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Abstract

To solve a class of operator equations numerically, some general streamline .
diffusion methods with satisfactory convergence properties are presented in this
paper. It is proved that the approximation accuracy is only half a power of A, the
mesh size, from being optimal when these methods are applied to mixed problems
and convection-fliffusion problems.

§1. Introduction

It was observed long ago that usual finite element methods for certain equations
such as mixed and hyperbolic equations do not work well or even do not give reasonable
results. It has to be of particular concern since in many interesting practical problems,
well-approximations are desired. Trying to solve the problems, we present in this paper
some streamline diffusion methods. It is shown that these methods work well and

possess satisfactory convergence, for a class of operator equations, includmng mixed and

hyperbolic types.
These methods are based upon an idea first introduced by Raithbyl® for finite
difference methods and by Hughes and Brooks!”] for finite element methods for special

problems in fluid dynamics by adding an artificial diffusion term acting only in the
direction of the streamlines. This idea was also taken up by J ohnson!® with observation
that such a streamline diffusion term can be introduced very naturally in the standard
Galerkin method without modifying the equation. We refer to a series of work by
Johnson!® and his cooperators {see the literature cited therein) and by the author[1%;
in this direction.

This paper consists of four sections. In Section 2, general streamline diffusion
methods are introduced, and existence, uniqueness and error analysis for these methods
are discussed. In Section 3, some error estimates with half a power of A from being
optimal are then given in the case of a boundary value problem of mixed type. In the
last section, analogous results for convection-diffusion problems are presented.

* Received June 13, 1991.
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We. shall point out that these methods are somewhat different from those stated in
[8] and [10] when applied to convection-diffusion equations.

§2. Operator Equations

Suppose that W and X are two Hilbert spaces. We consider the following operator
equation:
Lu=f, (2.1)

where L is a linear operator from W into X, and f € X.

Let {W" : h € (0,1)} be a family of finite-dimensional subspaces of W. An approx-
imation solution uy € W of the problem (2.1) will be defined by the following discrete
scheme:

Given f € X, find uj, € W" such that
Alup,v) = (f,lv + hiv), Vv € W", (2.2)

where A(u,v) =F(Lu,lv + hLv),l: W — X is a linear operator and (-, ) is the inner
product of X.
Now we take the following assumption:
Assumption I. There exists a Hilbert space (Y, || - ||y ), into which W is imbedded
boundedly, such that
(Lu,lu) > cl|ulls, Yue W. (2.3)

If we set
Hull|? = |lull§ + Al Lulik,

then (2.3) implies
Alu,u) > cf||ull]®, Yue W. (2.4)

Let {¢;}", be a basis for W" and

up = Z“:Zi@f'i-
i=1
Denote z = (21, -+, 2,)T and b = (by,---,b,)T with
b; = (f,10: + hLg;).
Then uy, is given by the linear system:
Az = b,
where A = (@ij)1<ij<n and aj; = A(¢i,¢;), 1 < 4,5 < n.

Lemma 2.1. A is invertible.
Proof. Suppose that Az = 0 for some vector z. Setting z;, = Y., z;¢;, we find that

0= 2T Az = A(zn,21) 2 cllznll}, (2.5)



174 ZHOU AI-HUI

which means z;, = 0. Now {¢;}, is linearly independent so that 2z, = 0 imaplies z = 0.
Since A is a square matrix with trivial null space, A is invertible.

Thus, we immediately obtain

Theorem 2.2. There ezists a unique u, € W satisfiying (2.2).

Theorem 2.3. If u € W is a solution of (2.1), then

Il = wnllf < h™? inf (A7[li(u = v)llx + [ L(u ~ ©)llx). (26)

Proof. It is easy to see that there holds
A(u,v) = (f,lv + hLv), Yv € W",

hence
Alu — up,v) = 0, Yo € Wh (2.7)

Let e = u — uy, and n = u — v for v € W*. Using (2.4) and (2.7), we find
llelll? < cAle,e) = cA(e,n) = c(Le,In) + ch(Le, Ln)
< ¢ Lellx|linllx + chi|Lel|x || Lnllx

< ch2A(e,e)'/? < chM2 (A7} linlix + | Lllx ).
This completes the proof of the theorem.

»

Remark 2.4. Time-dependent problems such as
u+ Lu=f
can also be solved numerically by using another discrete scheme:
A(up,v) = ((wr)e, Iv) + (Lup,lv + hLv) = (f,lv + Lv), Vv € wh

and similar results can be expected (cf. [10]).

§3. A Boundary Value Problem of Mixed Type

In this section, we specifically consider equations of the form
Lu = k(y)ugz + uyy — clz,y)u=f - (3.1)

in a bounded simply connected domain  C R?, where signk(y) = signy and the
domain € is bounded by the following curves: a piecewise smooth curve I'y lying in the
half plane y > 0 which intersects the line y = 0 at the points A(-1,0) and B(0,0), for
y > 0 a piecewise smooth curve I'y through A which meets the characteristic of (3.1)
issued from B at the point C, and the curve I'; which consists of the portion CHB of

the characteristic through B.
The boundary value problems we shall discuss may be stated as

L = ] 1 :[“l'
u=/f m (3.2)
u =0, onl'pUT;.
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A number of authors have dealt with the finite element method for the numerical
solutions of mixed type (3.2) (see [1-6]). However, all the approximation accuracies
presented are, in general, one power of &k from being optimal. The accuracy can actually
be improved by half a power of h using the methods stated in Section 2 and the
derivative in the “streamling direction” is in fact optimal. Therefore, the streamline
diffusion method (2.2) should be somewhat better than all the earlier prosedures.

The following hypotheses are assumed in the forth coming discussion:

(i) k(y) is continuously differentiable and satisfies sign k{y) = signy and yk'(y) >
k(y) for y > Q.

(i1) e(z,y) is continuously differentiable and satisfies ¢|r, > 0 and

ze, +¢ >0, fory <0,
(1+ a)e+ zc, + ayey, > 0, fory > 0,

where o € (1/2,1).

(1ii) The curve I'y satisfies the condition zn; + ayns > 0, where 1 = (ny,n2) is an
outward normal yector.

(iv) The curve Ty satisfies the conditions k(y)n? + n3 > 0 and n; < 0.

The Hilbert space Y is defined to be the completion of the set of infinitely differen-
tiable functions on the closure Q of Q vanishing on I'oUT'; with respect to the following

ILOTIIES.
lullf = [ollklu? + ul]ldedy + [p or, p(2,9)[k(y)ui + ul]ds

+ [, (=&)Y 20, + uy)?(—ay ) dy

where p(z,y) = ayny + azna, oy = = and

ay, fory > 0,
e =
0, fory < 0.

W = {ue H* Q1) : u = Oonl'y UT,} with H%(2}-norm, X = L,(Q) with the usual
inner product of L,(}). Let [ : W — X be defined by

lv = a1v, + agvy, forv e W.

Under the hypotheses stated above, it is clear that Assumption I holds true (see

[1}).
Now we need another assumption
Assumption II. (i) There exists an s > 0 such that

weE W n H(Q).

(ii) Let {W"* = W;;‘k . h € (0,1)} consist of the family of finite dimensional sub-
spaces W;;'k C W n H°(§1) with = and k nonnegative integers k < r which possess the
property that for any w € W 1 H*({1), there exists a w” € W,:’k such that

|w — whli2 € ch®¥||w]|s.2, (3.3)
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where 0 < I< k, I< s <r.
If Assumption II holds for & > 2, then we obtain an improved results from Theo-
rem 2.3:

llu = ual|| < ch*=3?|(u||, 2, for s > 2. (3.4)
Remark 3.1. Instead of (2.2), a conventional scheme can be used:
A(up,v) = (Zup,lv+ hLov) = (f,lv + hLov), Vv € W™,

where Lov = k(y)uze + tyy.

§4. Convection-Diffusion Problems

We consider here stationary problems

Lu=v(fu)+au—ecAu=f in - (4.1)
together with bnunda’ry conditions:
u=0onl_ if =0, (4.2)
u=0on 0§} ife >0, (4.3)
where (1 is a bounded domain in R, T'_ = {z € é0: 7i - B < 0} with the coefficients

a, A = (81, A2) depending smoothly on z, and € > 0 is a constant. We assume that

&+%v527in9, (4.4)

where 4 > 0 is a constant, which ensures the stability of the problems.

Let X = L,(Q)) with the usual inner product of Ly(Q), W = {u € HY{Q): u =
OonT'_}ife =0and W = H}(Q)NH2(Q)ife > 0. Let Y be defined as the completion
of the set of infinitely differentiable functions on the closure {} of Q! vanishing on T'_
with respect to the following norms:

lully = lhulldz + [ wli-Blds
oft
if ¢ = 0and Y = H}(§}) with respect to the norms

lullfy = llull§,z + el 7 ullg,

if £ > 0. Obviously, Assumption I holds true if lv = v (see [8] and [10]).
Further, let {T,,} be a family of quasi-uniform partition T} = {e} of ? with size A.
For a given positive r, we imtroduce finite element spaces:

W;’k ={ve H' () : v|. € P_i(e),e € Th,v=0 on T_}

if ¢ = 0 and
Wi = {ve HYQ) N HYQ) : v]e € Pr_i(e), e € Tn}
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if € > 0. Then, Assumption II holds true for ¥ > 1 iff e = 0 and for £ > 5 if ¢ > 0.
Thus, we obtain an analogue of the results in [8], namely

I — unll] < ch*™V2|jull, 2

forl1<s<r,

Similar results for time-dependent problems due to the scheme (2.2) or Remark 2.1
can be obtained (cf. [8] and [10]).

Remark 4.1. The schemes stated in this paper are different from the conventional
ones.

The approximation schemes stated in this paper can also be applied to other prob-
lems (cf. [10]).

The author wishes to thank Professors Han Houde and Lin Qun for suggesting the
problem in this paper.
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