
Journal of Computational Mathematics, Vol.14, No.4, 1996, 383–386.

ANALYSING THE EFFICIENCY OF SOLVING DENSE LINEAR

EQUATIONS ON DAWNING1000∗

X.B. Chi

(Institute of Software, Chinese Academy of Sciences, Beijing, China)

Abstract

In this paper, we consider solving dense linear equations on Dawning1000 by

using matrix partitioning technique. Based on this partitioning of matrix, we give a

parallel block LU decomposition method. The efficiency of solving linear equations

by different ways is analysed. The numerical results are given on Dawning1000.

By running our parallel program, the best speed up on 32 processors is over 25.

1. Block LU Decomposition Method

The block LU decomposition method is based on the matrix partition technique.

Usaully, the matrix A can be partitioned into 1- or 2-directional blocks [?]. In ScaLA-

PACk, the matrix A is partitioned into 2-directional blocks. For very fast uniprocessor,

reducing the communication is more important than reducing a few operations. For this

reason and the convenience of FORTRAN program, we partition matrix into column

blocks. Assume that n = mq. That is,

A =
(

A0 A1 ... Aq−1

)

where Ai, i = 0, . . . ,m−1 are n×m matrices. For description briefly, we denote the jth

processor by Pj . The number of processors is p. In order to get a good load balance,

we use column wrap manner to store the partitioned block matrix. That is, Ai is stored

in P
i mod p

. According to this storage scheme and partitioning method of matrix, the

LU decomposition method can be given similarly to that in LINPACK.

Assume that we have a permutation matrix P such that

PA =





A00 A01

A10 A11



 =





L00 0

L10 I









U00 U01

0 Ã11





∗ Received November 8, 1995.



384 X.B. CHI

where L00 is a unit lower triangular matrix and U00 is an upper triangular matrix, then

we have:

L00U00 = A00, L10U00 = A10, L00U01 = A01, Ã11 = A11 − L10U01.

From the elimination process of LU decomposition, we know that L00, U00 and L10 are

determined. So we can calculate U01 and Ã11 by the above relations. We can use this

process to matrix Ã11 too. The block LU decomposition need a lower triangular system

solver with multiple right hand side and a matrix multiplication. The serial algorithm

is easy, so we don’t state it here. The parallel algorithm of block LU decomposition

can be described as following:

Algorithm 1:

for i = 0 to q − 1 do

if mynode = i mod p then

computing factor L

if i 6= q − 1, sending factor L to mynode + 1

else

receive factor L from mynode − 1

if mynode + 1 6= i mod p, send factor L to mynode + 1

end{if}

Modifying the rest part of matrix A which includes:

Solving triangular system with multiple right hand sides

Doing the matrix multiplication operation

end{for}

In this algorithm, each time it computes one column block of lower triangular matrix

L. But the large amount of work for modifying matrix is done parallelly, and the factor

L is computed in one processor which does not need communication of messages. The

parallel complexity of this algorithm can be given in a similar approach of [?]. So it

is omitted here. The lower and upper triangular systems solvers can be easily derived

from modifying the method of [?].

2. Numerical Results

In our test problem, we choose block size to be 8. We use Kernel Mathematics

FORTRAN library to construct our program. This library has a lot of functions which

are written by Assembly language. Therefore, we can get a very satisfactory actual



Analysing the Efficiency of Solving Dense Linear Equations on Dawning1000 385

speeds of both single and multiple processors on our test problem. The numerical

results on Dawning1000 parallel system are listed in the following three tables:

Table 1. Execution Time(s)

Problem Size 1000 2000 4000 8000 10000 15000

nprocs= 1 18.81 125.35 – – – –

nprocs= 2 11.62 70.07 – – – –

nprocs= 4 8.51 44.30 274.26 – – –

nprocs= 8 6.29 29.56 164.79 – – –

nprocs=16 5.33 22.47 110.58 629.04 1131.64 –

nprocs=32 5.03 18.80 82.50 415.30 716.25 2012.58

Table 2. Actual Speed on Multiprocessor(MFLOPS)

Problem Size 1000 2000 4000 8000 10000 15000

nprocs= 1 35.44 42.55 – – – –

nprocs= 2 57.37 76.11 – – – –

nprocs= 4 78.34 120.39 155.57 – – –

nprocs= 8 105.99 180.42 258.92 – – –

nprocs=16 125.08 237.35 385.84 542.63 589.12 –

nprocs=32 132.53 283.69 517.17 821.92 930.77 1117.97

Table 3. Speed-Up

Problem Size 1000 2000 4000 8000 10000 15000

nprocs= 2 1.62 1.79 – – – –

nprocs= 4 2.21 2.83 3.51 – – –

nprocs= 8 2.99 4.24 5.85 – – –

nprocs=16 3.53 5.58 8.72 12.26 13.31 –

nprocs=32 3.74 6.67 11.68 18.57 21.02 25.25

The best float operation speed of single processor is 44.27MFLOPS for solving linear

systems, which is achieved at 2500 orders. The speed-up is calculated by the following

formular:

Sp =
Speed of p processors

best speed of one processor

The speed-up values in Table 3 when the orders are great than 2000, are used the above

formular.



386 X.B. CHI

For nonblock method, the best speed which we can get on uniprocessor is 21MFLOPS.

From this simple test result, we can say that the partition technique plays an important

role in matrix operation. In this system, if you don’t use the methematics library, you

can only get 2MFLOPS though you use partitioning technique. Therefore, using basic

functions in library is also important to get high efficiency. About using BLAS, it is

analysed in [?].

In some vector based computers, the library may not play an important role. The

partitioning technique is also important for reducing the communication time. This

technique is more important for high speed computers than low ones.

References

[1] J.J. Dongarra and D.W. Walker, Software Libraries for Linear Algebra Computations on
High Performance Computers, SIAM Review, Vol. 37, 151-180, 1995.

[2] X. B. Chi, Parallel Implementation of Cholesky Decomposition on a Transputer Network,
Chinese J. Num. Math. & Appl. Vol 15, 73-80, 1993.

[3] G. Y. Li and T. F. Coleman, A Parallel Triangular Solver for a Hypercube Multiprocessor,
TR 86–787, Cornell University, 1986.

[4] J.J. Dongarra, L.S. Duff, D.C. Sorenson, and H.A. van der Vorst, Solving Linear Sys-
tem on Vector and Shared Memory Computers, SIAM Society for Industrial and Applied
Mathematics, 1991


