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Abstract

The unequal meshsteps are unavoidable in general for scientific and engineering

computations especially in large scale computations. The analysis of difference

schemes with nonuniform meshes is very rare even by use of fully heuristic methods.

For the purpose of the systematic and theoretical study of the finite difference

method with nonuniform meshes for the problems of partial differential equations,

the general interpolation formulas for the spaces of discrete functions of one index

with unequal meshsteps are established in the present work. These formulas give

the connected relationships among the norms of various types, such as the sum of

powers of discrete values, the discrete maximum modulo, the discrete Hölder and

Lipschitz coefficients.

1. Introduction

The great number of problems for the large scale scientific and engineering compu-

tations concern the numerical solutions of various problems for the partial differential

equations and systems in mathematical physics. The finite difference method is the

most commonly used in these computations. So the theoretical and numerical studies

of the finite difference schemes for the problems of the partial differential equations and

systems naturally call people’s great attentions.

The imbedding theorems and the interpolation formulas for the functions of Sobolev’s

spaces are very useful in the linear and nonlinear theory of the partial differential equa-

tions [1-4]. It is natural that the analogous extensions of the interpolation formulas

for the discrete functional spaces must play the extremely important role in the study

of the finite difference approximations to the problems of linear and nonlinear par-

tial differential equations and systems. The discrete interpolation formulas and their

consequences can be used in the study of the convergence and stability of the finite

difference schemes for the various problems of linear and nonlinear systems of partial

differential equations of different types. And they can also be used to construct the
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weak, generalized and classical, local and global solution for the problems of partial

differential equations and systems. [5-11]

The finite difference schemes with unequal meshsteps for the problems of partial

differential equations are much more complicated than the schemes with equal mesh-

steps. There are only very few simple results concerning this topic. Establishment

of the general interpolation formulas for the spaces of discrete functions with unequal

meshsteps obviously gives the possibility and strong apparatus for the systematic stud-

ies of the finite difference schemes with unequal meshsteps for the problems of partial

differential equations.

The purpose of the present work is to establish a series of general interpolation

formulas for the discrete functional spaces of discrete functions with equal and un-

equal meshsteps. These general interpolation formulas give the connected relationship

among the discrete norms as the summations of powers, the maximum modulo and

the Lipschitz and Hölder quotients for different discrete functional spaces. Also a se-

ries of consequences, derivations and applications for these interpolation formulas are

justified. They are very commonly used in the further study for the finite difference

approximations to the theory of partial differential equations.

2

Let us divide the finite interval [0, l] into the small segments by the grid points

{xj |j = 0, 1, · · ·, J}, where 0 = x0 < x1 < · · · < xJ−1 < xJ = l, J is an integer

and hj+ 1
2

= xj+1 − xj > 0(j = 0, 1, · · ·, J − 1) are the equal and unequal meshsteps.

The discrete function uh = {uj |j = 0, 1, · · ·, J} is defined on the grid points {xj |j =

0, 1, · · ·, J} with unequal in general meshsteps h = {hj+ 1
2
|j = 0, 1, · · ·, J − 1}. Let

us denote △+uj = uj+1 − uj or simplely △uj = uj+1 − uj(j = 0, 1, · · ·, J − 1) and

△−uj = uj − uj−1(j = 0, 1, · · ·, J).

Now let us introduce some notations of the difference quotients for the discrete

function uh = {uj |j = 0, 1, · · ·, J}. As the discrete functions we take the notation for

the difference quotient of first order

δuh =
{

δuj+ 1
2

=
uj+1 − uj

hj+ 1
2

∣

∣

∣j = 0, 1, · · ·, J − 1
}

, (1)

which can be regarded as a discrete function defined on the grid points

{

x
(1)

j+ 1
2

=
1

2
(xj+1 + xj)

∣

∣

∣j = 0, 1, · · ·, J − 1
}

.

of the interval [x
(1)
1
2

, x
(1)

J− 1
2

] of length x
(1)

J− 1
2

− x
(1)
1
2

= l − 1
2(h 1

2
+ hJ− 1

2
) with the unequal

in general meshsteps
{

h
(1)

j+ 1
2

= hj+ 1
2

∣

∣

∣j = 0, 1, · · ·, J − 1
}

.
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The difference quotient of second order for the discrete function uh = {uj |j =

0, 1, · · ·, J} is a discrete function

δ2uh =
{

δ2uj =
δuj+ 1

2
− δuj− 1

2

h
(2)
j

∣

∣

∣j = 0, 1, · · ·, J − 1
}

. (2)

The grid points of this discrete function are

{

x
(2)
j =

1

2
(x

(1)

j+ 1
2

+ x
(1)

j− 1
2

)
∣

∣

∣j = 0, 1, · · ·, J − 1
}

of the interval [x
(2)
1 , x

(2)
J−1] with length x

(2)
J−1−x

(2)
1 and the corresponding unequal mesh-

steps are
{

h
(2)
j =

1

2
(hj+ 1

2
+ hj− 1

2
)
∣

∣

∣j = 0, 1, · · ·, J − 1
}

.

For the difference quotients of higher order, we have

δ3uh =
{

δ3uj+ 1
2

=
δ2uj+1 − δ2uj

h
(3)

j+ 1
2

∣

∣

∣j = 0, 1, · · ·, J − 2
}

,

δ4uh =
{

δ4uj =
δ3uj+ 1

2
− δ3uj− 1

2

h
(4)
j

∣

∣

∣j = 2, · · ·, J − 2
}

, (3)

· · · · ··

δ2k+1uh =
{

δ2k+1uj+ 1
2

=
δ2kuj+1 − δ2kuj

h
(2k+1)

j+ 1
2

∣

∣

∣j = k, k + 1, · · ·, J − (k + 1)
}

,

δ2k+2uh =
{

δ2k+2uj =
δ2k+1uj+ 1

2
− δ2k+1uj− 1

2

h
(2k+2)
j

∣

∣

∣j = k + 1, · · ·, J − (k + 1)
}

,

k = 0, 1, · · ·,

where

h
(1)

j+ 1
2

= hj+ 1
2
;

h
(2)
j =

1

2
(h

(1)

j+ 1
2

+ h
(1)

j− 1
2

) =
1

2
(hj+ 1

2
+ hj− 1

2
);

h
(3)

j+ 1
2

=
1

2
(h

(2)
j+1 + h

(2)
j ) =

1

4
(hj+ 3

2
+ 2hj+ 1

2
+ hj− 1

2
);

h
(4)
j =

1

2
(h

(3)

j+ 1
2

+ h
(3)

j− 1
2

) =
1

8
(hj+ 3

2
+ 3hj+ 1

2
+ 3hj− 1

2
+ hj− 3

2
);

· · · · ··

h
(2k+1)

j+ 1
2

=
1

2
(h

(2k)
j+1 + h

(2k)
j ) =

1

22k

2k
∑

i=0

(2k
i )hj+k+ 1

2
−i;
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h
(2k+2)
j =

1

2
(h

(2k+1)

j+ 1
2

+ u
(2k+1)

j− 1
2

) =
1

22k+1

2k+1
∑

i=0

(2k+1
i )hj+k+ 1

2
−i,

k = 0, 1, · · ·. (4)

The discrete difference quotients δ2k+1uh and δ2k+2uh (k ≥ 0) can be regarded as

the discrete functions defined on the grid points {x
(2k+1)

j+ 1
2

|j = k, .., J − (k + 1)} and

{x
(2k+2)
j |j = k + 1, · · ·, J − (k + 1)} with unequal meshsteps {h

(2k+1)

j+ 1
2

|j = k, · · ·, J −

(k + 1)} and {h
(2k+2)
j |j = k + 1, · · ·, J − (k + 1)} of the intervals [x

(2k+1)

k+ 1
2

, x
(2k+1)

J−(k+ 1
2
)
] and

[x
(2k+2)
k+1 , x

(2k+2)
J−(k+1)] with the lengths l̄2k+1 = x

(2k+1)

J−(k+ 1
2
)
− x

(2k+1)

k+ 1
2

and l̄2k+2 = x
(2k+2)
J−(k+1) −

x
(2k+2)
k+1 respectively, where

x
(2k+1)

j+ 1
2

=
1

22k

2k+1
∑

i=0

(2k+1
i )xj+i−k, (j = k, · · ·, J − (k + 1));

x
(2k+2)
j =

1

22k+1

2k+2
∑

i=0

(2k+2
i )xj+i−(k+1), (j = k + 1, · · ·, J − (k + 1)) (5)

and

h
(2k+1)

j+ 1
2

= x
(2k)
j+1 − x

(2k)
j ;

x
(2k+1)

j+ 1
2

=
1

2
(x

(2k)
j+1 + x

(2k)
j ), j = k, · · ·, J − (k + 1);

h
(2k+2)
j = x

(2k+1)

j+ 1
2

− x
(2k+1)

j− 1
2

,

x
(2k+2)
j =

1

2
(x

(2k+1)

j+ 1
2

+ x
(2k+1)

j+ 1
2

), j = k + 1, · · ·, J − (k + 1) (6)

with x0
j = xj(j = 0, 1, · · ·, J).

Let us denote

h∗ = max
j=0,1,···,J−1

hj+ 1
2
, h∗ = min

j=0,1,···,J−1
hj+ 1

2
. (7)

It is clear that

h∗ ≥ max
j=k,···,J−(k+1)

h
(2k+1)

j+ 1
2

, h∗ ≤ max
j=k+1,···,J−(k+1)

h
(2k+2)
j ,

and

h∗ ≤ min
j=k,···,J−(k+1)

h
(2k+1)

j+ 1
2

, h∗ ≤ min
j=k+1,···,J−(k+1)

h
(2k+2)
j

for k = 0, 1, · · ·. And it can be verified that

l ≥ l̄2k+1 ≥ l − 2kh∗ ≥
1

2
l, l > l̄2k+2 ≥ l − (2k + 1)h∗ ≥

1

2
l
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for k = 0, 1, · · ·.

3

The norms of the discrete function uh = {uj |j = 0, 1, · · ·, J} with unequal meshsteps

are defined as

‖uh‖p = (
1

2
|u0|

ph 1
2

+
J−1
∑

j=1

|uj |
p 1

2
(hj+ 1

2
+ hj− 1

2
) +

1

2
|uJ |

phJ− 1
2
)

1
p (8)

or

‖uh‖p = (
J
∑

j=0

1

2
(hj+ 1

2
+ hj− 1

2
)|uj |

p)
1
p (9)

or

‖uh‖p = (
J−1
∑

j=0

1

2
(|uj |

p + |uj+1|
p)hj+ 1

2
)

1
p (10)

and

‖uh‖∞ = max
j=0,1,···,J

|uj |, (11)

where h− 1
2

= hJ+ 1
2

= 0 and 1 ≤ p < ∞.

The difference quotient of first order is the discrete function δuh has the norm as

‖δuh‖∞ = max
j=0,1,···,J−1

|δvj+ 1
2
| (12)

and

‖δuh‖p = (
J−1
∑

j=0

|δuj+ 1
2
|phj+ 1

2
)

1
p (13)

where 1 ≤ p < ∞ is a real number. The norms of the difference quotients δ2uh of

second order for the discrete function uh have the expressions as

‖δ2uh‖∞ = max
j=0,1,···,J−1

|δ2uj | (14)

and

‖δ2uh‖p = (
J−1
∑

j=1

|δ2uj |
ph

(2)
j )

1
p , (15)

where 1 ≤ p < ∞.

Then for the norms of the difference quotients δkuh of order k ≥ 1, we take the

notations as follows:

‖δ2k+1uh‖p = (

J−(k+1)
∑

j=k

|δ2k+1uj+ 1
2
|ph

(2k+1)

j+ 1
2

)
1
p ,
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‖δ2k+2uh‖p = (

J−(k+1)
∑

j=k+1

|δ2k+2uj |
ph

(2k+2)
j )

1
p , (16)

and

‖δ2k+1uh‖∞ = max
j=k,···,J−(k+1)

|δ2k+1uj+ 1
2
|,

‖δ2k+2uh‖∞ = max
j=k+1,···,J−(k+1)

|δ2k+2uj|, (17)

where 1 ≤ p < ∞ and k = 0, 1, · · ·.

Denote by

M = max
j=0,1,···,J−1

{hj− 1
2

hj+ 1
2

,
hj+ 1

2

hj− 1
2

}

the maximum ratio constant of two consecutive unequal meshsteps or simply the ratio

constant of meshsteps.

4

Lemma 1. For any discrete functions uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · ·

·, J − 1} of the interval [0, l] of finite length l < ∞ and for any constants 1 ≤ q, r ≤ ∞

and q ≤ p ≤ ∞, there is

‖uh‖p ≤ C(‖uh‖
1−α
q ‖δuh‖

α
r + l

1
p
− 1

q ‖uh‖q) (18)

with
1

p
=

1 − α

q
+ α

(1

r
− 1

)

(19)

and

0 ≤ α ≤

1
q

1 − 1
r

+ 1
q

≤ 1, (20)

where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2

> 0|j = 0, 1, · · ·, J − 1} and the discrete function uh.

Proof. For any uh = {uj |j = 0, 1, · · ·, J}, we have

|um|d − |us|
d ≤ |ud

m − ud
s | ≤ d

m−1
∑

j=s

(|uj+1|
d−1 + |uj|

d−1)|uj+1 − uj|,

where d > 1 and 0 ≤ s < m ≤ J . Let 1 ≤ g, r < ∞ and

1

g
+

1

r
= 1.

Here we then have

|um|d ≤ d[
m−1
∑

j=s

(|uj+1|
d−1 + |uj |

d−1)ghj+ 1
2
]
1
g [

m−1
∑

j=s

|
uj+1 − uj

hj+ 1
2

|rhj+ 1
2
]
1
r + |us|

d
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≤ 2d[
∑m−1

j=s (|uj+1|
(d−1)g + |uj |

(d−1)g)hj+ 1
2
]
1
g ‖δuh‖r + |us|

d

≤ 2d2
1
g ‖uh‖

d−1
(d−1)g‖δuh‖r + |us|

d.Take(d-1)g=q(q≥ 1), then

1

d
=

1
q

1 − 1
r

+ 1
q

.

If for j = 0, 1, · · ·, J , |uj | ≥ a > 0, then

‖uh‖q ≥ al
1
q .

Thus there always exists such a us, that

‖uh‖q ≥ |us|l
1
q .

Taking this special us, we get for any m = 0, 1, · · ·, J ,

|um|d ≤ 4d‖uh‖
d−1
q ‖δuh‖r + l

− d
q ‖uh‖

d
q .

Hence we have

‖uh‖∞ ≤ 4‖uh‖
1− 1

d
q ‖δuh‖

1
d
r + l

− 1
q ‖uh‖q,

where (4d)
1
d ≤ 4 for d ≥ 1.

For any 1 ≤ q ≤ p < ∞, there is

‖uh‖
p
p ≤ ‖uh‖

p−q
∞ ‖uh‖

q
q.

Therefore, we have

‖uh‖p ≤ 4‖uh‖
1−α
q ‖δuh‖

α
r + l

1
p
− 1

q ‖uh‖q,

where

α =

1
q
− 1

p

1 − 1
r

+ 1
q

for any 1 ≤ q ≤ p < ∞.

By means of Hölder inequality, we have

‖uh‖q

l
1
q

≤
‖uh‖p

l
1
p

≤ ‖uh‖∞, p ≥ q

and then also
‖δuh‖r

l
1
r

≤ ‖δuh‖∞.

These show that

lim
q→∞

‖uh‖q = ‖uh‖∞, lim
r→∞

‖δuh‖r = ‖δuh‖∞. (21)
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Hence the obtained estimate is valid also for r = ∞ and q = ∞. Then the lemma is

proved.

Lemma 2. For every discrete function uh = {uj |j = 0, 1, · · ·, J} defined on

the grid points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj >

0|j = 0, 1, · · ·, J − 1} of the interval [0, l] of finite length l < ∞ and for any constants

1 ≤ q, r ≤ ∞ and q ≤ p ≤ ∞, there is

‖δkuh‖p ≤ C(‖δkuh‖
1−α
q ‖δk+1uh‖

α
r + l

1
p
− 1

q ‖δkuh‖q) (22)

with
1

p
=

1 − α

q
+ α

(1

r
− 1

)

(23)

and

0 ≤ α ≤

1
q

1 − 1
r

+ 1
q

≤ 1, (24)

where k ≥ 1 and C is a constant independent of the constants p, q, r, the finite length

l < ∞, the meshsteps {hj+ 1
2

> 0|j = 0, 1, · · ·, J − 1} and the discrete function uh and

dependent on the ratio constant M of meshsteps.

Proof. For the sake of brevity, let us consider the case of k being odd integer,

k = 2k′ + 1, k′ = 0, 1, · · ·. Then let vh = δkuh or

vh = {vj = δkuj+ 1
2
|j = k′, · · ·, J − (k′ + 1)}.

This discrete function vh = δkuh is defined on the grid points

{yj = x
(k)

j+ 1
2

|j = k′, · · ·, J − (k′ + 1)}

with the meshsteps

{τj+ 1
2

= yj+1 − yj = x
(k)

j+ 3
2

− x
(k)

j+ 1
2

= h
(k+1)
j+1 |j = k′, · · ·, J − k′ − 2}

on the interval [yk′ , yJ−(k′+1)] ≡ [x
(k)

k′+ 1
2

, x
(k)

J−k′− 1
2

] of length l̄k = yJ−k′−1 − yk′ =

x
(k)

J−k′− 1
2

− x
(k)

k′+ 1
2

≥ 1
2 l. Here we also have δvh = δk+1uh, in fact

δvj+ 1
2

=
vj+1 − vj

τj+ 1
2

=
δkuj+ 3

2
− δkuj+ 1

2

h
(k+1)
j+1

= δk+1uj+1

for j = k′, · · ·, J − k′ − 2.

By the same way as the begin of the proof of Lemma 1, we have for d > 0, k′ ≤ s <

m ≤ J − k′ − 1 and 1 ≤ q, r < ∞ with 1
g

+ 1
r

= 1, the estimate

|vm|d ≤ 2d
[

m−1
∑

j=s

(|vj+1|
q + |vj |

q)τj+ 1
2

]
1
g
[

m−1
∑

j=s

∣

∣

∣

vj+1 − vj

τj+ 1
2

∣

∣

∣

r
τj+ 1

2

]
1
r

+ |vs|
d
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or

|δkum+ 1
2
|d ≤ 2d

[

m−1
∑

j=s

(|δkuj+ 3
2
|q + |δkuj+ 1

2
|q)h

(k+1)
j+1

]
1
g

×
[

∑m−1
j=s |δk+1uj+1|

rh
(k+1)
j+1

]
1
r + |δkus+ 1

2
|d,whereq=(d-1)g≥ 1. Then we have

|δkum+ 1
2
|d ≤ 2dW

1
g ‖δk+1uh‖r + |δkus+ 1

2
|d,

where

W =
J−k′−2
∑

j=k′

(|δkuj+ 3
2
|q + |δkuj+ 1

2
|q)h

(k+1)
j+1 .

Here we have

W = |δkuk′+ 1
2
|qh

(k+1)
k′+1 +

(J−k′−2)
∑

j=k′+1

|δkuj+ 1
2
|q(h

(k+1)
j + h

(k+1)
j+1 ) + |δkuJ−k′− 1

2
|qh

(k+1)
J−k′−1

=—δkuk′+ 1
2
|qh

(k)

k′+ 1
2

(h
(k+1)

k′+1

h
(k)

k′+1
2

)

+
∑J−k′−2

j=k′+1 |δkuj+ 1
2
|qh

(k)

j+ 1
2

(

h
(k+1)
j

+h
(k+1)
j+1

h
(k)

j+1
2

)

+—δkuJ−k′− 1
2
|qh

(k)

J−k′− 1
2

( h
(k+1)

J−k′−1

h
(k)

J−k′− 1
2

)

≤ 2‖δkuh‖
q
q

{

maxj=k′+1,···,J−k′−1
h
(k+1)
j

h
(k)

j+1
2

,maxj=k′,···,J−k′−2
h
(k+1)
j+1

h
(k)

j+ 1
2

}

.Since
h
(k+1)
j

h
(k)

j+ 1
2

=
h
(2k′+2)
j

h
(2k′+1)

j+ 1
2

=

1

22k′+1

∑2k′+1

i=0
(2k′+1

i
)h

j+k′+ 1
2
−i

1

22k′

∑2k′

i=0
(2k′

i
)h

j+k′+ 1
2
−i

≤ 1
2(1 + M)Mk−1, j = k′ + 1, · · ·, J − k′ − 1and

h
(k+1)
j+1

h
(k)

j+ 1
2

≤ 1
2 (1 + M)Mk−1, j =

k′, · · ·, J − k′ − 2,thenwehaveW ≤ (1 + M)Mk−1‖δkuh‖
q
q.

This shows that

|δkum+ 1
2
|d ≤ 2d(1 + M)

1
g M

k−1
g ‖δkuh‖

d−1
q ‖δk+1uh‖r + |δkus+ 1

2
|d.

Similarly to the proof of Lemma 1, we get the estimate

‖δkuh‖p ≤ C(M)(‖δkuh‖
1−α
q ‖δk+1uh‖

α
r + l

1
p
− 1

q ‖δkuh‖q)

with
1

p
=

1 − α

q
+ α

(1

r
− 1

)

,

where C(M) depends on the maximum ratio constant M of two consecutive unequal

meshsteps. This gives the result of the lemma for the case k = 2k′ + 1 being odd.
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For the case of k being even, k = 2k′, k′ = 1, 2, · · ·, let us denote vh = δkuh or

vh = {vj = δkuj |j = k′, · · ·, J − k′}.

This discrete function vh is defined on the grid points

{yj = x
(k)
j |j = k′, · · ·, J − k′}

with the meshsteps

{τj+ 1
2

= yj+1 − yj = x
(k)
j+1 − x

(k)
j = h

(k+1)

j+ 1
2

|j = k′, · · ·, J − k′ − 1}

on the interval [yk′ , yJ−k′] ≡ [x
(k)
k′ , x

(k)
J−k′ ] of length l̄k = yJ−k′ − yk′ = x

(k)
J−k′ −x

(k)
k′ ≥ 1

2 l.

Here we have δvh = δk+1uh, in fact

δvj+ 1
2

=
vj+1 − vj

τj+ 1
2

=
δkuj+1 − δkuj

h
(k+1)

j+ 1
2

= δk+1uj+ 1
2

for j = k′, · · ·, J − k′ − 1.

Similarly we have for d > 0, k′ ≤ s < m ≤ J − k′ and 1 ≤ q, r < ∞ with 1
g

+ 1
r

= 1,

the estimate

|vm|d ≤ 2d
[

m−1
∑

j=s

(|vj+1|
q + |vj |

q)τj+ 1
2

]
1
g
[

m−1
∑

j=s

∣

∣

∣

vj+1 − vj

τj+ 1
2

∣

∣

∣

r
τj+ 1

2

]
1
r + |δkvs|

d

or

|δkum|d ≤ 2d
[

m−1
∑

j=s

(|δkuj+1|
q + |δkuj|

q)h
(k+1)

j+ 1
2

]
1
g
[

m−1
∑

j=s

∣

∣

∣δk+1uj+ 1
2

∣

∣

∣

r
h

(k+1)

j+ 1
2

]
1
r + |δkus|

d,

where q = (d − 1)g ≥ 1. Then we have also

|δkum|d ≤ 2dW
1
g ‖δk+1uh‖r + |δkus|

d,

where

W =
J−k′−1
∑

j=k′

(|δkuj+1|
q + |δkuj|

q)h
(k+1)

j+ 1
2

.

Similarly, we can prove that

W ≤ (1 + M)Mk−1‖δkuh‖
q
q.

Hence we have also the estimate

|δkum|d ≤ 2d(1 + M)
1
g M

k−1
g ‖δkuh‖

d−1
q ‖δk+1uh‖r + |δkus|

d.

By the method of the proof of Lemma 1, we also obtain the result of present lemma

for the case of k = 2k′ being even, k′ = 1, 2, · · ·.
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Thus the lemma is proved.

5

Lemma 3. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · ·

·, J − 1} of the interval [0, l] of finite length l < ∞ and for the constants 1 ≤ q, r ≤ ∞

and 1 ≤ p ≤ ∞, there is

‖δuh‖p ≤ C(‖uh‖
1−α
q ‖δ2uh‖

α
r + l

1
p
− 1

q
−1‖uh‖q) (25)

with
1

p
− 1 =

1 − α

q
+ α

(1

r
− 2

)

(26)

and
1

2
≤ α ≤

1 + 1
q

2 − 1
r

+ 1
q

≤ 1, (27)

where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2

> 0|j = 0, 1, · · ·, J − 1} and the discrete function uh and C depends

on the ratio constant M of the meshsteps.

Proof. (1) For any uh = {uj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2
|j =

0, 1, · · ·, J − 1}, we have

‖δuh‖
2
2 =

J−1
∑

j=0

∣

∣

∣

uj+1 − uj

hj+ 1
2

∣

∣

∣

2
hj+ 1

2
= uJ

△−uJ

hJ− 1
2

− u0
△+u0

h 1
2

−
J−1
∑

j=1

uj

(

△+uj

h
j+1

2

−
△−uj

h
j−1

2

h
(2)
j

)

h
(2)
j

≤ 2‖uh‖∞‖δuh‖∞+‖uh‖q0‖δ
2uh‖r,whereh

(2)
j = 1

2 (hj+ 1
2
+hj− 1

2
) for j = 0, 1, ···, J−1

and
1

q0
+

1

r
= 1.

From Lemmas 1 and 2, there are

‖uh‖∞ ≤ C(‖uh‖
1−λ
q0

‖δuh‖
λ
2 + l

− 1
q0 ‖uh‖q0),

‖δuh‖∞ ≤ C(‖δuh‖
1−µ
2 ‖δ2uh‖

µ
r + l−

1
2 ‖δuh‖2), 28where0 = 1−λ

q0
− λ

2 , 0 = 1−µ
2 +

µ
(

1
r
−1
)

, (29)andthesecondconstantCdependsontheratioconstantMofmeshsteps.Thus1-

λ = µ = r
3r−2 .

Substituting two above inequalities into the previous one, then we have

‖δuh‖
2
2 ≤ C{(‖uh‖q0‖δ

2uh‖r)
µ‖δuh‖

2−2µ
2 + (l−

1
2µ ‖uh‖q0)

µ‖δuh‖
2−µ
2

+(l
− 1

2µ ‖uh‖q0)‖δuh‖
1−µ
2 (‖uh‖q0‖δ

2uh‖r)
µ
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+(l
− 1

2µ ‖uh‖q0)‖δuh‖2 + ‖uh‖q0‖δ
2uh‖r}.

For every terms in the right hand side of the above inequality, we have

C(‖uh‖q0‖δ
2uh‖r)

µ‖δuh‖
2−2µ
2 ≤ ε‖δuh‖

2
2 +

εµ

1 − µ

(

C
1 − µ

ε

)
1
µ ‖uh‖q0‖δ

2uh‖r,

C(l
− 1

2µ ‖uh‖q0)
µ‖δuh‖r)

2−µ
2 ≤ ε‖δuh‖

2
2 + εµ

2−µ

(

C 2−µ
2ε

)
2
µ (l

− 1
2µ ‖uh‖q0)

2,

C(l−
1
2µ ‖uh‖q0)‖δuh‖)

1−µ
2 (‖uh‖q0‖δ

2uh‖r)
µ

≤ ε‖δuh‖
2
2 + 2ε

1−µ

(

C 1−µ
2ε

)
2

1+µ
(l
− 1

2µ ‖uh‖q)
2

+2εµ
1−µ

(

C
1−µ
2ε

) 2
1+µ

(‖uh‖q0‖δ
2uh‖r ,

C(l−
1
2µ ‖uh‖q0)‖δuh‖2 ≤ ε‖δuh‖

2
2 + C

4ε
(l−

1
2µ ‖uh‖q0)

2.

Thus we get

(1 − 4ε)‖δuh‖
2
2 ≤

[ εµ

1 − µ

(

C
1 − µ

ε

)
1
µ +

2εµ

1 − µ

(

C
1 − µ

2ε

)
2

1+µ
]

(‖uh‖q0‖δ
2uh‖r)

+
[

εµ

2−µ

(

C
2−µ
2ε

) 2
µ

+ 2ε
1−µ

(

C
1−µ
2ε

) 2
1+µ

+ C
4ε

]

(l
−

1
2µ ‖uh‖q0 )2.

Takingε = 1
8 and regarding 1 ≤

r < ∞ and 1
3 < µ ≤ 1, we see that the coefficients on the right hand side of the above

inequality are bounded. Hence we obtain

‖δuh‖2 ≤ C(‖uh‖
1
2
q0‖δ

2uh‖
1
2
r + l

− 1
2
− 1

q0 ‖uh‖q0), (30)

where C depends on the ratio constant M of meshsteps and is independent of the

constants 1 ≤ q0, r < ∞ and 1
q0

+ 1
r

= 1.

(2) Let 1 ≤ q ≤ q0. From Lemma 1, we have

‖uh‖q0 ≤ C(‖uh‖
1−β
q ‖δuh‖

β
2 + l

1
q0

− 1
q ‖uh‖q),

where
1

q0
=

1 − β

q
−

β

2
.

Substituting this relation into the inequality obtained in the previous section, we

get the following inequality

‖δuh‖2 ≤ C{‖uh‖
1−β

2
q ‖δuh‖

β
2
2 ‖δ

2uh‖
1
2
r + l

1
2q0

− 1
2q ‖uh‖

1
2
q ‖δ

2uh‖
1
2
r

+l
− 1

2
− 1

q0 ‖uh‖
1−β
q ‖δuh‖

β
2+l

− 1
2
− 1

q ‖uh‖q}.Thisinequalitycanberewritteninthefollowingform‖δuh‖2 ≤

C{(‖uh‖
1−σ
q ‖δ2uh‖

σ
r )

β
2 ‖δuh‖

β
2
2 + (l

− 1
2
− 1

q ‖uh‖q)
β
2 (‖uh‖

1−σ
q ‖δ2uh‖

σ
r )

1
2σ
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+l
− 1

2
− 1

q ‖uh‖q)
1−β‖δuh‖

β
2 + l

− 1
2
− 1

q ‖uh‖q}.whereσ = 1
2−β

. This implies the estimate

‖δuh‖2 ≤ C(‖uh‖
1−σ
q ‖δ2uh‖

σ
r + l

− 1
2
− 1

q ‖uh‖q),

where

−
1

2
=

1 − σ

q
+ σ

(1

r
− 2

)

.

Again let us suppose that q0 ≤ q < ∞. Substituting

‖uh‖q0 ≤ l
1
q0

− 1
q ‖uh‖q

into the right hand part of the inequality (30) obtained in the previous section, we get

‖δuh‖2 ≤ C{l
1

2q0
− 1

2q ‖uh‖
1
2
q ‖δ

2uh‖
1
2
r + l

− 1
2
− 1

q ‖uh‖q}

=C{(l−
1
2
− 1

q ‖uh‖q)
β

2 (‖uh‖
1−σ
q ‖δ2uh‖

σ
r )

1
2σ +l

− 1
2
− 1

q ‖uh‖q},whereσ = 1
2−β

. Then there

is

‖δuh‖2 ≤ C(‖uh‖
1−σ
q ‖δ2uh‖

σ
r + l

− 1
2
− 1

q ‖uh‖q), (31)

where

−
1

2
=

1 − σ

q
+ σ

(1

r
− 2

)

.

Hence we then obtain the inequality in the present lemma for the case of p = 2 and

1 ≤ q, r < ∞.

(3) For the case p = ∞, let us substitute the estimate (31) for p = 2 into the

estimate (28) for the case of p = ∞, q = 2 of Lemma 2. we obtain

‖δuh‖∞ ≤ C{‖uh‖
(1−µ)(1−σ)
q ‖δ2uh‖

µ+σ(1−µ)
r + l

−( 1
2
+ 1

q
)(1−µ)

‖uh‖
1−µ
q ‖δ2uh‖

µ
r

+l−
1
2 ‖uh‖

1−σ
q ‖δ2uh‖

σ
r +l

−1− 1
q ‖uh‖q},whereµ =

1
2

3
2
− 1

r

and σ =
1
q
+ 1

2

2+ 1
q
− 1

r

.Thisinequalitycanberewriteninthefollow

C{‖uh‖
1−ᾱ
q ‖δ2uh‖

ᾱ
r + (l

−1− 1
q ‖uh‖q)

1−µ
ᾱ (‖uh‖

1−ᾱ
q ‖δ2uh‖

ᾱ
r )

µ
ᾱ

+(l
−1− 1

q ‖uh‖q)
1− σ

ᾱ (‖uh‖
1−ᾱ
q ‖δ2uh‖

ᾱ
r )

σ
ᾱ + l

−1− 1
q ‖uh‖q,whereᾱ = µ + σ(1 − µ) =

1+ 1
q

2+ 1
q
− 1

r

. This implies

‖δuh‖∞ ≤ C(‖uh‖
1−ᾱ
q ‖δ2uh‖

ᾱ
r + +l

−1− 1
q ‖uh‖q), (32)

where

−1 =
1 − ᾱ

q
+ ᾱ

(1

r
− 2

)

.

(4) Let us now consider the case of 1 ≤ p < ∞. At first let p ≥ 2, then

‖δuh‖
p
p ≤ ‖δuh‖

p−2
∞ ‖δuh‖

2
2 ≤ C{‖uh‖

(1−ᾱ)(p−2)+2(1−σ)
q ‖δ2uh‖

ᾱ(p−2)+2σ
r
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+l
−(1+ 1

q
)(p−2)

‖uh‖
p−2σ
q ‖δ2uh‖

2σ
r + l

−(1+ 2
q
)
‖uh‖

p−ᾱ(p−2)
q ‖δ2uh‖

ᾱ(p−2)
2

+l
−(1+ 1

q
)(p−2)−(1+ 2

q
)
‖uh‖

p
q}or‖δuh‖

p
p ≤ C{(‖uh‖

1−α
q ‖δ2uh‖

α
r )p + (l

−1+ 1
p
− 1

q ‖uh‖q)
p

+(l−1+ 1
p
− 1

q ‖uh‖q)
p− 2σ

α (‖uh‖
1−α
q ‖δ2uh‖

α
r )

2σ
α

+(l−1− 1
p
− 1

q ‖uh‖q)
p−

ᾱ(p−2)
α (‖uh‖

1−α
q ‖δ2uh‖

α
r )

ᾱ(p−2)
α }whereα =

1− 1
p
+ 1

q

2− 1
r
+ 1

q

.Hencewehave‖δuh‖p <

C(‖uh‖
1−α
q ‖δ2uh‖

α
r + l

−1+ 1
p
− 1

q ‖uh‖q), (33)where1
p
−1 = 1−α

q
+α

(

1
r
−2
)

.Thenlet1≤ p <

2, we have

‖δuh‖p ≤ l
1
p
− 1

2 ‖δuh‖2.

Hence

‖δuh‖p ≤ C{l
1
p
− 1

2‖uh‖
1−σ
q ‖δ2uh‖

σ
r + l

−1+ 1
p
− 1

q ‖uh‖q}

≤ C{(l
−1+ 1

p
− 1

q ‖uh‖q)
1− σ

α (‖uh‖
1−α
q ‖δ2uh‖

α
r )

σ
α + l

−1+ 1
p
− 1

q ‖uh‖q}.

This shows the above estimate (33) for 1 ≤ p < 2.

(5) We have proved till now the estimates of the present lemma for the cases of

1 ≤ p ≤ ∞ and 1 ≤ q, r < ∞. The estimate of the present lemma is also valid for

q = ∞ and r = ∞.

In fact for any interval [0, l] of finite length l < ∞, the set {‖δkuh‖p|1 ≤ p < ∞} is

uniformly bounded (k = 0, 1, · · ·), that is

‖δkuk‖q

l̄
1
q

≤
‖δkuk‖p

l̄
1
q

≤ ‖δkuh‖∞ (34)

for 1 ≤ q ≤ p < ∞, k = 0, 1, · · ·, where

l̄ =

J−[ k+1
2

]
∑

j=[ k
2
]

hj+ 1
2
≥ l − (k − 1)h∗ ≥

l

2
,

as J large and h∗ is small. Then we have also

lim
p→∞

‖δkuh‖p = ‖δkuh‖∞ (35)

for k = 0, 1, · · · and for the finite length l < ∞.

Therefore the lemma is proved completely for any constants 1 ≤ p, q, r ≤ ∞ and

for any interval [0, l] of finite length l < ∞.

Lemma 4. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J − 1} of the

interval [0, l] with finite length l < ∞ and for constants 1 ≤ p, q, r ≤ ∞, there is

‖δkuh‖p ≤ C(‖δk−1uh‖
1−α
q ‖δk+1uh‖

α
r + l

1
p
− 1

q
−1‖δk−1uh‖q) (36)

with
1

p
− 1 =

1 − α

q
+ α

(1

r
− 2

)

, (37)
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where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J −1} and the discrete function uh and C depends on the

ratio constant M of meshsteps.

The proof of this lemma is similar to that of Lemma 2.

6

Lemma 5. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · ·

·, J − 1} of the interval [0, l] with finite length l < ∞ and the constants 1 ≤ q, r ≤ ∞

and q ≤ p ≤ ∞, there is the estimate

‖uh‖p ≤ C(‖uh‖
1−α
q ‖δ2uh‖

α
r + l

1
p
− 1

q ‖uh‖q) (38)

with
1

p
=

1 − α

q
+ α

(1

r
− 2

)

(39)

and

0 ≤ α ≤

1
q

2 − 1
r

+ 1
q

, (40)

where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J −1} and the discrete function uh and C depends on the

ratio constant M of the meshsteps.

Proof. From Lemma 1 and 3, we have

‖uh‖p ≤ C(‖uh‖
1−λ
q ‖δuh‖

λ
s + l

1
p
− 1

q ‖uh‖q),

‖δuh‖s ≤ C(‖uh‖
1−µ
q ‖δ2uh‖

µ
r + l

1
s
− 1

q
−1‖uh‖q),where1≤ q, r ≤ ∞, q ≤ p ≤ ∞ and

1 ≤ s ≤ ∞,
1

p
=

1 − λ

q
+ λ(

1

s
− 1),

1

s
− 1 =

1 − µ

q
+ µ(

1

r
− 2).

By direct substitution and similar as before but much more simpler calculation, we

obtain

‖uh‖p ≤ C(‖uh‖
1−λµ
q ‖δ2uh‖

λµ
r + l

1
p
− 1

q ‖uh‖q),

where
1

p
=

1 − λµ

q
+ λµ(

1

s
− 2),

and the constant C depends on the ratio constant M of meshsteps. This shows the

conclusion of the lemma.
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7

Theorem 1. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on

the grid points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj >

0|j = 0, 1, · · ·, J − 1} of the interval [0, l] of finite length l < ∞ and for any constants

1 ≤ q, r ≤ ∞ and 0 ≤ k < n, there is the estimate

‖δkuh‖p ≤ C(‖uh‖
1−α
q ‖δnuh‖

α
r + l

1
p
− 1

q
−k‖uh‖q) (41)

with
1

p
− k =

1 − α

q
+ α(

1

r
− n) (42)

and

k

n
≤ α ≤

k + 1
q

n − 1
r

+ 1
q

≤ 1, (43)

where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J −1} and the discrete function uh and C depends on the

ratio constant M of the meshsteps.

Proof. Lemma 1 is the case of the present theorem for n = 1 and k = 0. Lemmas 3

and 5 are the cases of k = 1 and k = 0 respectively for n = 2 of (41).

Let us now prove the theorem by mathematical induction. Then suppose that the

relation (41) is valid for n = m ≥ 2.

From Lemma 4 for k = m, there is the inequality relation

‖δmuh‖p ≤ C(‖δm−1uh‖
1−λ
s ‖δm+1uh‖

λ
r + l

1
p
− 1

s
−1

‖δm−1uh‖s), (44)

where 1 ≤ s, p, r ≤ ∞, and

1

p
− 1 =

1 − λ

s
+ λ(

1

r
− 2)

and
1

2
≤ λ ≤

1 + 1
s

2 − 1
r

+ 1
s

.

By the induction hypothesis for n = m and k = m + 1, we have

‖δm−1uh‖s ≤ C(‖uh‖
1−µ
q ‖δmuh‖

µ
p + l

1
s
− 1

q
−(m−1)

‖uh‖q), (45)

where
1

s
− (m − 1) =

1 − µ

q
+ µ(

1

p
− m)

and
m − 1

m
≤ µ ≤

m − 1 + 1
q

m − 1
p

+ 1
q

.
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Substituting (45) into (44), we get

‖δmuh‖p ≤ C{‖uh‖
(1−µ)(1−λ)
q ‖δm+1uh‖

λ
r ‖δ

muh‖
µ(1−λ)
p

+l(
1
s
− 1

q
−m+1)(1−λ)‖δm+1uh‖

λ
r ‖uh‖

1−λ
q

+l
1
s
− 1

q
−1‖uh‖

1−µ
q ‖δmuh‖

µ
p+l

1
p
− 1

q
−m‖uh‖q}.Bysimilarderivationasbefore,weobtain‖δmuh‖p ≤

C(‖uh‖
1−β
q ‖δm+1uh‖

β
r +l

1
p
− 1

q
−m

‖uh‖q), (46)whereβ = λ
1−(1−λ)µand1

p
−m = 1−β

q
+β
[

1
r
−

(m + 1)
]

.Sinceβ increases as the parameters λ and µ increases respectively, then

m

m + 1
≤ β ≤

m + 1
q

(m + 1) − 1
r

+ 1
q

.

This gives the inequality (41) for the case n = m + 1 and k = m.

For 0 ≤ k < m and 1 ≤ p, s ≤ ∞, by induction assumption, we have

‖δkuh‖p ≤ (‖uh‖
1−λ
q ‖δmuh‖

λ
s + l

1
p
− 1

q
−k‖uh‖q), (47)

where
1

p
− k =

1 − λ

q
+ λ(

1

s
− m)

and
k

m
≤ λ ≤

k + 1
q

m − 1
s

+ 1
q

.

From (46) we have

‖δmuh‖s ≤ C(‖uh‖
1−µ
q ‖δm+1uh‖

µ
r + l

1
s
− 1

q
−k‖uh‖q),

with
1

s
− m =

1 − µ

q
+ µ

(1

r
− (m + 1)

)

.

Hence substituting this inequality into (47), we obtain immediately by derivation as

before

‖δkuh‖p ≤ C(‖uh‖
1−λµ
q ‖δm+1uh‖

λµ
r + l

1
p
− 1

q
−k

‖uh‖q),

where
1

p
− k =

1 − λµ

q
+ λµ

(1

r
− (m + 1)

)

and also
k

m + 1
≤ λµ ≤

k + 1
q

(m + 1) − 1
r

+ 1
q

.

Thus (41) is valid for n = m + 1.

Therefore (41) is valid for any n. This completes the proof of the theorem.
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In this section we are going to consider the interpolation formulas for the norms of

discrete functions with unequal meshsteps of negative index.

Let p < 0 be a negative number, denote s = [ 1
|p| ] and λ = { 1

|p|} the integer and the

decimal parts of the positive real number 1
|p| respectively.

For the discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid points

{xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 −xj > 0|j = 0, 1, · · ·, J − 1},

let us now define the norms ‖δkuh‖p, k = 0, 1, · · · of the negative index p < 0 as follows:

for the case of 0 < λ < 1, then 1
p

= −(s + λ), when k + s is odd, there is

‖δkuh‖p = max
r>m;r,m=[k+s],···,J−[k+s+1]

|δk+sur+ 1
2
− δk+sum+ 1

2
|

|x
(k+s)

r+ 1
2

− x
(k+s)

m+ 1
2

|λ
(48)

and when k + s is even, there is

‖δkuh‖p = max
r>m;r,m=[k+s],···,J−[k+s]

|δk+sur − δk+sum|

|x
(k+s)
r − x

(k+s)
m |λ

(49)

for the case of λ = 0, then 1
p

= −s, there is

‖δkuh‖p = max
j=[k+s],···,J−[k+s+1]

|δk+suj+ 1
2
| (50)

for odd k + s and

‖δkuh‖p = max
j=[k+s],···,J−[k+s+1]

|δk+suj | (51)

for even k + s. These norms for the discrete functions correspond to the Hölder and

Lipschitz coefficients of the derivatives for the differentiable functions.

For these kinds of norms for the discrete functions of unequal meshsteps, we can

also have the following simple notations as

U
k+s,λ
h = ‖δk+suh‖p (52)

for 0 < λ < 1 and

Uk+s
h = ‖δk+suh‖p (53)

for λ = 0, where k = 0, 1, · · ·, s = [ 1
|p| ] and λ = { 1

|p|} for the negative index p < 0.

When 0 < λ < 1, for the case for example that k + s is odd, from the definition of

norm with negative index, we then have

‖δkuh‖p = max
r>m;r,m=[k+s],···,J−[k+s+1]

|
∑r

j=m+1(δ
k+suj+ 1

2
− δk+suj− 1

2
)|

|x
(k+s)

r+ 1
2

− x
(k+s)

m+ 1
2

|λ
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≤ maxr>m;r,m=[k+s],···,J−[k+s+1]

(

∑r
j=m+1 |δ

k+s+1uj |
1

1−λ h
(k+s+1)
j

)1−λ

·
|x

(k+s+1)
r −x

(k+s+1)
m+1 |λ

|x
(k+s)

r+1
2

−x
(k+s)

m+ 1
2

|λ
≤ Mλ‖δk+s+1uh‖ 1

1−λ
.Wehavethesimilarestimateforthecasethatk+siseven.Hencewehave‖

Mλ‖δk+s+1uh‖ 1
1−λ

,wherep¡0,0¡λ < 1 and 1 < 1
1−λ

< ∞.

By means of Theorem 1, we have the following estimate formula

‖δk+s+1uh‖ 1
1−λ

≤ C(‖uh‖
1−α
q ‖δnuh‖

α
r + l

−λ− 1
q
−k−s‖uh‖q)

for 1 ≤ q, r ≤ ∞ and 0 < λ < 1, where

(1 − λ) − (k + s + 1) =
1 − α

q
+ α

(1

r
− n

)

since 1
p

= −(s + λ), there is

1

p
− k =

1 − α

q
+ α

(1

r
− n

)

for p < 0 and 0 < λ < 1, where

0 ≤ α =
k − 1

p
+ 1

q

n − 1
r

+ 1
q

≤ 1.

When λ = 0, then 1
p

= −s. From definition, there is

‖δkuh‖p = ‖δk+suh‖∞.

Then the interpolation formulas of Theorem 1 are also valid for this case.

Thus we obtain the following theorem of interpolation formulas for the norms of

nagetive index for the discrete functions with unequal meshsteps.

Theorem 2. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · ·

·, J − 1} of the interval [0, l] of finite length l < ∞ and for the constants 1 ≤ q, r ≤ ∞

and −(n − k − 1
r
) ≤ 1

p
≤ 0, there is the estimate relation

‖δkuh‖p ≤ C(‖uh‖
1−α
q ‖δnuh‖

α
r + l

1
p
− 1

q
−k

‖uh‖q) (54)

with
1

p
− k =

1 − α

q
+ α

(1

r
− n

)

(55)

and
k + 1

q

n − 1
r

+ 1
q

≤ α ≤ 1, (56)

where 0 ≤ k < n and C is a constant independent of the constants p, q, r, the finite

length l < ∞, the meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J − 1} and the discrete functions, but

the constant C depends on the ratio constant M of the unequal meshsteps.
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Combining Theorem 1 for positive index 1 ≤ p ≤ ∞ and Theorem 2 for negative

index −∞ ≤ p ≤ − 1
n−k− 1

r

≤ 0, we get the following theorem for general interpolation

formulas with both positive and negative index −(n − k − 1
r
) ≤ 1

p
≤ 1 for the discrete

functions with unequal meshsteps.

Theorem 3. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, ···, J} with unequal meshsteps {hj+ 1
2

= xj+1−xj > 0|j = 0, 1, ···, J−

1} of the interval [0, l] of finite length l < ∞ and for the constants −(n−k− 1
r
) ≤ 1

p
≤ 1

and 1 ≤ q, r ≤ ∞, and 0 ≤ k < n, there is the estimate

‖δkuh‖p ≤ C(‖uh‖
1−α
q ‖δnuh‖

α
r + l

1
p
− 1

q
−k‖uh‖q) (57)

with
1

p
− k =

1 − α

q
+ α

(1

r
− n

)

, 0 ≤ α ≤ 1, (58)

where C is a constant independent of the constants p, q, r, the finite length l < ∞, the

meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J − 1} and the discrete function, but C depends on the

ratio constant M of the unequal meshsteps.

As a consequence of the above general theorem, we have the interpolation relations

among the maximum modulo and the Hölder coefficients for the discrete functions

uh = {uj |j = 0, 1, · · ·, J} with unequal meshsteps.

Theorem 4. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the

grid points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j =

0, 1, · · ·, J − 1} of the interval [0, l] of finite length l < ∞, there are the interpolation

formulas

Uk
h ≤ C((U0

h)1−
k
n (Un

k )
k
n + l−kU0

h), Uk,λ
h ≤ C((U0

h)1−
k+λ

n (Un
h )

k+λ
n + l−k−λU0

h), (59)

where 0 ≤ k < n, 0 ≤ λ < 1 and C is a constant independent of the finite length

l < ∞, the unequal meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J − 1} and the discrete function, but

C depends on the ratio constant M of the unequal meshsteps.

10

As an immediate consequence of the previous theorem for general interpolation for-

mulas, we have the following theorem for so-called Sobolev’s inequality for the discrete

functions with unequal meshsteps.

Theorem 5. For any discrete function uh = {uj |j = 0, 1, · · ·, J} defined on the grid

points {xj |j = 0, 1, · · ·, J} with unequal meshsteps {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · ·

·, J − 1} of the interval [0, l] of finite length l < ∞ and for the constants 1 ≤ q, r ≤ ∞

and −(n − k − 1
r
) ≤ 1

p
≤ 1, there exists a constant C(ε) depending on ε > 0, such that

‖δkuh‖p ≤ ε‖δnuh‖r + C(ε)‖uh‖q, (60)
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where

0 <
k + 1

q
− 1

p

n − 1
r

+ 1
q

< 1, (61)

C(ε) is independent of the constants p, q, r, the finite length l < ∞, the unequal

meshsteps {hj+ 1
2
|j = 0, 1, · · ·, J − 1} and the discrete function uh, but C(ε) depends on

the ratio constant M of the unequal meshsteps.

11

For the discrete function uh = {uj |j = 0,+1,+2, · · ·} defined on the grid points

{xj |j = 0,+1,+2, ···} with unequal meshsteps {hj+ 1
2

= xj+1−xj > 0|j = 0,+1,+2, ···}

of the real line R = (−∞,∞) and the discrete function uh = {uj |j = 0, 1, 2, · · ·} defined

on the grid points {xj |j = 0, 1, 2, ···} with unequal meshsteps {hj+ 1
2

= xj+1−xj > 0|j =

0, 1, 2, · · ·} of the half real line R+ = [0,∞), the norms of these discrete functions and

their corresponding difference quotients are defined to be the limit of the convergent

infinite sums of the powers of discrete values on the corresponding grid points. Similar

to the theorem for the discrete functions on the functions on the finite interval, we have

the following theorems of interpolation formulas for the discrete functions on infinite

interval.

Theorem 6. For the discrete function uh = {uj |j = 0,+1,+2, · · ·} defined on

the grid points {xj |j = 0,+1,+2, · · ·} with unequal meshsteps {hj+ 1
2

= xj+1 − xj >

0|j = 0, 1, 2, · · ·} on the real line R = (−∞,∞) and the discrete function uh = {uj |j =

0, 1, 2, ···} defined on the grid points {xj |j = 0, 1, 2, ···} with unequal meshsteps {hj+ 1
2

=

xj+1 − xj > 0|j = 0, 1, 2, · · ·} on the half real line R = [0,∞) and for the constants

−(n − k − 1
r
) ≤ 1

p
≤ 1, 1 ≤ q, r ≤ ∞ and 0 ≤ k < n, there is the estimate relation

‖δkuh‖p ≤ C‖uh‖
1−α
q ‖δnuh‖

α
r , (62)

with
1

p
− k =

1 − α

q
+ α(

1

r
− n) (63)

where C is a constant independent of the constants p, q, r, the unequal meshsteps

{hj+ 1
2
} and the discrete function uh defined on the grid points of real line R+ and C

depends on M .

Theorem 7. For any discrete function uh defined on the grid points of the real linr

R and the half real line R+ with unequal meshsteps and for any constants 1 ≤ q, r ≤ ∞,

−(n− k− 1
r
) ≤ 1

p
≤ 1, and 0 ≤ k < n, then for any positive small constant ε > 0, there

exists a constant C(ε) depending on ε, such that

‖δkuh‖p ≤ ε‖δnuh‖r + C(ε)‖uh‖
α
q , (64)

where

0 <
k − 1

p
+ 1

q

n − 1
r

+ 1
q

< 1 (65)
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and C(ε) is independent of the constants p, q, r, the unequal meshsteps {hj+ 1
2
} and

the discrete function uh defined on the real line R and the half real line R+, but C(ε)

depends on the ratio constant M of the unequal meshsteps.
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