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A SPLITTING ITERATION METHOD FOR A SIMPLE
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Abstract

A splitting iteration method is introduced to approximate a simple corank-
2 bifurcation peint of a nonlinear equation with small extended systems. This
iteration method converges linearly with an adjustable speed and needs little extra
computational work.

»
B §1. Introduction

Let E be a Hilbert space, and G : E x IR a nonlinear C*-mapping. We consider the
nonlinear equation

G(u,A) =0 (1.1)

and its corank-2 bifurcation problems. We assume that there is a point (ug,Ao) in
E x IR satisfying

(Hl) Go = G(‘uo,}au) ={}

and
(H2) D,Gy is a Fredholm operator with index 0 and zero is one of its eigenvalues

with algebraic multiplicity 2; furthermore,
a) dim(Null{D,Gyp)) = 2, b) DxGg € Range(D,Gp). (1.2)

The main aim of this paper is to introduce an efficient method for accurate approx-
‘imation of the simple corank-2 bifurcation point (ug,A¢) of (1.1) and the null vectors
of D,Go, DG} which are used in path following of (1.1) around (up, Ag) (cf. (2, 7, 13,
15, 16]).

" For highly singular problems of (1.1), Allgower and Béhmer(!, Beyn!?l and Mezell1C)
have discussed some general principles on the extended systems; particularly, also see
18], [20] and [3] for simple corank-2 bifurcation problems. All these extended systems
are at least three times larger than the original equation (1.1) and the equations in these
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systems are intrinsically dependent on each other. Consequently, the linearized equa-
tions 1n Newton-like i1terations have to be solved directly or successively with the help
of some intermediate unknowns, which leads to large computational efforts, especially
for PDE problems. |

On the other hand, by unfolding Rabier and Reddjen'' transformed the highly
singular equation into a generalized turning point problem and then made up minimally
extended systems with some implicitly defined scalar equations. But, the convergence
of Newton’s method and its implementation were not discussed.

We will set up various small extended systems for (1.1) and its linearized problem at
the bifurcation point (ug, Ag}, and introduce a splitting iteration method to approximate
simultaneously the point (up, Ag), the null vectors of D, Gy, D,,G{; in a coupled way.
This iteration method converges with an adjustable speed and its computational cost
at each iteration step remains at the same level as that for the regular solutions of
(1.1). |

In Section 2 we state the definition of a corank-2 bifurcation point type-I of (1.1)
and show its base independent property. Section 3 discusses the splitting iteration
method and its conwergence. Finally, we present in Section 4 two simple numerical

example showing the behaviour of the method.

§2. Corank-2 Type-I Bifurcation Points

We introduce in this section a corank-2 bifurcation point type-1 of (1.1} and its base
independent property. In the following, we assume that the conditions (H1) and (H2)
are satisfied and the mapping G is C°-continuous. We see easily from statement (1.2b)

that ,
dim(N(DGg)) = 3.

On the other hand, if |
DAGD e‘ R(-DHG['J):«

equation (1.1) can be transformed into a simple bifurcation problem under symmetries

and other parametrizations!1°].
Under the conditions (H1)-(H2), the Fredholm operator theory shows that there

are elements ¢;,¢7 € E,i = 1,2, such that

{1"1 = N(D,Gp) = Span [¢1, ¢2],{¢1, ;) = &;, (2.1)
Vi i= N(D,G}) = Span (8], 83), (6], 85) = 67,7 = 1,2, |
and
{V2 = R(DyGo) = {u € E,(¢:,u) =0, i=1,2}
_ (2.2)
Vo i= R(D.Go) = {uc E,{¢;,u) =0, i=1,2};
furthermore,

E=VieVa=V1 &V, (2.3)
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Remark 2.1. Lemma 2.1 indicates that the corank-2 bifurcation point type-I of
(1.1} is independent of the basis of the space E.
Without loss of generality, we choose f in E, such that

[(f, @)+ (£, 82} >0, e, f&R(DuGp) (2.5)

Lemma 2.2. If the element f is chosen as above, there is a basis {'I>1,¢i’2} of V1
and basis {®%, @3} of Vi, such that

(f,81) =0, (®;,®;)=(8,®;)=65, #j=12 (2.6)
Proof. Let {®,,%,},{®], $5} be the basis of the spaces V1, Vi in (2.1) respectively.

[1,2,5,10,14]

If
{f} @1} — 01

we get (2.6) immediately. If
(/,21) #0 and  (f,®2) =0,

setting ) ) i )
@1 = i T $, = P, and ‘i; = QE, @E .= (}Ir

we obtain (2.6). Otherwise, it holds that

(f,®1) - (f, ®2) # 0.
Let )
£:=Ba— (f,83)/([,81) ®1#0, &1:=E/\/{£E)
and
= &y — (8g, 81)d1, B3:=n/y/{mm),

where n # 0 follows from the fact (5, ®1) = (f, ®2)/[{f, 81) - (£{,€)] # 0. It is easy to
verify
(f,®1) =0, (®;,®;) =6, 1,7=12,

On the other hand, there are a;; € IR,%,7 = 1,2, such that

'i’1 = a11®1 + a12®P4, ‘iz = az1 %P1 az2%P2

i (ﬂu ﬂu) £

21 «aA22

b1 b
5= (4 1)
as the inverse of A. We choose
& = by; BT+ b3;®5 e Vq, i=1,2
which consist of a basis of V;. From (2.1) it follows that
(®F,®;) = b, 1,5 =1,2.

and the matrix

is nonsingular. Denote
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This completes the proof.

We will denote the bases of V;.,V; in Lemma 2.2 still as {8,282}, {$],%5}. Due
to the base independence property, the condition (H3) will be considered under these
bases. Furthermore, the parameter £ will be adjusted constantly in the subset of IR*

in which (H3) holds.

§3. A Splitting Jteration Method for Corank-2
Bifurcation Points Type-I

In this section, we discuss a splitting iteration method for the approximation of
the corank-2 bifurcation point (up,Ag) and the basis of the null spaces N(D,Gy) and
N(D,G§) in Lemma 2.2.

Denote E; := Es x (E3)*,E; := E x IR* and F3 := E x IR? equipped with
product norms respectively. We express all elements # in F; with five blocks as
z = (g, &1, To, L3, z4) including unfolding constants ¢; in IR:

Lo -= (HIAFCIJCZE\!Ca) = E21
(3.1)

z;:= (uj,c2ip2,C2i43) € B3, 1=1(1)4

Then we define five mappings Hy : Ey — E; and H; : E; — E3,1 = 1(1)4, and consider
five small extended systems for (1.1) and its linearizations. First of all,

G(u, ) + cruy /m + caug/m?

(uz, Dy Guy)/m* + e1¢5

(ug, D ,Guy)/m* + £2¢5 = 0, (3.2)
(us, DyGua)/m® + £3c¢a
(

Ho(z) :=

U4, -DHGHZ}Xmﬁ T £4C3

where m > 0 is a normalizing parameter and ¢ := (61,62,53,84)T e IR* is a vector of
control parameters. We regard (3.2) as a system for unknown zp = (u, A, ¢1,¢2,¢3) in
Eg, and

D, G(u,A\uy + catty /m + csuz/m?

Hi(z):= [(uy,uy) — m?]/2m =0 (3.3)
(f,u1)
as a system for unknown 2; = (u1,c4,¢5) in E3. At the same tune, system
D,.G(u, Aus + cguy /m + cruz/m?
Ho(z) := (11, usg)/m 1=0 (3.4)

[{u2, uz) — m*}/2m*
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1s considered for unknown z, = (uﬁ,cﬁ,c?) and
D, G(u, A\Y*us + cgu1 /m + coutn /m?
Hi(z) := [(u1,u3) — m*]/m =0 (3.5)

(ug, ua)/m?
for unknown z3 = (us3,¢s,c9) in E3. Finally,
D,G(u, ) uyg + eroti1 /m + c1yug /m?
Hy(z) = | (uy,uq)/m

[(u2,uq) — m®]/m?

Il
o

(3.6)

is a system for unknown z4 = (u4,¢10,¢11) in Ej.

Since mapping G is C°-continuous, mappings H;, 7 = 0(1)4, are obviously well
defined and C°-continuous in E;. In addition, observing the extended system (3.2),
we may find that the unknown c¢3 is superfluous. In fact, we can eliminate it among
the four scalar equations and add the resulting three scalar equations to (1.1) to make
up a minimally extended system for (1.1){11:12:514 In particular, if the condition (H3)
holds for ¢;=const. e; 4nd 7 € {1, 2, 3,4}, the unknown ¢3 can be solved explicitly from
the scalar equations in {3.2). |

Nevertheless, with this additional unfolding parameter ¢3, we have the base inde-
pendence property indicated in Lemma 2.1. The regularity and the solution of (3.2)
are then independent of the basis of £ and the unfolding forms of the accompanying
equations in (3.3)-(3.6). This allows us to choose the starting value for the splitting
iteration method more freely than in [11}, [12] where the convergence of the Newton-like
method is achieved merely in some sectors in the neighborhood of the exact solution of
the extended systems. For this reason, we prefer using the extended system (3.2) which
includes many possible minimally extended systems for (1.1) by changing the control
parameter ¢ in IR*.

Denote

¥ = (x5, 2y 25, 23,23 ) with 23 := (ug,A0,0) € E, :
{z: fome (m’:@,:,l]) € E3, zl,,:= (mS*I’f,U} c B, 1=1,2, )

We obtain from statements (2.1)-(2.4), (2.6) and definitions (3.2)—(3.7)
H;(z") =0, =0(1)4. (3.8)

Remark 3.2. Equality (3.8) is independent of the choice of the control parameter
¢ in IR*.

Let

Z = (Z0,%1,-+,%4) := (u,A,0,u1,0,u2,0,u3,0,uy4,0) € By (3.9)

be a restriction of z in F; which annihilates the unfolding parameters ¢; in z. We
calculate directly in (3.2)—(3.6) and get |

A{}(:I!,E) e DIGHQ(E) = m~°
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m*D,G(w,A) mPDyG(u,A) miu; mPu; O
m(us, Dy ,Guy) m{ug, D, xGuy) 0 0 gqm>
X | m{ug, Dy Gur) miug, D \Guy) 0 0 gam® |, (3.10)
_(H3, DuuGug} {’ua, DUAG’uz) 0 0 £3m5
(ug, Dy Guz) (tg, Dy aGua) 0 0 £41M1°

D.G(u,A) u/m us/m?
A1(z) = Dy Hy(2) = | (ug,)/m 0 0 ; (3.11)
(fs) 0 0
D.G(u,A) uy/m ug/m?
Aa(z):= Do Ha(2) = | (ug,-}/m 0 0 ; (3.12]
(ug,-)/m? 0 0
and D, H;(Z) = Az(z)”,i = 3,4, the adjoint operator of Aj(2).
Theorem 3.1. Under Conditions (H1)-(H3), the operators Ap(z*,€) and A;(z7}),
1 = 1,2, are nonsingular on E, and E3 respectively. Furthermore, they are independent

of the parameter m > 0. |

Proof. From (3.7) and (3.10)-(3.12), we see immediately that Ag(z*,¢) and A;(z7),7 =
1,2, are independent of the parameter m > 0.

Let yo = (v,#,d1,ds,d3) be arbitrary in E,. We consider the equation

Dy Ho(z™ )20 = Yo
for zg = (u, A, c1,¢2,c3) € Ez. More precisely,
a) D,Gou + DyGoA + c1P1 + c2®y = v,
b) {®}, Dy Go®1u) + (P37, D, AGo®1)A + €103 = 6,
c) (3, Dy GoP1u) + (25, D, AG P )N + £2c3 = dy, (3.13)
( )
{

+
d) ( I,Dngﬁzu) + ‘I’T, D, AGy®Pa A + £3¢3 = da,
E) ( ;, DuuGﬂigu} + ;, DHAGntﬁz}A + £4C3 = d;g.

Taking a dual product of ®,i = 1,2, with equation (3.13a), we derive from the state-
ments (2.1)—(2.4)

c; = (P ,v), i=1,2 and u=1ua+&P 4+ £Bs + A
where it 1s uniquely determined in Vs, £;,&9, A are arbitrary in IR and
Vo, = V3 & Span {vg).
Substituting them into (3.13b)-(3.13e), we obtain a system for £;,&», A, ¢c3 in IR?:
Mo(e) - (£1,€2, A, e3)T = (0,d1, da,d3)T — vec (@),

where vec(t) := ((®], Dy Go®;it), (B3, Dy, Go®;ii),7 = 1,2)7 € IR*. Under the con-
dition (H3), we can solve this system uniquely. Therefore, equation (3.13) is uniquely
solvable for arbitrary yg in F,. In other words, Ag(z~,¢) is nonsingular on E>.
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Similiarly, it can be proven that the operators A;(z”),7 = 1,2, are regular on E3.

Moreover, “ :
PB[DHGIJ|V2}_1P1 'I)l @2f<f1¢'2>
Al(z*)‘l = ($7,+) 0 0 ; (3.14)
and "
Py[D,GylVo| 1Py &1 @
Ax(x™) 1 = (@7, ) 0 0 |, (3.15)
where
P1 v= f — {‘ﬁ;,)‘ﬁ'l = (@E,->'I’g,
Py:i=1-—(®1,)®) — (P2,) %2
and

, Pri= I (®1,)8: ~ ((£,)/(f,82)) %
are different projections from E onto V3, and [ is the identity operator in E.

Since mappings H;,i = 0(1)4, are C?-continuous, there is a constant §p > 0, such
that operators Ag(z,¢) and A;(z),7 = 1,2, remain regular for all z in the neighborhood
B{(z*,bp) of =%,

B(z*, &) := {z € By, ||z; — || < bo, 7 = 0(1)4}. (3.16)

We set up a fixed point iteration to approximate z* in E;. Let z” be arbitrary in
B(z*,60). For k =0,1,---, we do

mk+1 = F(zk) T (fﬂ(zk):fl(mk): f2(mk)1f3(zk)1f4(mk})r (3'17)

where
filz):=2; — D, Hy(8)™" - Hi(z), 1=0(1)4, VYz€E. (3.18)

According to the continuity of mappings H;,i = 0(1)4, and the definition (3.18),
mapping F is well defined and C?-continuous (at least) in B(z*,6p). Moreover, equality
(3.8) implies |

2" = Fla™),

i.e., the element z* is a fixed point of F in E;. Denote
Az* = (Az¢, Az¥ Azk Azk Azk)) = pktl . g*,

We calculate the components of F(z*) in the iteration (3.17) independently and call it

a splitting iteration method.
Algorithm 3.1. Choose z° in B(z*,§) arbitrarily. For k¥ = 0,1, ---:
Step 1. Solve tiie eguations |

D, H;(8%) - Az¥ = —H;(z*), i=0(1)4. (3.19)
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Step 2. Let z**! = 2* + Az* and go back to step 1 until the given criterion is
safisfied.

As we have seen, five linear equations have to be solved at every k-th iteration in
Algorithm 3.1, but there are only three different coefficient operators Ag(z,¢), Ai(z),1 =
1,2, used there. Basides, the structure of Algorithm 3.1 offers a possibility to solve the
five equations simultaneously and to realize it in a parallel computation proccess.

Remark 3.3. If the operator D, Gy is self-adjoint, so is Ax(z*). In this case, the
element u; in (3.3)—(3.4) will be directly used as u;1; in (3.2),7 == 1,2, and the last two
components in F(z) will be omitted.

After directly calculating the partial derivatives of F at its fixed point z* in (3.18),
we state here simply the non-vanishing terms in matrix form:

D.. fo(2*) =0, 1i=0(1)4,

mDDuGU‘;H
D(“f}t}fl.(m*) = ""'11(":““)_1 ' 0 y
“ 0
»
szDuG{]‘ﬁg 0
D{(u,}k}.u:)f?-(z*) e Aﬂ(z*)‘l ' 0 me; |,
0 0
and
mS[DuDGg]*'I’:-‘ 0 0
D((un)u1 ) fir2(27) = [Az(z7)]~ 0 m?®; 0 , t=1,2.

0 0 m@;
The product norms in F;,1 =1,2,3, yielﬂ

| D{fo(2")l| = 0,
ID(f1(2")] € m||A1(2") 7| - | DDuGod |
and

Dfa(=")|| < m(m||Az(z")"||- | DDyGo#all + 1),

1D fira(z™)l < m{m?||As(2*) 7 || - [[(DuDGo) ¥l + (m + 1)|I&}[]}, i=1,2.
Lemma 3.1. Choosing m € (0,1], such that
m™" < 20 - max{||41(z") 7| - || DuDGo®ll, [l|A2(z")7"| - [|DuDGo®:|| + 1],

1 42(z")" (| - [(DuDG) %3] + 2/ %} (]}, i=1,2} (3.20)

we have
IDfi(")]| < 1/20, i = 0(1)4. (3.21)

Proof. 1t follows directly from the estimates above and the definitions of the product

norms in F; .2 =1,2, 3.
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Theorem 3.2. Let mapping G be C*°-continuous and conditions (H1)—(H3) be
satisfied. Furthermore, if the parameter m > 0 is chosen small enough and inequality
(3.20) is satisfied, there is a constant §; in (0,00], such that for all z in B(z*,6,), we
have

|Dfi(2)]l < 1/10, i=0(1)a. (3.22)

Moreover, for every initial value z° in B(z*,8;), the ileration (3.17) is well defined for

k=0,1,--+ and
15
|25 — 27| < (5) .6y, i=0(1)4. (3.23)

Proof. Under the C3-Continuity of G and conditions (H1)-(H3), we know from
‘the definitions of H; and f; that mapping f; is C!-continuous in B(z*,8y). Hence,
Theorem 3.1 and Lemma 3.1 show that there is a constant § in (0, §o] such that (3.22)
is satisfied.

On the other hand, the estimate (3.23) holds obviously for £ = 0 and arbitrary ="
in B{z*,8,). We assume that it is also true for arbitrary k in | |. Then we get from

Taylor’s formulal®! ,

| 1
l2b41 = 27l = If(=*) - S < [ DAl + (et —2%) llde - =* — =7

< (1/10) - l2* - 2*]| < (1/2)**) - 61, i = O(1)4.

This completes the proof.

Remark 3:4. The normalizing parameter m > 0 can be used to adjusce the
convergence rate of (3.17).

In order to make full use of intermediate results in Algorithm 3.1, we rewrite it in

the Gauss-Seidel form.

Algorithm 3.2. Let 2 € B(z*,8;) be arbitrary. For £k = 0,1, :
k+1

Step 1. Compute z;
2t = f£o(2).
Step 2. Let y¥ := (201!, 25, - .- 2%) and calculate
_ 2t = filw).
Step 3. Define y¥ := (251, 2311, 25, .-, 2%); then do

2571 = fa(ys).

Step 4. Denote yﬁ; = (:r:fj'”,- - ,zg’ﬂ,mg,zf{) and compute
k+1 k
33+ = fa(y3)-
Step 5. Let y} := (::':]“'“,- ~,a:§+1,zf;') and evaluate

Efi“ = f4(yjf)-

Step 6. Take z*¥t! := (a:ﬁ“,z:f“ ---,zi“] and go back to Step 1 until the

¥

required accuracy is attained.
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Note that in Algorithms 3.1 and 3.2 the second derivatives of G are involved only in
the computations of z5*1, As a matter of fact, these are some directional derivatives of
G which can be approximated by difference quotients without altering the convergence
of the algorithms; see for example, [5], [11] and [12].

If £ = IR"™, we define a function ¢ : IR™ x IR x IR" — IR™,

glu, A, v) := (v,G(u, A)).

Let p* > 0 be a parameter sequence tending to 0 for £k — oco. We approximate the
terms involving the second derivatives of G in Algorithms 3.1 and 3.2 as follows:

(v, D, Gw) = Dyg(u, X, v)w = 1/p* - [g{u pkw,z\,v) — g(u, A, v)] (3.24)

and

(v, DuuGu) = Duug(t, A, v)w = (1/p%)? - ([g(u + p*(w + &), A, v)

-|—g(u-|—p’°w,}t,v)—- g(u—f—pke,-,;\,v)—g(u,}\,v)], 1= 11'”1“’1 (325)

where e;,t = 1, --,n, are unit coordinate vectors in IR".

In addition,”the operators Ap(z,¢) and A4;(z),: = 1,2, possess a large common part
(DuG,u1,u3) which can be utilized in solving the five linear equations in the above
algorithms.

In fact, Ao(z,e) and 4;(z),7 = 1,2, are (n+4) x(n+4) and (n+2) X (n+2) matrices
respectively. At every k-th step in (3.17), we do firstly a LR htriangﬂarizatiﬂn of the
n X n matrix D,G* using an improved column pivotation which permutes the present
column with the last one if the pivoted element is smaller than the given tolerance.

With (n® ~ n)/3 operations, we obtain
D,G*=P.L-R-0Q, (3.26)

where P, are permutation matrices. If * is near z*, the last two lines of the upper
triangular matrix R become small; see also [4].

Substituting the triangularition (3.26) into Ag(z*,¢) and A4;(z*), we rewrite them
in the form (3.26) and eliminate the first n — 2 elements in the last four and two
rows of the resulting R; with 2n(n + 1) and n(n + 1) operations respectively. Their
trangularizations are achieved by further decompositions of 6 X 6 and 4 X 4 matrices,

which are done directly and the computational cost i1s neglectable for large n.
Thereafter, the resclution of (3.19) is accomplished by 3 backward substitutions for

: = 0,1,2, and 2 forward substitutions for z = 3,4 with 5n(n + 1)/2 operations. Hence,
the main computational cost of the k-th step in the splitting iteraiton is n®/3+13n*/2+
37n/6 operations which is at the same level n®/3 as that for the regular solutions of
(1.1).

§4. Numerical Examples

Usually, there are two ways to set up a splitting iteration proccess in the discrete
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spaces. One1s to discretize equation (1.1) first and then make up formally the extended
system in the discrete form; the other is to make up mappings H;,t = 0(1)4, and
then discretize them. Since all the systems are regular, there is no difference in the
consistence and stability of the resulting approximate pmblems[ll.

Example 4.1118l. Consider a system in IR?

2z, — Ae® + w(z2 + z3)
G(u, X, w) := | 222 — Ae™? + w(zi1+23) | =0, (4.1)
223 — Ae™? + W(Il + Ez)

where u = (zl,mg,zg)T c IR3 and A\, w € IR.
This is a steady state system for the temperature of exothermic reaction of three
cells with symmetric contact; w 1s the contact coeflicient.

Making up the extended systems (3.2)-(3.6) for (4.1), we carry out the iteration
(3.17) and obtain a corank-2 biffurcation point of (4.1) for w = 0.5 in accordance with

[18]:
o = (2.5,25,2.5)T € R®, o = 0.205212,

(see Table 1) where we have fixed the normalizing parameter m = 1 and the control
parameter £* = (1,,2,,4.,.2)T c IR*, and

f=(1,0,007 € R".

The same numerical results are achieved for & around £*.
Example 4.2. Let us consider a two dimensional buckling state problem with

initial deformation

{Au +Aq(u) =0, in Q:=[0,1]x 10,1],
(4.2)

u = 0, on O}

where g(u) := u + zyu® which is evidently C'*-continuous.

Table 1
u® $t $; A*
(1,5:1) (0,2, 1:) (1,0,—1) =l

(2.4749,2.4290,2.4749) | (.0000. — 9563,1.0872) | (.9073, ~ 3399, —.5926) | .552988
(2.5218,2.4589,2.5228) | (:0000, —.6769,.8286) | (8314, 4166, —.4201) | .236617
"3 | (2.5017,2.4883,2.4968) (0000, —.6999, 7224) | (:8349, —.3935, —.3868) | 205955

| (2.4986,2.4989,2.4998) | (.0000,—.7077,.7066) (8174, —.4078, —.4078) | .205319
(2.4999, 2.5000, 2.4999) [ (0000, —.7071, —.7071) | (:8164, —.4082, —.4082) 205212
(2.5000, 2.5000, 2.5000) | (.0000,—.7071,—.7071) | (:8164 T 4082, —.4082) | .205212

b | = | |

@ | O]

Let E := H(Q) and (-, -) be the dual product on E* x E. We define a mapping
T . E* — E implicitly by

a(Tg,v) = (g,v}, YV E E,
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where a(- , -) is a bilinear form on F x E,
al{u,v) := / Vu - -Vvdedy, Vu,veE.
1

Obviously, the upleratur T 1s well defined, linear and self-adjoint in £. Furthermore, it
is compact from L?(Q) into E. On the other hand, the inequality

f a(u)Pdzdy < / (u? + 2ul + ul)dedy, Vu€ E
{1 {1

and

E c LY(Q) c L*(Q) c LA(N)

ensure that ¢ maps F into L?(Q). We write (4.2) in a weak form

Find (u, ) € E x IR, such that
(4.3)
G(u, A) := u+ AT¢(u) = 0.

Since A € R and T is compact, D, G(u,A) is a Fredholm operator on £ with index
0 (cf. [17]): y
D,G(u,A) = I + AT D, q(u).

Observing the spectrum of the operator T (see for example [9]), we see that
(Hﬂ, AQ) = (0, 5‘3‘2)

in one of the corank-2 bifurcation points of (4.3) (resp. (4.1)). Moreover, we know
analytically

N(D.Go) = N(Du.Gg) = Span ey, p2),

and

DGy =0

where

p1 = p; = 2sinwe,sin 27y, @2 = ¢; = 2sin2xz,sin7Ty.

Conditions (H1)-(H2) follow from the Riesz-Schauder theoryl!”]. At the same time,
statements (2.1)-(2.4) imply

Vp = 0.
Elementary calculation yields
$i, = Dut:G[]‘Piﬁaj = ADTDUHQ[}(F’;'Q@JF, D“AG[} = T,

gio = Dy DGo(vo,1)¢* = Tp;,  qoo = D*Go(ve,1) = 0.
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According to the Ritz representation theorem, we have

111 = (‘Pli?l) = ﬂ'(*}‘-ﬂT(zzyﬁolgl)i ®1) = Ao // 233‘9’?5[”‘13’ = 160/9~,

85
a11,2 = (®2,911) = Ao /f 2rypipadedy = ~Z ¥
85 - 200
@121 = ——T, dai22=—8, a1 =-8, anz=-—"7"
6 9
a1 = a(p1, Te1) =1, a@w2=0, a1=0, azo2= 1.
ThEI‘EfGI‘E a3 160 85 _
— ——7x 1 E
Or 6 :
85
—-"'6—"‘?!' —8 G £9
Mo(e) =
—§5—1r —~8 0 ¢
H 6 d
200
- A —8 —~— 1 £4

Elementary calculation shows that, if £2 # sg,gthen det(Mg(e)) # 0. This provides
condition (H3). Therefore, (ug, A¢) is a corank-2 bifurcation point type-I of (4.3).

Using finite element methods, we discretize (2 with Courant 's triangular elements
and set up formally extended systems (3.2)—(3.6) for the discrete problems of {4.3).
Then, we carry out Algorithm 3.2 and obtain convergent approximations for the discret
values of (ug,Ao),¥1,p2; see for example Table 2. Due to the discretizations, the
bifurcation point of (4.3) moves correspondingly for the discrete problems, e.g., for
h = 1/7, it holds that

(uk, AF) = (0,46.60305),

etc. where we have used the discrete L2-norm. The starting value for Algorithm 3.2 is
the discrete values of the functions

(HU,AU, ‘I’?,'ig) = (.52,44.@1 + 22, 9o — 2y)

and the function f is chosen to be

==&,
Table 2 (h = 1/7)

E | Jluk —0fl | [Aon =A%) | ) Hosll | Hex) || Haal

0 | 2384344 | 2.603050 | 4.122181 | .3894015 | .8078239
1 | 1762093 | .8623657 | 1.202055 | .3303478 | .4886288
5 | 1732754 | 3.115203 | .5123317 | .0282068 | .0602275
3 | 0405147 | .2347106 | .0811900 | .0195719 | .0218195
2 | 0011108 | ..0009378 | .0034578 | 0009297 | .0014470
5 | 0000051 | .0000152 | .0000180 | .0000012 { .0000013
6 | 0000001 | .0000004 | .0000007 | .0000006 | .0000008

All the computations were done with single precision on a Vax/vms 11/750.
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