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Abstract

Predictor-corrector algorithm for linear programming, proposed by Mizuno et

al.[1], becomes the best well known in the interior point methods. The purpose

of this paper is to extend these results in two directions. First, we modify the

algorithm in order to solve convex quadratic programming with upper bounds.

Second, we replace the corrector step with an iteration of Monteiro and Adler’s

algorithm[2]. With these modifications, the duality gap is reduced by a constant

factor after each corrector step for convex quadratic programming. It is shown

that the new algorithm has a O(
√

nL)-iteration complexity.

1. Introduction

The predictor-corrector method for linear programming is a well known interior

point method developed by Mizuno et al.[1], due to its quadratically convergent analysis.

This kind of analysis usually contains two steps, i.e., predictor step and corrector step

as one iteration. The corrector step is used only to ensure that the iterates stay close

to the central path so that large step can be taken during the predictor step. The

duality gap remains unchanged at corrector step for linear programming, but in case of

convex quadratic programming, as shown later of this paper, this gap even increases.

In this paper, we extend these results in order to solve convex quadratic programming

with upper bounds. The predictor directions generated by our algorithm are similar

to those generated by the algorithm presented in [1]. However, the corrector directions

are replaced by the Monteiro and Adler’s algorithm[2]. With these modifications, the

duality gap is reduced by a constant factor after each corrector step. Therefore, we

obtain a faster algorithm for convex quadratic programming.

The paper is organized as follows. In section 2, we outline the procedure of a

predictor-corrector method. In section 3, we present convergence results for the algo-

rithm. Final section contains further discussions.

∗ Received March 12, 1994.
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2. The Algorithm

We consider the following quadratic programming problem in standard form

min cT x + 1
2xT Qx

(QP) s.t. Ax = b,

x + z = d,

x ≥ 0, z ≥ 0,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, d ∈ Rn, and Q ∈ Rn×n are given, and Q is positive

semi-definite, x ∈ Rn, z ∈ Rn, and the superscript T denotes the transpose. The

standard logarithmic barrier interior point method is to incorporate the inequalities

into a logarithmic barrier term and then append it to the objective function to obtain

the following problem

min cT x + 1
2xT Qx − µ

∑n
i=1 ln xi − µ

∑n
i=1 ln zi

(QPµ) s.t. Ax = b,

x + z = d.

The first order optimality conditions for (QP) are

Ax − b = 0, (1)

x + z − d = 0, (2)

AT y + s − w − Qx − c = 0, (3)

XSe = 0, (4)

ZWe = 0, (5)

x, z, s, w ≥ 0, (6)

where X,S,Z and W are diagonal matrices with the elements xi, si, zi, and wi respec-

tively, y,w and s are dual variables and e denotes the n dimensional vector of all 1’s

Similarly, the first order optimality conditions for (QPµ) are

Ax − b = 0, (7)

x + z − d = 0, (8)

AT y + s − w − Qx − c = 0, (9)

XSe − µe = 0, (10)

ZWe− µe = 0. (11)

The primal-dual method, proposed by Monteiro and Adler[2], Carpenter [3], applies

Newton’s method directly to (7)-(11). Denote by F the set of all (x, z) and (y, s, w)

that are feasible for the primal and dual, respectively. Denote by F 0 the set of all
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points with (x, z, s, w) > 0 in F . We note that (7)-(11) define a path in F 0 :

C =

{

(x , z , y , s,w) ∈ F0 :

(

Xs

Zw

)

=
xTs + zTw

2n
e

}

, (12)

which is usually called central path for (QP). We define the neighbourhood of the path

as

N (α) =

{

(x , z , y , s,w) ∈ F0 :

∥

∥

∥

∥

∥

(

Xs

Zw

)

− µe

∥

∥

∥

∥

∥

≤ α

2
µ, where µ =

xTs + zTw

2n

}

, (13)

for α ∈ (0, 1). We obtain the predictor direction of predictor-corrector method by

applying Newton’s method to (1)-(6). This entails solving the system

Adxp = 0, (14)

dxp + dzp = 0, (15)

AT dyp + dsp − dwp − Qdxp = 0, (16)

Sdxp + Xdsp = −Xs, (17)

Wdzp + Zdwp = −Zw, (18)

its solution is the predictor direction (dxp, dzp, dyp, dsp, dwp). As the predictor step may

stray from the central path, we need to pull back a little bit along corrector direction

(dxc, dzc, dyc, dsc, dwc) which is obtained by solving the system

Adxc = 0, (19)

dxc + dzc = 0, (20)

AT dyc + dsc − dwc − Qdxc = 0, (21)

Sdxc + Xdsc = µ̄e − Xs, (22)

Wdzc + Zdwc = µ̄e − Zw. (23)

Algorithm

Initialization

Let α ∈ (0, 1) and τ > 0 be such that

α2 + τ2

1 − α
≤ α

(

1 − τ√
2n

)

, δ =
τ√
2n

− α2 + τ2

8n(1 − α)
> 0. (24)

Set k = 0.

One can check that (24) is satisfied if α = τ = 0.25. Take a strictly feasible point

(x0, z0, y0, s0, w0), such that
∥

∥

∥

∥

∥

(

X0s0

Z0w0

)

− µ0e

∥

∥

∥

∥

∥

≤ α

2
µ0.

Predictor step
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For each even integer 2k (k = 0, 1, 2, · · ·), we have (x2k, z2k, y2k, s2k, w2k) ∈ F 0

satisfying
∥

∥

∥

∥

∥

(

X2ks2k

Z2kw2k

)

− µ2ke

∥

∥

∥

∥

∥

≤ α

2
µ2k.

Replace (x, z, y, s, w) by (x2k, z2k, y2k, s2k,w2k) and solve the linear system (14)-(18) in

(dxp, dzp, dyp, dsp, dwp). Let (d2k
xp, d

2k
zp, d

2k
yp, d

2k
sp , d2k

wp) be a solution and let

x(θ) = x2k + θd2k
xp,

z(θ) = z2k + θd2k
zp,

y(θ) = y2k + θd2k
yp,

s(θ) = s2k + θd2k
sp ,

w(θ) = w2k + θd2k
wp.

Calculate

θ2k = max {θ : (x(θ), z(θ), y(θ), s(θ), w(θ)) ∈ N (2α)} .

Set
x2k+1 = x(θ2k),

z2k+1 = z(θ2k),

y2k+1 = y(θ2k),

s2k+1 = s(θ2k),

w2k+1 = w(θ2k),

µ2k+1 =
(x2k+1)T s2k+1 + (z2k+1)T w2k+1

2n
.

Corrector Step

For each odd integer 2k+1 (k = 0, 1, · · ·), we have (x2k+1, z2k+1, y2k+1, s2k+1, w2k+1)

∈ N (2α), in other words
∥

∥

∥

∥

∥

(

X2k+1s2k+1

Z2k+1w2k+1

)

− µ2k+1e

∥

∥

∥

∥

∥

≤ αµ2k+1.

Replace (x, z, y, s, w) and µ̄ by (x2k+1, z2k+1, y2k+1, s2k+1, w2k+1) and µ̄2k+1 respectively

and solve the linear system (19)-(23) in (dxc, dzc, dyc, dsc, dwc), where µ̄2k+1

= (1 − τ/
√

2n)µ2k+1. Let (d2k+1
xc , d2k+1

zc , d2k+1
yc , d2k+1

sc , d2k+1
wc ) be a solution and let

x2k+2 = x2k+1 + d2k+1
xc ,

z2k+2 = z2k+1 + d2k+1
zc ,

y2k+2 = y2k+1 + d2k+1
yc ,

s2k+2 = s2k+1 + d2k+1
sc ,

w2k+2 = w2k+1 + d2k+1
wc ,

µ2k+2 =
(x2k+2)T s2k+2 + (z2k+2)T w2k+2

2n
.
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3. Convergence Results

In this section, we present convergence results for the new algorithm. Firstly, to

implement the corrector step, it is necessary that (x2k+1, z2k+1, y2k+1, s2k+1, w2k+1) is

in N (2α). In the linear case, this condition is satisfied[1]. It is extended to quadratic

objective in this section. Secondly, to ensure the predictor step in the next iteration

is implementable, it is necessary that (x2k+2, z2k+2, y2k+2, s2k+2, w2k+2) obtained from

the current corrector step is in N (α).

Clearly the direction (dx, dz , dy, ds, dw) satisfies

Adx = 0, (25)

dx + dz = 0, (26)

AT dy + ds − dw − Qdx = 0, (27)

then we can get the following lemma.

Lemma 3.1. For any (dx, dz , dy, ds, dw) satisfying (25)–(27),

dT
x ds + dT

z dw = dT
x Qdx ≥ 0. (28)

Proof. Using (25)–(27), ds = Qdx + dw − AT dy and dx = −dz, we have

dT
x ds + dT

z dw = dT
x (Qdx + dw − AT dy) + dT

z dw

= dT
x Qdx − dT

z dw − (Adx)T dy + dT
z dw

= dT
x Qdx ≥ 0.

The following lemma is a direct extension of a result in Mizuno et al.[1].

Lemma 3.2. Suppose (x, z, y, s, w) ∈ F0 and (dx, dz , dy, ds, dw) satisfies (25)-(27).

Let (x(θ), z(θ), y(θ), s(θ), w(θ)) = (x, z, y, s, w) + θ(dx, dz, dy, ds, dw). If there exists

some θ̄ < 1 such that
∥

∥

∥

∥

∥

(

X(θ)s(θ)

Z(θ)w(θ)

)

− µ(θ)e

∥

∥

∥

∥

∥

≤ αµ(θ), for all θ ∈ [0, θ̄],

then (x(θ), z(θ), y(θ), s(θ), w(θ)) ∈ F0, where µ(θ) = (x(θ)T s(θ) + z(θ)T w(θ))/(2n).

The following two lemmas describe the functions of the predictor step and the

corrector step respectively.

Lemma 3.3. Suppose, (x, z, y, s, w) ∈ N(α) and (dxp, dzp, dyp, dsp, dwp) satisfies

(14)–(18). Let

(x(θ), z(θ), y(θ), s(θ), w(θ)) = (x, z, y, s, w) + θ(dxp, dzp, dyp, dsp, dwp),

θ̄ =

√
α2 + 8nα − α

4n
,

then for any θ ∈ [0, θ̄], (x(θ), z(θ), y(θ), s(θ), w(θ)) ∈ N(2α), that is
∥

∥

∥

∥

∥

(

X(θ)s(θ)

Z(θ)w(θ)

)

− µ(θ)e

∥

∥

∥

∥

∥

≤ αµ(θ), for any θ ∈ [0, θ̄],



166 GUO TIAN-DE AND WU SHI-QUAN

and µ(θ) ≤ (1 − θ/2)2µ ≤ (1 − θ/2)µ, where µ(θ) = (x(θ)T s(θ) + z(θ)T w(θ))/(2n).

Proof. To simplify the notations, (x, z) and (s,w) are denoted by x̂, and ŝ,

(dxp, dzp) and (dsp, dwp) are denoted by d̂xp and d̂sp respectively, let n̂ = 2n. Then from

Lemma 3.1, we have

d̂T
xpd̂sp = dT

x Qdx ≥ 0. (29)

From (17) and (18) we can get

X̂d̂sp + Ŝd̂xp = −X̂ŝ. (30)

Multiply both sides of (30) by (X̂Ŝ)−
1

2 , we can obtain

X̂
1

2 Ŝ− 1

2 d̂sp + Ŝ
1

2 X̂− 1

2 d̂xp = −(X̂ŝ)
1

2 . (31)

Then, we get
∥

∥

∥X̂
1

2 Ŝ− 1

2 d̂sp

∥

∥

∥

2
+
∥

∥

∥Ŝ
1

2 X̂− 1

2 d̂xp

∥

∥

∥

2
=
∥

∥

∥(−X̂ŝ)
1

2

∥

∥

∥

2
− 2d̂T

spd̂xp = x̂T ŝ − 2d̂T
xpdsp. (32)

From (31) and the properties of diagonal matrices, we have

0 ≤ d̂T
xpd̂sp = (Ŝ

1

2 X̂− 1

2 d̂xp)
T (X̂

1

2 Ŝ− 1

2 d̂sp)

≤ ‖Ŝ 1

2 X̂− 1

2 d̂xp‖2 + ‖(X̂ 1

2 Ŝ− 1

2 d̂sp‖2

2

=
x̂T ŝ − 2d̂T

xpd̂sp

2
,

then

0 ≤ d̂T
xpd̂sp ≤ 1

4
x̂T ŝ. (33)

From the definition of x̂(θ) and ŝ(θ) we know that

X̂(θ)ŝ(θ) = (X̂ + θD̂xp)(ŝ + θd̂sp)

= X̂ŝ + θ(Ŝd̂xp + X̂d̂sp) + θ2D̂xpd̂sp

= (1 − θ)X̂ŝ + θ2D̂xpd̂sp (34)

where the last equality is due to (30). Next, we use (34) to estimate x̂(θ)T ŝ(θ),

x̂(θ)T ŝ(θ) = eT X̂(θ)ŝ(θ) = (1 − θ)x̂T ŝ + θ2d̂T
xpd̂sp,

then

µ(θ) =
x(θ)T s(θ)

n̂
= (1 − θ)µ +

θ2

n̂
d̂T

xpd̂sp ≥ (1 − θ)µ, (35)

where the second equality follows from µ = x̂T ŝ/n̂, and the inequality is due to (29).

Using the properties of diagonal matrices, we have

‖D̂xpd̂sp‖ = ‖Ŝ 1

2 X̂− 1

2 D̂xpX̂
1

2 Ŝ− 1

2 d̂sp‖
≤ ‖Ŝ 1

2 X̂− 1

2 d̂xp‖ × ‖X̂ 1

2 Ŝ− 1

2 d̂sp‖

≤ ‖Ŝ 1

2 X̂− 1

2 d̂xp‖2 + ‖X̂ 1

2 Ŝ− 1

2 d̂sp‖2

2

=
x̂T ŝ − 2d̂T

xpd̂sp

2
=

1

2
x̂T ŝ − d̂T

xpd̂sp, (36)
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where the second equality is due to (32). Combining (34),(35) and (36) yields

X̂(θ)ŝ(θ) − µ(θ)e = (1 − θ)X̂ŝ + θ2D̂xpd̂sp − (1 − θ)µe − θ2

n̂
d̂T

xpd̂spe

= (1 − θ)(X̂ŝ − µe) + θ2(D̂xpd̂sp −
1

n̂
d̂T

xpd̂spe).

Thus
∥

∥

∥

∥

∥

X̂(θ)ŝ(θ)

µ(θ)
− e

∥

∥

∥

∥

∥

≤ (1 − θ)
αµ

2µ(θ)
+ θ2‖D̂xpd̂sp‖ + d̂T

xpd̂sp‖e‖/n̂
µ(θ)

≤ 1

2
α + θ2 ‖D̂xpd̂sp‖ + d̂T

xpd̂sp/
√

n̂

(1 − θ)µ

≤ 1

2
α + θ2 x̂T ŝ/2 − d̂T

xpd̂sp + d̂T
xpd̂sp/

√
n̂

(1 − θ)µ

≤ 1

2
α + θ2 n̂µ

2(1 − θ)µ

=
1

2
α +

n̂θ2

2(1 − θ)

=
1

2
α +

1

2
α = α (for θ ∈ [0, θ̄]) (37)

where the first inequality follows from (x, z, y, s, w) ∈ N (α) and the second inequality

is due to (35), the third inequality follows from (36), the fourth inequality is due to

the facts that
√

n̂ ≥ 1 and (29) and the last inequality is due to that the function

f(θ) = n̂θ2/(2(1 − θ)), θ ∈ [0, 1) is a monotonic increasing function for θ ∈ [0, 1), and

when θ = θ̄, f(θ) = 1/(2α). Also from (35) and (33) we get

µ(θ) ≤ (1 − θ)µ +
θ2

4n̂
x̂T ŝ = (1 − θ)µ +

θ2

4
µ

= (1 − θ +
θ2

4
)µ = (1 − θ

2
)2µ

≤ (1 − θ

2
)µ.

This completes the proof.

Lemma 3.4. Suppose, for some k ≥ 0, (x2k+1, z2k+1, y2k+1, s2k+1, w2k+1) is gen-

erated by the predictor step, so it satisfies (x2k+1, z2k+1, y2k+1, sk+1, w2k+1) ∈ N(2α),

then (x2k+2, z2k+2, y2k+2, sk+2, w2k+2) ∈ N(α). Thus the algorithm is well defined.

Moreover, we have µ2k+2 ≤ (1 − δ)µ2k+1, where δ = τ√
n̂
− α2+τ2

2n̂(1−α) > 0.

Proof. To simplify the notations, (x2k+1, z2k+1) and (s2k+1, w2k+1) are denoted

by x̂, and ŝ, (d2k+1
xc , d2k+1

zc ) and (d2k+1
sc , d2k+1

wc ) are denoted by d̂xc and d̂sc, µ2k+1, µ̄2k+1

are denoted by µ, µ̄, respectively. Then from Lemma 3.2 and the algorithm, we know

that x̂ > 0, ŝ > 0 and

X̂d̂sc + Ŝd̂xc = −(X̂ŝ − µ̄e). (38)

Also, we use superscript ‘+’ to denote the superscript 2k + 2, that is, x̂+ and ŝ+

denote (x2k+2, z2k+2) and (s2k+2, w2k+2), respectively, and µ+ denotes µ2k+2.



168 GUO TIAN-DE AND WU SHI-QUAN

Multiplying both sides of (38) by (X̂Ŝ)−
1

2 , one obtains

X̂
1

2 Ŝ− 1

2 d̂sc + Ŝ
1

2 X̂− 1

2 d̂xc = (X̂Ŝ)−
1

2 (µ̄e − X̂ŝ). (39)

Then we get
∥

∥

∥X̂
1

2 Ŝ− 1

2 d̂sc

∥

∥

∥

2
+
∥

∥

∥Ŝ
1

2 X̂− 1

2 d̂xc

∥

∥

∥

2
=
∥

∥

∥(X̂Ŝ)−
1

2 (µ̄e − X̂ŝ)
∥

∥

∥

2
− 2d̂T

scd̂xc. (40)

Note that from (40) and the properties of diagonal matrices, we have

‖D̂xcd̂sc‖ = ‖Ŝ 1

2 X̂− 1

2 D̂xcX̂
1

2 Ŝ− 1

2 d̂sc‖
≤ ‖Ŝ 1

2 X̂− 1

2 d̂xc‖ × ‖X̂ 1

2 Ŝ− 1

2 d̂sc‖

≤ ‖Ŝ 1

2 X̂− 1

2 d̂xc‖2 + ‖X̂ 1

2 Ŝ− 1

2 d̂sc‖2

2

=
‖(X̂Ŝ)−

1

2 (µ̄e − X̂ŝ)‖2 − 2d̂T
scd̂xc

2
(41)

Due to the fact that (x2k+1, z2k+1, y2k+1, s2k+1, w2k+1) ∈ N (2α), in other words,

‖X̂ŝ − µe‖ ≤ αµ. (42)

Using (42) we obtain that µ(1−α) ≤ x̂iŝi ≤ µ(1+α)(i = 1, 2, · · · , n̂), then 1/(µ(1+α)) ≤
1/(x̂iŝi) ≤ 1/(µ(1 − α)), (i = 1, 2, · · · , n̂), that is

‖(X̂Ŝ)−
1

2‖2 =
1

‖X̂Ŝ‖
≤ 1

µ(1 − α)
. (43)

By combining (43) with (41) we get

‖D̂xcd̂sc‖ ≤ ‖(X̂Ŝ)−
1

2 ‖2 × ‖µ̄e − X̂ŝ‖2 − 2d̂T
scd̂xc

2

≤ ‖µ̄e − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc

=
‖(µ̄ − µ)e + µe − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc

=
‖(µ̄ − µ)e‖2 + ‖µe − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc

≤ α2 + τ2

2(1 − α)
µ − d̂T

scd̂xc. (44)

The second equality is due to the fact that eT (µe − X̂ŝ) = 0, and the last inequality

follows from the definition of µ̄ = (1−τ/
√

n̂)µ and (42). Since x̂+ = x̂+d̂xc, ŝ+ = ŝ+d̂sc,

then we get

X̂+ŝ+ = (X̂ + D̂xc)(ŝ + d̂sc)

= X̂ŝ + D̂xcd̂sc + X̂d̂sc + Ŝd̂xc,

= µ̄e + D̂xcd̂sc. (45)
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where the last equality is due to (38). Now it follows from (45) that

µ+ =
(x̂+)T ŝ+

n̂
=

eT (µ̄e + D̂xcd̂sc)

n̂

=
n̂µ̄ + d̂T

xcd̂sc

n̂
= µ̄ +

d̂T
xcd̂sc

n̂
≥ µ̄, (46)

where the last inequality is due to (29). Therefore
∥

∥

∥

∥

∥

X̂+ŝ+

µ+
− e

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

µ̄e + D̂xcd̂sc

µ+
− e

∥

∥

∥

∥

∥

=
‖µ̄e + D̂xcd̂sc − µ+e‖

µ+

=
‖µ̄e + D̂xcd̂sc − µ̄e − (d̂T

xcd̂sc/n̂)e‖
µ+

≤ ‖D̂xcd̂sc‖ + (d̂T
xcd̂sc/n̂)‖e‖

µ̄

≤
α2+τ2

2(1−α)µ − d̂T
scd̂xc + d̂T

scd̂xc/
√

n̂

µ̄

≤ α2 + τ2

2(1 − α)µ̄
µ

=
α2 + τ2

2(1 − α)(1 − τ/
√

n̂)

=
α

2

α2 + τ2

α(1 − α)(1 − τ/
√

n̂)
≤ α

2
, (47)

where the third equality is due to (46), the second inequality follows from (44), the

third inequality is due to (29) and
√

n̂ ≥ 1 and the last inequality follows from the first

part of (24).

Similar to (44) we get

0 ≤ d̂T
xcd̂sc = (X̂− 1

2 Ŝ
1

2 d̂xc)
T (X̂

1

2 Ŝ− 1

2 d̂sc)

≤ ‖X̂− 1

2 Ŝ
1

2 d̂xc‖2 + ‖X̂ 1

2 Ŝ− 1

2 d̂sc‖2

2

≤ ‖(X̂Ŝ)−
1

2 ‖2 × ‖µ̄e − X̂ŝ‖2 − 2d̂T
scd̂xc

2

≤ ‖µ̄e − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc

=
‖(µ̄ − µ)e + µe − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc

=
‖(µ̄ − µ)e‖2 + ‖µe − X̂ŝ‖2

2(1 − α)µ
− d̂T

scd̂xc
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≤ α2 + τ2

2(1 − α)
µ − d̂T

scd̂xc.

Hence we get

d̂T
xcd̂sc ≤

α2 + τ2

4(1 − α)
µ. (48)

Follows from (46) we have

µ+ = µ̄ +
d̂T

xcd̂sc

n̂
≤
(

1 − τ√
n̂

)

µ +
α2 + τ2

4n̂(1 − α)
µ

=

(

1 − τ√
n̂

+
α2 + τ2

4n̂(1 − α)

)

µ = (1 − δ)µ,

where the first inequality is due to (48) and the last equality is follows from the definition

of δ. The proof is completed.

The main results is stated as follows.

Theorem 3.1. Let
{

(xk, zk, yk, sk, wk)
}

be generated by the algorithm, and let

δ =
τ√
2n

− α2 + τ2

8n(1 − α)
> 0,

then there holds

(i) θ2k ≥
√

α2 + 8nα − α

4n
= O

(

1√
n

)

, δ = O

(

1√
n

)

.

(ii) µ2k+2 ≤ µ0(1 − δ)k+1
k
∏

i=0

(

1 − θ2k

2

)

.

Thus the algorithm will terminate at an optimal primal-dual pair in O(
√

nL) iterations.

Proof. Part (i) is due to Lemma 3.3. Part (ii) follows from Lemma 3.3 and Lemma

3.4. This ends the proof.

4. Final Remarks

In Mizuno, Todd and Ye’s predictor-corrector method for linear programming [1],

the corrector steps are used only to ensure that the iterates stay close to the central

path so that large steps can be taken during the predictor steps. In fact, they choose

µ̄2k+1 = µ2k+1. From (46) we know that if we also choose µ̄2k+1 = µ2k+1, then the

duality gap remains unchanged at corrector step for linear programming, but increases

for convex quadratic programming. In our modified algorithm, we choose µ̄2k+1 =

(1 − τ/
√

n̂)µ2k+1, then the duality gap is reduced by a constant factor after each

corrector step for linear and convex quadratic programming.
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