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Abstract

A fast algorithm for evaluating and displaying bivariate splines in a three direc-
tion 1s presented based on two-level transfomation of the corresponding B-splines.
The efficiency has been shown by experiments of surface modelling design!®!.

1. Introduction

It has been sh’own 1] that bivariate B-spline is a very useful tool for designing surface
modelling. One main difficulty in practice, however, is to develop an efficient algorithm
for evaluating and displaying the resulting surface. In fact, for a given partition 2 a
bivariate spline in the space S{({2) is a piecewise bivariate polynomial of total degree
k with global continuity degree u. It means that in each subdomain the surface can be
represented as a Bernstein-Bezier form. By using well-known subdivision techniquel?
one may give an algorithm for B-B surface in each subtna,ngle However, the working
amount along this way would still be very large. Because in three direction case there
18 no analogy of efficient recurrence like so called de Boor-Cox algorithm in univariate
case, we have to find another way by using some B-spline properties. In this paper we
present a fast algorithm for evaluating and displaying spline surface based on two-level
transfomation of B-splines. Numerical tests show it is really very efficient.

2. Two-Level Basis in the Space S5 !

For v = 0, §;! is a space cansisting of step functions. It is obvious that after
halving the origin mesh the resulting step function is equal to the summation of the
four step functions with fine mesh (Fig. 1), i.e.

B°(P,Q;2h) = B°(P,Q; h) + B°(P,Q1; h) + B°(P,Qa; h) + B°(P,Qs; h).
It can be rewritten in terms of shiftor operators
B%(P,Q;2h) = (I + Ey + E» + E3)(A)B°(P,Q; h)
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where

El(ﬁ)BD(Pa @; h’) G BO(P1 1; h)

etc.

To find the transformation between a finer and a coarser grids in the general spline
space of S2v~1(y > 1), we need to apply the following result 4l

Theorem 1. Suppose a piecewise polynomial surface B™(P,Q) is a B-spline in
space S}  and another piecewise polynomial surface B™"°(P, Q) is defined by the fol-
lowing demmtwe-dﬁ_ﬂ’erﬁnce relation in three directions for each §1y,,

D3 B?;E3(leu) DS(‘&)B —~1,8—1,2~ 1(‘QAMI-*’)

€1€2€3

if rst # 0, .
B‘”+3 =0

E1EgE3 rst

if rat =0, wherer +s+t=n+3
Dy = (I - EiE;V)(I - E3E3 ) (I - E3ETY)

then B*H3(P,Q) must be a B-spline with the same parameter @ in the space S:;i% o

Furthermore, there s a. difference recurrence in terms of B-nets for each pair of piece-
wise polynomial surfaces B™(P,Q) and B"*°(P,Q) i,
Note that

D3(Aap) = D3(ApR)G3(Ap)
where

Gs = (I + BB V) + E2:E5 V) (I + EsETY),
Ds(Azn)BY(P, Q; 2h) = D3(Azn)(I + E1 + Bz + E3)(Ar)BY(P,Q; h)
= D3(Ar)G3(An)B(P,Q; ).

By communicativity of these operators, hence, we have

D2 . ..B3(P,Q; Au) = D3(82n)B°(P,Q; Aap) = D3(AR)Gs(AR)B°(P,Q; h)
= G3(An)Da(An)BY(P,Q; h) = G3(An) D2 e, B° (P, Q; Ar)
= D3 ... {Gs(An) B’ (P, Q; An)}-

€1€2€3

Because the both functions of the above equation under the differentiation in three
directions have the same compact support, therefore we have
Theorem 2.

Ba(Pa Q; &Zh) e Sl(‘&h)BB(Pr Q; &h)v
S51=Gs(I+ E; + B2 + E3).
Example 1. In the space of S3 the operator S; contains the following 19 terms:

.Sy = 2I +4(Ey + Ez + E3) + 2(B1E; 'E3 + B2 E; 'Ey + E3Ey " Ey)
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+ (E?E;' + E2E; + B2E; ' + E3ET' + ESET + E3E; )

+ (B E; ' + BAE; Y + ByE3 ' + BRE7Y + E3Ef + B3B3 ).

In general we may extend the above result into a B-spline of spline space G
Theorem 3.

Bg::_l(P: Q; Iﬂ'23-'1,) — Su(&h)Bg::—l(Pa Q; '_&h)a
where projector

Sp(ﬁth) — {Gg(ﬁ\h)}y(f + B+ Eq + Ea),
Gs = (I + EAE;V)(I + E:EJY)(I + EsE ).

Proof. The conclusion is obvious valid for v = 0. Suppose by induction that it is
true for v = k — 1, hence, from Thereom 1

D2 . es Bir (P Q5 Ags) = Ds(&zh)BE,’i:%(P,Q; Agp)
= Da(&h)Gs(Ah)Sk_1(&h)B§§§:§(P, Q; An)
= G3(An)Sk—1(An)D3(An) B33 (P, Q; An)
= G3(8h)Se-1(An)D3, e, Bae (P, Q3 An)

= D3 __ Ga(An)Sk—1(An)BE (P, Q; A).

£1€e3€3

By using compact support property we complete the proof.
Example 2. In the space of S3 the operator Sz contains the following 46 non-zero

terms:

Se = G381 = (I + E1E; V)2(I + E2E;Y)*(I + EsE{Y)*(I + Ey + Ez + E3)

= 10] + 6(F1E;Y + E\E;' + BBy + ERE7 ' + EsET' + E3Ey )
+2(E2E;'E;Y + E2E;'ET + E2E{ E;' + E{?EzE3 + E; 2E3Ey + E3 *E\Ey)
+(E2E72 + B2E;2 + BE2E;% + E2E{? + E3E{* + EE; %)}

+ {22(E; + B3 + E3) + 14(E1E; 'Es + E3E3 ' Ey + EsE{ ' E)

+9(E2E;' + E2E;Y + E2E;Y + EZET' + E3E{ ' + E3E; )

+ 3(E2E;2E3 + E2E;2Ey + E2E]2Ey 4+ E{*ESE3 + E; E3Ey + E; “E{E,)
+2E3E; B + ESEET + ESE{'E; )

+ (E3E;2+ B}E;% + B3E;* + B3ET + EiE,*+ ESE; )}

3. Two-Level Basis in the Space 5% _,

For v = 0, S? is a linear space. It is obvious that after halving the original mesh the
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resulting linear function is a linear combination of the following seven linear function
with fine mesh (Fig. 2), i.e. |

B'(P,Q;2h) = B'(P,Q;h) + %(B‘(P, Q1;h) + BY(P,Q2;h) + B'(P,Qs; h)

+ BY(P,Qq; h) + B°(P,Qs; h) + B°(P,Qs; h)).

It can be rewritten in terms of shiftor operators

BL(P, Qs 2h) = 2Ga(An)(8)B' (P, Qs ).

Similarly, we obtain the following relationship between two level B-splines in the
space 527 41
Theorem 4.

B2 (P, Q; Agn) = S, (An)Bay 11 (P, Q; A)

where

or

S, = G3S,_1.

Example 3. In the space of S the two-level operator contains the following 19
non-zero terms:

G2 = (I + E\E; V) (I + E2E3 )2 (I + BRE( ')
— 10] + 6(E By + FoE; " + E2E; ' + EaEy* + E3Ey + EsEy)
+ (2B By + E2E; B + E3ET By + By *EyBs + Ey By + By Er )

+ (B2E;2 + B3B3 + B3B3 + E2E7? + B2ETE + ESE; %)}

4. A Parallel Subdivision Algorithm of Bivariate Spline Surfaces

Suppose we have a representation of a bivariate spline in a three direction in terms
of a linear combination of B-splines with patition Ap as follows

S(P) =Y _C(Q)B(P,Q; An).
Q

What we concern is how to generate and display the surface as fast as possible. A fast
display algorithm is very important for numerical simulation. Given a partition in a.
three direction, by introducing a half mesh we substitute the above two-level relation
into the representation of the surface |

S(P) =7 C(Q)S(As)B(P,Q: A1)
Q
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or

S(P) =3 C'Q)B(P,Q; As).
Q

Repeating the procedure leads to the following formulas

P) = > C"™(Q)B(P, Q; Ag-mp)-
Q

For display purpose it is sufficient to demand m < 9 because general speaking the
resolution of a monitor is only 1024 x 1024.

Fig. 1.1

The main idea of our fast algorithm is that for small mesh side h one may approx-
imate the higher degree spline surface by piecewice linear function with second order
precision. Comparing with the standard Schoenberg approximation!¥ we call this tech-
nique as “Inverse Schoenberg Approximation”. The key work should be done is to find

a recurrence relation between coefficients Cl™ and Cl™— 1] which can be derived from
the two-level relation of B-splines.
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Fig. 1.2

For instance, in the spline space S} a fast algorithm is as follows (Fig. 1)
- ; oz 1 ;
S(P) = %: C(Q)S(Ar)B(P,Q;Ap) = %c‘ (Q)B(P,Q; As).

The formulas evaluating coeflicients C 1] is divived into two parts:

o(@Q) = (I + B + By + B3 1)C1(Q),

1 _ . _ .
C}}],l(Q) = §(4I + E1Ey' + ErE3' + E; ' + E3)Cr(Q),

1 o o - x
CPI],z(Q) = §(4I + B2E5 + E:ET + By + E;)CH(Q),

1 . v E ’
'C}¥,3(Q) = g(‘” + EsET + E3E;' + BT + B3 )CH(Q).

Moreover, in the spline space S the fast algorim also consists of two parts (Fig. 2):
At integer points

1
oMl = (107 + E\E;' + E1E;' + Ex B3l + B ET Y + EsET ' + E3E;1)C(Q).

At mid-points

1 _ o f
Cw; = (81 + 3k2ky '+ E B + BT ER)C(Q),
1 e sl -
C}]j:'ljz — §(3I + 3E1E3 : -+ E2E3 1 + E2 lEl)C(Q),
(57[1] 1 I E—l -1 -—IE C
ira= g(3 +3E1E; + E3ES + By By )C(Q),

; |
s = (31 +3E3E; ' + Ey B + By Es)C(Q),
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m _ 1 ~1 3 =

1 = " »
Ciila = S (31 + 3B By + BBy + By Ey)C(Q).

: 1' r-’b““l‘!‘t g | :
BERPEATA A A TR SH AT
o d a ¥ | AY Y
Y e EATETAY A

F Ny
£ "L " & '\ .-..r-“l\,._ % e
: o sy s + =

Fig. 2

In general we may construct a corresponding subdivision algorithm for evaluating
and displaying spline surface in the space Sgﬁ ~1 and 5% 41 for any integer v. As another
example we may present the following fast algorithm for bivariate spline in the space
s3

At the center

1
Cr(Q) = {101 + 14(BT* + B + B3 )}
+ (BrE;' + BL\E;' + By B3l + By B! + E3Ep! + B3 E; 1)
_ 4 2AELE; Byt + BB BT + BBV E;)IO(Q).
At the neighbours

1 | L e o
Ci Q) = {220 +6(E;" + E5') + 9(ErE3 ' + EyEp) + 3(EsEy " + EaBy)

2(ErE; 'E3' + ET) + (B2E{ ' + E3E71)}C(Q),

clQ) = -611-{221 +6(Ey" + By') + 9(BaBy " + BaE5') + 3(BSEp ' + EAE3Y)
+2(E:E; 'ET + By ') + (BRE; ' + E1E; 1)IC(Q),

i Q) = %{221 +6(ET! + E;) + 9(B3E; Y + E3ETY) + 3(B1E; ' + EoEpY)

+ 2BsEf B + EY) + (B1Es' + E2B5 1))C(Q).
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