2-2.7, it is easy
to obtain that

‘aivk (Ia Y, t)| S 0671(1 + #*ke*ﬁﬂv/ﬂ + uikeiﬁZ(liz)/H) on 57 v k Z 1a
from which and the definitions of 4, we have
[tgig| < |Tgh (2,5, 1) 4 Gor| < Ce™H(1 4+ p~Fe=P2z/n 4y =ke=F2(l=a) 1y,

where in the last step we used the definition of § and the assumption (4).
By symmetry, (ii) can be proved directly. O

3. The mesh and the scheme

From Theorem 2.1 and Lemma 2.9, we see that the solution u of (2)-(3) has sharp
boundary layers at faces x = 0,1,y = 0,1, and ¢ = 0. Hence we need finer mesh
inside the boundary layers than elsewhere. First we divide €2 into nine subdomains
Qi, 1<i<9, ie, Q=U)_,Q, where

Q= (0,0,) x(0,0y), Q2= (04,1 —04) x(0,04), Q3= (1—04,1) x(0,0,),
U = (0,04) X (0y,1 —0y), Q5= (03,1—03)% (0,1 —0y),

Qs = (1—0y,1) x(0y,1—0y), Q7 =(0,04) x (1—0y,1),

Qg = (05,1 —0g) x (1 =0y, 1), Q=(1-0,1)x(1—-0yl).

Here 0, = 0, = (k+ 1)85 'u|In p| for the standard k-th order conforming tensor-
product finite elements. Then each subdomain €; is divided quasi-uniformly in both
the z- and y-directions. We assume that the meshes are matching globally, hence
we obtain an a prior anisotropically refined mesh (see Figure 1), which is refined
only in the directions of the boundary layers. To simplify the notation, we assume
equal total number of partitions, denoted as IV, in both the z- and y-directions.
The number of divisions in each subdomain is some fraction of N.

Similarly in the time space, we use smaller time step inside the boundary layer
than elsewhere. We divide [0, T] into two subdomains, i.e.,

[Oa T] = [Ov Ut] U[Ut7 T]7

where o; = By 'e|Ine|. Then each subdomain is partitioned uniformly into M/2
intervals. Note that to build our mesh, the conditions of o, < 1/2 and o, < T/2
are implied to be true. Otherwise, the underlying problem is not considered to be
singularly perturbed.
The weak formulation of (2)-(3) is given by finding u : (0, 7] — HE () such that
ou
44 —
(44) (5
Here and throughout the paper, (-,-) denotes the inner product in L?(£2).

v) + p?(aVu, Vo) + (bu,v) = (f,v), v € HJ(Q).
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FIGURE 1. An exemplary anisotropic mesh

Consider the following fully discrete time Galerkin method for approximating
the solution of (2)-(3): find u;”kl € SF such that

n+1

7Un
(45) g(% wn) + 12 (@Vuptt Vop) + (bup it vn) = (f,vn), o € SE,

where SF C H}(Q) is the k-th order conforming tensor-product finite elements on
the above special rectangular partition of €2. Here and below we denote

5tn:tn+l_tn7 n=0,--- ,M—1,

where to = 0,t57/2 = 04,ty = T. Note that (45) is the so-called backward scheme
[35, pp.748]. More sophisticated discrete time schemes [10, 33] can be discussed
similarly.

Remark. The scheme (45) is unconditionally stable, hence there is no restriction
on the time step. This can be seen by taking vy, = uZJ,gl in (45) and using the

Holder inequality, we obtain

lluh e 116 + 2 ClIVug LIS o + Cllug 316 o

5tn

(46) < n+1||09+5t ||uhk||09|‘uhk1”09ﬂ

where C'=min, , ) ca.0.7] (a(a:,y,t),b(a:,y, t)). Using

ik oo < |

un+1”0§2 + 2C||fHOQ’

and

[ugy 1 llo.cllup i oo <

5”“2&”3,52 + 5 H“h Hosza
we can rewrite (46) as

2

% lIb0 + w2 ClIVup M o + *Iluh

26t
€
(47) < %Hfﬂg,g + m”uﬁ,kﬂg,m
from which we have
(48) [|uh % ||on_ Hf||09+||“ k150

M1 ot, = T, we obtain

Summing up (48) from n = 0 to M —1 and using the fact >~ "~

T
||u2/,[k||g,ﬂ < EHJCH?)Q + [Jup 15,0

which shows that the scheme is unconditionally stable.
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4. The special interpolation operator and its interpolation estimates

Consider a special interpolation operator Ilfw : w € C°(Q) — Qj defined on
each rectangular element 7 of Q by the following conditions [13, pp.108]:

(49) Hﬁw(al) = U}((Zi), 1= 17 2a 3a4a
/ (Hﬁw —w)v =0, Y|, € Pr_2(l;), j=1,2,3,4,

lj
/ (IMw — w)o = 0, Vol, € Qu_slr).

for k > 2, where a; and [; denote the vertices and edges of 7, which are illustrated
in Figure 1 of [18]. Here Py is the k-th order polynomial in one dimension, and

Qi(7) =span{z'y’ : 0 <4,j <k, (z,y) € 7}.

Note that when k = 1, II} is defined by (49) only, i.e., IT} is the standard bilinear
interpolation.

By [13, pp.108], H;“L is well defined. Furthermore, using standard scaling tech-
nique [8, 5], we can easily prove the following interpolation estimates [20, Lemma
3.1]:

Lemma 4.1. Let integer k > 1, and real p with 1 < p < oco. Then for all v €
Wk+LP (1) we have

o = T5ollop,r < Chg [varsillopr + by [vgeslop.r),

where T is an arbitrary rectangular element with width hy » and length hy ..
Using the integral identity technique [23], we have [18, Lemmas 1-2]:

Lemma 4.2. For Vv € Qi(7),k > 1 and Yw € H**2(7), we have

_9\k
(@ /(Hiw—w)xvx - ((22;' /Fk(y)wly’“"'l(z7y)va’“—1(zay7')
_9\k
A [Pt (2. 1) e 0100)

= O(hytN)[|wgyrsr|lo,l|vzllor
_9)k
(”) /(ng—w)yvy = <(2k;' /Ek(x)wyzk+1(xay)vymkfl(xﬂy)

_9\k
e [ e

= O(hE)lwersiyllor

_|_

[vy[lo.

Here T = [c—hg 7y Tet+ho ) X [Ye— Ry r, Yo+ Ry 7] 15 a Tectangular element centered
at (xe,Ye), with width 2h, . and length 2hy -, and

1 1

E(z) = 5[(96 —z)*—hi.], Fly) = 5[@ —ye)? = hi ]

Also we denote F*(y) = (F(y))*, and E*(x) = (E(z))*.
In the following, we need to obtain some mixed order derivatives (which are

impossible to get by the maximum principle directly) by the technique we developed
in [22, 19].
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For clarity, we introduce the following short notation:

QF = 0, UQUQs, OF = QU5 U QG QF = Q7 UQg UQy,
Q‘qlJ:QlUQ4UQ7, Qg:QQUQ5UQS, Qg:Q;),UQ(;UQg.

Lemma 4.3. For the solution u of (2)-(3) and any k > 1, we have

k 1/2
)

(@) pllugyrlloy < Cp™" - (ufInpl)
MH%yk”O,Q% <C,

k 1/2
)

:U'Huxyk”O,Q’g” < Cﬂi
(i) il [tgryllo,ov < Cu™
il [ugryllo,r < C,

< (p] In pa)
1/2

P ()2,

k )1/2.

lugrylloor < Cu™" - (p|lnp

Proof. (i) Differentiating (2) k times with respect to y gives us
(50) —pPaugzye = fr — (bu)ye + pPatere — ctyn,.

Integrating by parts and using the boundary condition u|sqax ) = 0 (hence
Uyk|z=0,1 = 0), Theorem 2.1, Lemma 2.10, and (50), we have

Ty
,LLQ/ AUy - Ugyrdxdy = ,uz/ (Uyn ~au$yk)\;:0dy — u2/ Uyh - Qg2 drdy

= —/ Uy -uzaumzykdxdy
Q7

= / Uyk - (fyk — (bu)yk + uQauykM — €Uykt)

1
< CpF-ph - meas(Q),
from which and the fact that meas(Q7) = O(u|1In p|), we obtain

k 1/2

:uHuxkaO,Q”f <Cup = (:u’| ln,u|)

Similarly, we have

,u2/ AUy - Ugyrdxdy = / Uyh - (fye — (bu)yr + uzauykm — EUyky),
Qz Q

5 3
which along with the fact that
u*ke*ﬁzy/# + u*kefﬂz(lfy)/# < Qu*ke*ﬁwy/u <2, foro, <y<1-—o,,
gives us
| tgyr|lo,0z < C.
In the same way, it is easy to see that

Wty llo.og < Cp™* - (uln )"/,
ii Differentiating (2) k times with respect to z gives us
(i) g P g

(51) —u2au$ky2 = for — (bu)wk + uzauwkw — EUgky-
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Integrating by parts and using the boundary condition u|sqxo,r) = 0 (hence
Ugk|y=0,1 = 0), Theorem 2.3, Lemma 2.10, and (51), we have

O
2 _ 2 1 2
1 /Qy AUghy - Ughydrdy = pi /0 (ugk - atgry)|,—odr — p /Qy Ugh - AUk 2 drdy
1 1

= /Qy Uk -+ (for — (DU) gr + pPaUgitz — EUyry)
1

< Cp™% " meas(),
from which we obtain
/‘Huz’“yHO,Q’{ < Cﬂf—k : (M| 1nu|>1/2'

The other inequalities can be proved easily by the same technique. O

Lemma 4.4. Let u be the solution of (2)-(3), and IIfu be the special interpolant
of u defined in section 4. Then for any k > 1, we have

i) 1 (M — 1)z, Xa )| < CCLN~F - plixalloe, ¥ x € S,
it) 12 ((Mu = )y, xy)| < CON"F D plxylloa, ¥ x € S,
iid) || u — ulp.o < CC,N~¢+D

) E||H,’§ut —ullo,o < C’C’HNf(kH),

where C,, = 1+ p'/2| " 372 ).

o~ o~ o~ o~

Proof. (i) Let hg , and hy, » be the width and length of element 7, and

hy v = max hy -, hygr = max hy ;.
i TEQ? TGQf

Denote

Tl:;ﬁ/ (Miu — wexe, i=1,2,3.

By the construction of our mesh, we have

plIn g
(52) hy g & hy v % hyar ~ hygs = O( |N |)7
1
(53) heqy = hy o = O(N),
By using Lemmas 4.2 and 4.3, and (52)-(53), we have
71| < Chyty - plluzysilloof - plixallo.op
plIn g -
< (B e e )2l o
(54) = ON~FFD 2 32 ) o,of
By symmetry, we have
(55) I Ts| < ON=FFD 2 372 -l o 03

Similarly, we obtain

T |

IN

Chy e - illtayes [lo,0g - 1llXallo,03

1 k+1
() - C allalloog

(56) = ON"™ . plxalloos,

IN



120 JICHUN LI

which along with (54) and (55) gives

2 (M — w)e, X)) Ty + Ty + T3

CN=FFD (M2 %32 1 4 1) -l xalfo.c

(57)

IN

(ii) By the same technique, it is not difficult to see that

3
(=) = 1306 [ =)
i=1 i

3
< Czhi}zlg 'NHukayHo,ﬂg '#||Xy||0,§z;4
i=1

(58) < ONTEEDEM2 M ) 4 1) -l lloe,
(iii) By using Theorem 2.1 and the construction of our mesh, we observe that

(59) ||uwk+1||oo,Qg < C7 Huwk‘*l”oo,ﬂi.’ < C.u“i(kJrl)v 1= 1a35

(60) ||’U/yk+1||oo7Q§ <C, Huyk+1||oo7gf < Cu_(k+1), i1=1,3,

then by Lemma 4.1, (52)-(53), and (59)-(60), we have

9
M —ulloe < D [[HEu — ulloc,g, - meas'/?(22;)
i=1
3
< CZ higly Ukt ] o0, -meas'/%(QY)
i=1 '
3
JrC’Z h’;?zlfHuykﬂ |07 - meas'/?(QF)
i=1
< C. (M)Hl = ®FD (g I )2 4 CN D

N
— CN—(k—i—l) . (u1/2|1nk+3/2 /L| + 1)7

which completes the proof of (iii).
(iv) By using Lemma 2.10 and the construction of our mesh in section 3, we
observe that

(61)  lugrsre|loo oy < Ce™H(1 4 2p~ MV P2oe/ity = 3071,
(62)  [fuyrrielloo,0p < CemH (1420 B Ve Row/it) = 30,

(63)  Jtgrerelloo,or < Ce™ ™ iy |looge < Ce™tpmFHD i = 1,3,
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then by Lemma 4.1, (52)-(53), and (61)-(63), we have

9

ellMu —wlloe < &Y [[Mhur — w0, - meas™/?(Q,)
i=1
3
< CaZh’;Bly||uxk+1t||oo7Q§/ -meas'/2(QY)
i=1
3
+C€Zh551?||uyk+1t||ooygf -meas'/2(QF)
i=1
] In gl “1—
< Ce- (7)k+1 e 1‘u (k+1) | (MHHMDUQ

N
+Ce- N~h+1) g1
_ CN—(k+l) . (N1/2| 1nk+3/2 M' + 1)’

which completes the proof of (iv). O

5. The error estimate

By letting v = vp, and t = ¢,,41 in (44), and subtracting (45) from (44), we obtain
the error equation

8un+1 un+1 —up
o ~ Unk h.k Jon) + uQ(a(Vu”Jr1 - VUT;)» Vuy,)
ot oty 7

(64) +  (b(u"tt — uzzl),vh) =0, w,eSkr

Theorem 5.1. Let u and uzzl be the solutions of (2)-(3) and (45), respectively.
Then we have

M-—1
(3 stallar )2 < OOV 401,
n=0

where C is independent of the small parameters € and p.

We remark that this estimate is optimal in the discrete L?-norm [10, pp.151]
with respect to the order of N and M. Estimates for more sophisticated discrete
time schemes [35, 10, 33] can be pursued accordingly.

Proof. By the Taylor expansion, we have

aun-i-l un—i—l —unt 1

= =Sttt
(65) ot st Tl

R 2 A~ ~
where ufjl = %(z, y,t), for some ¢ between t,, and .

Substituting (65) into (64) gives us

(W —upih) = (W' —up )

e( 5t Jon) + 2 (a(Vu ™ — Vuptt), Vo)
n
1.
(66) H(b(u T —upt ), vn) = 75§5tn(u:§+1,vh), vy, € SY.
Denote
Xzzl _ Hﬁun-ﬁ-l _ U;LHI;l’ 772+1 — Hl}elun-i-l _ un-i-l.
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By letting vy, = X;fkl in (66) and reorganizing it, we have

3
5 <xﬁ*,;1,xﬁ*,;1>+u2<awh VD + (O G

n+1)

13
5 — (X 1o X e i

5t (77k — N s Xh,k
n n n 1 n n
+u (avnkH VX, +1) + (bny; HthJlrcl) € 5(% (@ +17XhJ1r<1)a
from which we obtain

(67) el 8. + 0tn - 1211V XG 3 15 0 + Otal XG4 |\osz<ZEz,

where we used the properties of a and b, and the notations

E, = C\£(thath)|,

E, = 0\5( P WkaXZ—;l)L

Bz = Cl|6ty - p* @Vt Vxpihl,
Ey = Cotn(bng X,

Es = Cle-(0ta)*(ags x5kl

By the Cauchy-Schwarz inequality, we have

(68) E; < HthHoQ"‘*HXh HOQ

By the Taylor expansion, we have

Oni,
ot
= Oty - (TTFuy — ug)(z,y, 1),

which along with Lemma 4.4 (iv) gives us
E, < Cét n'5||(HZUt —u)(@,y,8)llo.ellxi log
< -0C,N~+1). HX"HHO Q

n+l

My —Z(x,y,t), for some t between t, and t,

771? = Oty -

IN

(69) Hlxh HIg.o + C2CEN D],
By Lemma 4.4 (i)-

(iii), we have
By < 6t,-CC,N-*HD. uIIVXh Hlo.o

IA

(70) ot [uIIVXZ oa+ 35 0202 N2,

By Lemma 4.4 (iii), we have
Ei < 8ty CCN~EFD - |[yntly]o g

(71) < Hl i Il o + CPORN2HD),

Also by Lemma 2.9, we have

Es < Ce- (8t i ool o
< C -0ty -ebty,(14+e 27" 1t/5)||xﬁ lo.0
(72) < H|xh Y2 o+ C2 - (e8t,)? - (1 + 72 Ai/e)?).
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Combining (67) with (68)-(72), we obtain
= UPGE 1B — IXEal Ba) + 0t - w219 B0 + 30l XE
(713) < dtal; 0202N k4D 4 02 . (e6t,)? - (14 a*2e*ﬁ1t/€)2].
Summing up the above inequality from n =0 to M — 1, we have

13
§(||Xth||%,Q - HX%,I@H%,Q)

L M1 L M1
b3 30 bt w2V |
n=0 n=0
(74) < JercaNr I
where we used the fact that ZTJ\L/I;OI ot, =T, and
M—1 )
Eg= Y 6ty[C?- (e6t,)? - (1 + e 2 M11/e)?],
n=0
Using the facts that
0y | Inel M
Otn = T Ar/o f =0, ,— -1,
M2 orn=0 5
T — B Ing| T M
Otn = L < , 1 = ... M1,
M2 Swmjz T
and
3 M
e7leMtle < el forn=0,--- ,?—1,
sflefﬁﬁ"/e < 6*16*ﬁ10t/6:1’ forn:%,“' M —1
Hence
M/2—-1 M—1
By < 72 ) (6tn)’+
n=0 n=M/2
M/2-1 1 M—1
_ sﬂ [Ine| T
< 2 SP1 1 MElys 3
< 0 g T 2 )

n=M/2
< CM72(1+¢|ln®e|),
which along with (74) and the fact that X%,k = 0 gives us

M 1

e

||th||09+ Z Ot - IIVX"“||09+ 1 Z 8t x5 5 1130

n=0

70202N KT 4 CM2(1 + ¢|In®¢]),

from which we obtain

Z Sl I3 0)/? < CCLN~FHDT2 1 OM 7 (14 12| 2 ).

123
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By Lemma 4.4 (iii), we have
M-1 Ml
S ot €S Ot - (CC,N~(FD)2
n=0 "0

_ 22 ar—2(k+1
= C?CAN2RHUT,
which along with (75) and the triangle inequality gives us

M—1
(Y dtallu™ —up it .0) '
n=0

(76) < CC,N~HITY2 L OM~H1 + V23 2 ).

1/2| lnk+3/2

It is easy to see that p p| is actually uniformly (independent of p)

bounded for all p € (0, 1], for example
p2 I <15, pM? W2 < 4.6, pM? 72l <28, for all pe (0,1],

from which we see that (76) can be bounded independent of € and p. That completes
the proof. O

6. Conclusions

Optimal uniform convergence is proved for a two-dimensional parabolic equation
with two small parameters. First we used the maximum principle with carefully
chosen barrier functions to obtain the pointwise arbitrary order derivative esti-
mates, from which an anisotropic mesh is constructed. The mesh is much finer
inside the boundary layer regions than elsewhere. Note that the standard finite
element analysis technique can not be used directly for such highly nonuniform
anisotropic meshes because of the violation of the quasi-uniformity assumption [8].
The optimal uniform convergence is obtained by using the integral identity tech-
nique [23]. Generalization of our results to other singular perturbation problems
with two or more small parameters can be pursued similarly.
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