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Abstract

In the paper, we first deduce an optimization problem from an inverse problem
for a general operator equation and prove that the optimization problem possesses
a unique, stable solution that converges to the solution of the original inverse
problem, if it exists, as a regularization factor goes to zero. Secondly, we apply the
above results to an inverse problem determining the spatially varying coeflicients
of a second order hyperbolic equation and obtain a necessary condition, which can
be used to get an approximate solution to the inverse problem.

§1. Introduction

Recently, more attention has been paid to various inverse problems for partial dif-
ferential equations, which arise in a variety of applications such as heat conduction,
blood flow in tumors, seismic data inversion, and flow of fluids in porous media. But
most inverse problems are ill-posed in the sense of Hadamard. Many of them have no
solution, or their solutions, if existing, are not unique. Besides, the solutions of many
inverse problems are unstable. Namely, small variations of the data may produce large
variations in the solution.

A general inverse problem we consider in the paper is to determine a parameter
g € , which is a vector-valued function, satisfying the operator equation

Pluwsg] = 1, (1)

on the basis of measurement data
z=Auc X, (2)

where & € C*(Q x V, F), C*(X,Y) denotes the Banach space of k-times continuously
differentiable mappings on X to Y, X and Y are topological spaces, f ¢ F is given,
u© € V 1s a state of the system (1), and @, V, F and K are topological spaces.
The above-mentioned inverse problem usually is ill-posed in the sense of Hadamard.
The regularization method, introduced by Tikhonov [10] for solving Fredholm inte-
gral equation, 1s one of most popular means to solve ill-posed (in a sense of Hadamard)
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problems. Later, Tikhonov applied the method to various ill-posed problems and sum-
marized some of his results in [11]. J. L. Lions applied that method to optimal contro]
problems of distributed parameter systems governed by partial differential equations
[9]. Other papers emphasizing the regularization method include [2,3,6,7,9,13].

In §2 we deduce an optimization problem from the inverse problem via a stabilizing
functional. We prove that the optimization problem has a unique, stable solution, and
that the solution converges to the true solution of the original inverse problem, if it
exists, as a regularization factor goes to zero. Therefore, we can take that solution for an
approximate solution to the original inverse problem, if it exists, or for a quasisolution
to the original inverse problem, if it does not exist owing to some inexactness of the
right term f.

In §3 we make an in-depth study of an inverse problem determining the spatially
varying coefficients of a second order linear hyperbolic equation to show implemen-

tation of the regularization method solving an inverse problem for partial differential
equations. First, we prove that the state of the system, which is the solution of the

hyperbolic equation, is a smooth function of the parameter ¢, which 1s a vector con-
sisting of the cgefficients of the hyperbolic equation. Secondly, we make up a smooth
functional with a cost functional and a stabilizing functional and then give a necessary
condition, which is a variational inequality and can be applied to computation of the

approximate solution of the inverse problem.
§2. The General Inverse Problem

We deduce an optimization problem from the above-mentioned general inverse prob-
lem. Suppose that Vg € Q,4, which is a set in a function space to be defined later, we
can get a solution to (1), v = u(g), which denotes the dependence of u on g. Consider

the cost functional

Jio(g) = [|Au(q) - z|lk, (3)

where K is the observation space. Obviously, Ji,(g) = 0 if (u(g), ¢) is the solution to
the problem (1)-(2).

Next, we say a nonnegative, continuous functional, #(g), is a stabilizing functional,
if for any number r > 0 the set {g € Q;¥(g) < r} is compact.

Now, define the smooth functional

J.sm(‘?) = JI#(Q) + ﬁ“p(Q)& qc Qﬂd‘l (4)

where the regularization factor 3 is a constant, positive number and Y¥(q) is ﬁ.stabilizing

functional. We have
Theorem 1. Let Q, V, and K be Banach spaces and suppose that the follounng

assumptions hold:
Hl. Yq € Q,q there is a solution u = u(q) € V to equation (1) end u € V is
continuous in q € @,
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H2. Q.4 s a closed set in Q,
H3. ¢ s a stabilizing functional,
H4. A € L(V;K).
Then there is an optimal parameter § € Q.q minimizing the smooth functional (4).
~Proof. Assume {¢,} C Q4 such that |

].lIIl Jsm(?n) lﬂl(Q) = J (5)
- i 400 Qnd
Obviously, 0 € 7 < +00. Hence, there is a constant » > 0 such that
'»b(q'u) <r

Therefore, by the assumption H3 there exists a subsequence of {g,}, {¢nt }, such that

¢nk — §, in Q.Y (6)

Moreover, § € @44 by the assumption H2.
By the assumptmn H1, V g, there is the solution u,; = u(g,i) of equation (1), so

that
u(gni) — u(g), in V. (7)

»
Therefore, it follows that

| Jam(?nk) T am(é)' (8)
Comparing (5) with (8) we have

Jem(§) = %{d Jsm(q)-

Theorem 2. Suppose that the assumptmm of Theorem 1 are satisfied and that
the set of solutions to the inverse problem (1)-(2), S, is not emply. Then from the
collection of sets

5p = {4pi Jum p(dp) = jp}
we can select a subsequence {Gg} such that
q‘ﬁ — é: in Q
as the regularization factor B — 0, where § € S and

Jam,ﬁ(Q) = HAH(Q) = ZHE i ﬂ¢(Q)1 jﬁ = quIéi;d Jam,ﬁ(q)"

Proof. Take § € S and we have

J1a(§) = 0 < Jis(dp) < J1a(dp) + B¥(ds) = Jp < Jem (@) = B(§). (9)

Therefore, the set § = Ug.3<1.55 is bounded and then we can get a subsequence {45}
from the collection of sets {Sg} such that

s — §, inQ, (10)

&/ = *
) s 2 z,in X” means that z, converges strongly to z in X.
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as 3 — 0, and § € Q4q by the assumption H2.
Thus,
J1s(48) — J1s(§), Jorm,8(d8) — J1s(9) (11)

as 3 — 0. We hope to prove § € S, i.e. § is a solution to the inverse problem (1)—(2).
. In addition, it follows from (9) and (10) that

Aj_{nﬂj;;(q“ﬁ) = Ji,(7) = 0. (12)

Combining (10) with (12) we get § € S.

Theorem 3. Suppose that the assumptions of Theorem 1 are valid and that the
following assumpiion holds:

H5. The solution to the inverse problem (1)-(2) is unique.
Then, for any € > 0, there are §; = 8,1(g,2,) and 6; = 82(¢, z,) such that the inequality

< €&

”é 7 ﬁul

holds, where ¢ and §, are apﬁmn.l parameters mimimizing the smooth functional

Jom,2(¢) = [[Au(q) - 2||* + B¥(q) (13)

with z and z,, respectively, whenever
|z — zﬂ” <&, and 0< B < 8.

Proof. Set :
Fa={:€K; lz- 2| <8}, VBe(1] (14)

To z € Fp there corresponds the unique solution § = Az to the inverse problem (1)-(2),
where A is the inverse operator of P. Set

Eg ={q € Qua; §= Az, z € Fp}. (15)

By Theorem 1, for any z € Fg there is an optimal parameter § = Bz minimizing
(13), where B is an operator on Fg to Gg, and

Gpg = {§ € Qadi §=Bz, z¢€ Fﬂ}'
In order to show the dependence of J,,, .(¢) on 8 we denote

Jom 2 (4 8) = Jom,2(9).

Set
G o UﬁE(U,I] Gﬁ

Then V¢ € G there is 8 such that § € Gp; hence, there is z € Fg such that
ﬁ'f)(é) 5 Jani,z(é;ﬁ) £ Jam,z(q-ﬂ;ﬁ} = “Au(i}) i 3“2 + ﬂ¢(éﬂ) — ”z = 30”2 ‘l‘ ﬁ¢(§a):

where Au(g,)} = z,. Therefore,

h(d) < Y(do) + 1/Bllz — zl° < 1+ %(d).
By the definition of the stabilizing functional 3 we know the set G is compact.
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Because the operator P is continuous and- one-to-one, the restriction of P to G,
Pg, is homomorphic by Tikhonov’s lemma.?) In other words, the restriction of 4 to
F' = P(G), AF, is continuous, i.e. Ye¢ > 0, there is a n = n(e) > 0 such that for
01,92 € G satisfying || P(q1) — P(q2)|| < 17 we have

g1 — ¢2fl < .

Now, to estimate ||P{§) — z|| we have

1P(§) = 2|1 = |Au(g) — 2lt* < Jom 2(§) < Jom,2(do)

= Au(@o) - zll + BY(do) = ||z — 2l1* + B(do)-
Therefore, it follows that
1P(4) — P(do)II* = [|[Aw(@) — Au(do)li = |Au(d) — 2 + 2 — 2, + 20 — Au(o)]|’

< 3{)|Au(§) = z||® + ||z = 2l|® + ||z — Au(do)]|?}
< 3{[llz — zo|I* + B¥(Go)] + Iz — 2l|* + [B(do)]}
, = 6{l1z — 2| + Bv(d)}.

Hence,

1P(G) = P(3)| < VBy/l|z = 2|2 + Bo(@) < \/(3lIz = 20]])? + 6B%(g0)

< 3)|z — z|) + \/68%(d).
Taking §; = min{1,7%%/(24¢(4,)) and §; = min{n/6,/8;} we have
' 1P(4) ~ P(d)ll < m.
Thus, it follows that
1§ — doll < .

§3. An Inverse Problem to a Hyperbolic Equation

Consider the mixed initial-boundary value problem of a hyperbolic equation:

Lu = f(z,t), (z,t)e D, D=0x(0,T),

ulogn=0, t€(0,T), | (16)
U [t=0= Uo(Z), Ottt |t=0= w1(2), = € Q,
where
Lyu = 8%v — 8;(a;;(2)0;u) + bi(z)8iu + c(z)u, (17)
qE{allrl":ainmsbli"':bmjc:f}- _ (18)

) 1.e. & one-to-one mapping is a homomorphism if it is continuous and its domain is compact, cf.
{11].
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An inverse problem associated with (16) is to estimate g on the basis of observation
of the state u{z,t):

z = Au. (19)
We define the parameter space as
Q = H 1(Q) x ﬁ L1} x L™(Q) x WE‘I(D) (20)
ij=1 =1
with a norm
el = Z lasjllwy, + E 18illeo + |lelloc + [1£1l2 + [[8efl}2; (21)

1,7=1
where W (1) and W)»'(D) are Sobolev spaces, of which definitions can be found in [5).

Obviously, @ is a Banach space.
We define the admissible parameter set Q,, as

Qaa={g € Q; llgll £ M, v[€] < aij(z)&:&; < pl€P,VE € R ae. z € 0}, (22)

where M, p, agd v are positive constants.
First, we have
Theorem 4. SﬂppDSE g € Qad and that the following assumptions hold:
1. a;; = ayy, V3, g=1,--+ m,
2. A e L(V, K), where V = Wi (D)NnC(0,T; HY{Q)) and K = L*(Q),
3. u, € Hi(Q) N WE(Q) and u; € W),
4. 2 C R™ 1s bounded, 92 € C?, where 8Q 1s the boundary of 0,
where Hy(Y) is the closure of C3°(§2) in WH{R).

Then there is a unique solution u = u(q) to (16), u € V, and
u € C*(Qaa; V), k€ Nu {0}, (23)
where V = W3(D).

Furthermore, if 6q = {6ayq, - ,6amm, by, -, 6b,, . bc,8f} € Q, then u = u'(q)éyq,
where u' is the Fréchet derivative of u at q, is determined by

Lou=0f 4+ 8;(6a;; 0;u) — §b; G;u — bcu, (z,t) € D,
ulan=0, L€ (O,T), (24)
T..L lt:.(}: 0, 3¢H |t=ﬁ: U, Tr e Q,

where L, is defined by (17) and u = u(q).

Proof. By [4] we know that to ¢ € Q.4 there corresponds a unique solution u = u(g)
of (16) and u € V.

We prove (23) in the case k = 0. The other cases follow by similar reasoning.

Take q,¢ € Qq4, where § = {@11, -+, @rmm, By i b, ¢ f} and obtain the solutions
corresponding to them:

u=u(g), 1=u(]). (25)



148

That is, u and u satisfy
Lqu = 87u — 8;(a;0;u) + bidiu + cu = f,

Then v € V satisfies
L,i'u = Ef + 3;(6:1,53_,1:) — §b;0;u — Ecu,

v lan= 0,

Vv |¢=0= 0, GV |¢=0= 0.
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(26)

(27)

(28)

Now, set w = h~'v, where h = d—e**1, Here d and ) are constants to be determined

later. This leads us to

Liw = h7'[6f + Bi(bay;0;u) — 6b;idiu — bcul,

w [sn= 0,

W |i=0= 0, Gw ’t:ﬁz 0,

where

(29)

Eiw = 3t2'w — 8;(&;j3jw) + E;B;w + éw + [a1;0w + di(@;w)

T (A&u = 51 )'W]Ah_lﬁhl .

Multiply the two sides of (29) by w: = 8,w, and integrate them over D; = § x (0,1).
Using Green'’s formula and considering w; |on= G(w lag) = 0 we get

1/2|w,(t)]2 + /D {a;;0;w0;w,; + b;0;ww, + Fww,}

+ /ﬂ {(Aé1y — by )ww, + &1;0;ww, + i@ w)w tAe** A (30)

= / h=1{&f + 8;(8a;;0;u) — 6b;0;u — Scutw,,
D,

where |w(2)|3 = [, |we(z,t)|*dz. Then

|wt(t)|§ + /{fi{jaiwajw + }\ﬁnwz,\e’“*‘h'l}lt + / {é¢+ (0;asn — b, )Ae}‘*lh_l}wzlt
{1 {1

+ 2 {3,; + 281 Ae?*! h"l}t?,-watw
Dy

= 2/ h=Hbf + 9i(ba;;0;u) — 6b;0;,u — Scu}bw.
D, '

(31)
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It is easy to obtain the following estimates:

- f biw?| < Mijwli?,, | f Bidnw?| < Mmilw|3,,
Dy D

[ aw?| < Milwl,, | [ 2bidiwbin| < MOV, +miowi),
t ¢

[ 2888] < M(ITwlR, + milowwl,), -

where ||¢]|3 , = I3 fo |¥|?dzdt. Suppose
Z1 = sup{z1; (21,-,2m) € N}, & =inf{z1; (21, -,2m) € 0}.

Note that we can assume £; < 0 without loss of generality.

Because e**' h~1(z,) is increasing in z;, we can take k(> 2) such that ke*$t > ere1 4
1. Then take d such that ke*® > d > ¢*¥1 + 1. Thus, h > 1, e h~ey) > 1/(k — 1)
and Ae**! < 1/ |z1] < ¢2, where ¢, is dependent only on 1.

¥

Therefore, by’the assumption of ¢,q and (32) the above argument leads us to

LHS of (31) 2 |8,w(t)]; + »|Vw(t)[3 + Av/(k — 1)jw(2)|3

= Mlw()f - (m + DM eslu(@) ~ [ 3Mex(Tu(®)} + midu(e)3)d
= o)} + vIVw(t)fE + w/(k — 1) = M ~ (m + 1) Mes]lu(2)
— 3Mex [ (Va()f + mid()F)dt.

Take A so large that Av/(k— 1) - M — (m + 1)Mec; > ¢; = min{l, »}. Then it follows
from the above that

LHS of (31) > ¢1{|8:w(t)]3 + |Vw(¢))? + |w(t)]2}

-~ smey [ {1ove(t) + [To(t)} + (o) 3}

= alllw(I? - 3mdes [ I, (33)

where [[[w(t)[||? = |Brw()]3 + |Vw(t)]3 + |w(t)2.

By the assumption of @,; and the energy inequality of hyperbolic equations we
have

lully < C, (34)

where C is independent of ¢ € Q4.
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Therefore, by the Cauchy inequality we obtain
RHS of (31) < CM'/E {16512 + 3 (16as;? + 18:6ai;1*) + 3 165:% + [6¢]? it
' ij :

t i =
§ ,[3 lw,(¢)]5dt < ea '/:D 6517 + ﬂd{ 2 N8ai;lifys oy + D 118613

=1 =1

| £
+ 63} + /ﬂ Bew(t)2dt, ae.te€(0,T).

Combining the above with (33) we get

I . m
erllw(@)| = 4mMes [ Ww(e)IPdt < ca [ (657 dedt + cat{ 3 N6asslllyy

$. =1
m t
+ 3OSl + ll6clF) + [ low(t)Faz, ae.te (0,T)
1==1

t
Let y(t) = / |||w(#)|{|*dt, and in view of the definition of Q, (20), this is equivalent to
5 Lk

Wy

dt "
Multiply the above by e~ ! and integrate it over (0,%):

y(t) < cllg — gllg, ae te(0,T)

¢
[ i@l de < collg’ - alige™T, ae. te (0,7)

Hence,

T =
lwl|ly < cse™ || — qll3.

So, the solution u(gq) of the problem (16) depénds continuously on q.
Finally, we prove (24).
Suppose § = ¢ + 8q. Therefore, i = u(q) satisfies

Lo =f, @tloa=0, |=0= g, Ot |t=0= 1.
So, v = @ — u satisfies (28). Thus w = it — u — u satisfies
Low = 0i(8a;;0;v) — 6b;0;v — bcv,
w [on= 0, (35)
w [p—0= 0, Ghw |;—g= 0.
By the energy inequality of a hyperbolic equation [4] we can obtain from (28)
v =06 f + 8i(ba;; Oju) — 8b; O; + becul|).
50, it follows from the above and (34} that

v = O({8ql]),
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and, similarly, from (35) we have
w = O(|}ég]|?).

Thus, u = u/(¢)éq.
Consider ¥(q), given by

¥(g) = E ﬁk”D 9”21
|k|=0
where DF = ﬂf‘ o OFm |k| = ky + -+ + ky, and [ satisfies the inequality I > m/2.
Moreover, suppose that

= (W)™ +™+! x Wi(D)

and
Qud = {4 € Quas llallg < M}, (36)
where Q,g4 is defined by (22). It follows from the Rellich-Kondrachov compactness

theorem in Sobolev spaces [1] that Q.4 is compact in Q, which is defined by (20).
Therefore, 1(g) is a stabilizing functional. The observation space X = L?() and the

. »
measurement .1s

2(z) = u(=z,T), =€ (37)
Altogether, the smooth functional J,,, g(g) is defined by
Tonp(@) = [ |2~ u(T3q)dz + By(a), (38)

Theorem 5. Suppose that the assumptions of Theorem 4 are satisfied and that z €
C(Q) C K. Then a necessary condition for qg to be an optimal parameter minimaizing
(38) over Qﬂd ts that the variational inequality holds:

/ da;; 0;udv + f (6b Oiu+ dcu—6f)v + Z ,3|L|(Dm £ D:&a.;j)
Ik|=0

+ Z By (DEYY, DEsb:) + Z By(DEP, D5c)

Ik|=0 [k]=0
{
+- Z ﬁ|k|((DifﬁrDiJf)) 2 0: Vq = Qud1 6? =q— 45, (39)
|kj=0

where v = u(qgg) is defined by (18), gg = {a‘?lr'"Iﬂfﬁnm!bﬁi:"‘jb?n,cﬁ,fﬁ}, S
{6a11, -+~ 8@mm, by, -+, 6byn, B, 6£},

(h,g) = / h(z)g(z)dz, ((a,b))= / a(z,t)b(z, )dz dt,
0 D
and v = v(gg) is gﬂverned by
v = 0%v — 9;(al,8v) — Bi(¥v) + Bv = 0,
v |on= 0, (40)
V |g=7T= 0, 8:;1: |t=T: ‘H(T;Qﬁ) — G
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Proof. By Theorem 4 J,, g(g¢) is Fréchet-differentiable. If gg is an optimal param-
eter minimizing J,,, s(¢) over Q.4, then

Jorn,8(¢) > Jom,8(98), V4 € Qaa.
Because éﬂd is convex, we have
Jem,8(28 + (¢ — ¢8)) > Joms(gs), V6 € (0,1)
for fixed ¢ € Q,q. Hence,
lfg{J,m,ﬂ(Qﬁ ;s a(q e Qﬁ)) _ ernﬁ(QB)} 2 0: V8 e (01 1)

Let § — 4-0. Then
J;m(q;?)aq 2 01 g€ Qud'r Jq =4q—45. (41)

Thus,

{
- [z — u(T: gp)lw'(5)bqdz + Py Biu(Diafy, Dibay;)

: 1
Y B (DE, DEsb;) + Y Bu(Dic®, Dibe)

|k[=0 {k|=0
l
+ D Bu((Dz2f°,D56f)) 20, Vg€ Qug, 6¢=q- gs. (42)
|kj=0

Next, denoting @ = u'(¢g)dq, from Theorem 4 we have
Loyt = 6f + 0il(bai;05u(gp)) — 8b:0;u(gp) — bcu(gp),
u {gn= 0, (43)

By [4] the problem (40) has a unique solution v = v(gg) € V = H?(D). Also, there
1s a unique solution u to (43). Therefore,

~ | e = w(T:gp) (ap)6q.z = [ BT 45)ilT; 5) d
. /D 8Bl os)alga)} die = /D {82v(gp)i(gp) + Biv(gp)Bri(gs))

= L{aj(afja;u) +- 3,-(b?v) - Pvlu+ ./n w8y [ — ./D v8; i

— L{aﬂﬁivﬁjﬂ + bfaiﬂ v+ cPui} — -/D v, t
- /D v{8}u - 3i(afj3jﬂ) + b?d?i'tl + P}

= — .[D U{cﬁf + ai(tﬁﬂijaju(q;ﬂ)) = 5bi3i“(9ﬁ) - 5‘3“(9;3)}
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y /D t Sl el Balpolgn] vk Busilagle ~ P ok 4]

Substituting (44) into (42) we obtain (39).
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