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NEW ODE METHODS FOR EQUALITY CONSTRAINED
OPTIMIZATION (2) — Algorithms*

_ Pan Ping-qi
(Nanjing Forestry Universily, Nanjing, China)

Abstract

As a continuation of [1], this paper considers implementation of ODE ap-
proaches. A modified Hamming’s algorithm for integration of (ECP)-equation
is suggested to obtain a local solution. In addition to the main algorithm,
three supporting algorithms are also described: two are for evaluation of the
right-hand side of (ECP)-equation, which may be especially suitable for cer-
tain kinds of (ECP)-equation when applied to large scale problems; the third
one, with a convergence theorem, is for computing an initial feasible point.
Qur numesgical results obtained by executing these algorithms on an example
of (ECP)-equation given in [1] on five test problems indicate their remarkable
superiority of performance to Tanabe’s OQDE version that is recently claimed to
be much better than some well-known SQP techniques.

This work is a continuation of [1], so the same notation is used as before and
the section numbers are continued. Implementatmu problems of ODE methods
are considered in detail here. In Section 4, The main algorithm, a modified
Hamming’s algorithm for integration of (ECP)-equation, 1s described . Two
supporting algorithms for evaluation of the right-hand side of (ECP)-equation
are presented in Section 5, which may be especially suitable for certain kinds
of (ECP)-equation when applied to large scale problems. Then, in Section 6,
an algorithm for computing an initial feasible point and a related convergence
theorem are given. Finally, Section 7 presents our numerical results obtained
by executing these algorithms on an example of (ECP }-equation proposed in
[1] on five test problems. These results show their remarkable superiority of
performance to Tanabe’s ODE version that is recently claimed to be much
better than some well-known SQP techniques(?.

§4. Numerical Integration of (ECP)-Equation

Without loss of generality, from now on we will consider the implementation
problems of ODE approaches only for nummma,tmn pmblem (ECP). Once an (ECP)-
equation has been chc:sen and an initial point Zo € X has been obtained, what we
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need to do next is just to handle it numerically. Let the ECP-equation'be of the

form: 3 . . -~ (4.1a)
= —p(z)P(z)A(2)V flz) = =) .
(0] = 25, | (4.1b)

In the sequel, we will always assume that (ECP)-equation (4.1) has a complete-
limit point z*, which we cofer to as limit point for short. Let us choose the (ECP)-
cate factor (3.13), i.e., ¥(z) = 1/||PAV fl|2 so that the right-hand side is standard-
ized: |

Ip()z = 1. (4.2)

As mentioned at the end of Section 3, this gives the easiest may to get to know the
length of the trajectory from To to any point z(t) along the trajectory.

For {4.1) we can choose between a number of numerical integration schemes with
differing techniques of step-size control. While it is impossible at this stage to spec-
ify a best integration scheme for our problem, it may be proper to use a higher order
integration method here than in the unconstrained case, where approaches of Euler’s
type are often suggested, for now the search should stay closer to the trajectory (see
Brown and Bartholomew [2]). Furthermore, since what we are really interested in is
the limit point, rather than the trajectory itself, the integration method should pos-
sess a good round-off property, and its computation complexity should at the same
time be as low as possible. In the light of these, Hamming’s a,pproa.ch[“], a fourth
order, multistep and predictor-corrector method, seems to be among the reasonable
choices. We will incorporate '+ into a stepsize-variable integration algorithm.

Denote simply the k-th stepsize, z(tx) and p (z(t ) by ok, Tk and p, respectively.
Suppuée that other three points Ty, T2 and x5 are ready to be used besides zo. Then
at the k-th step, k = 3,4, point ZTx41 MaY be calculated by applying Hamming'’s
formulas: |

- 8 1
(1) Prediction k41 = k-3 + §ﬂ'k(Pk + pr—2 — Epk—-l)
112

V41 = Uk41l ™ Tﬁ'dk (da — 0)

wit1 = P{Vk41)
y . 1 | | e
(2) Correction Ck41 = —8-[9:1:;: — Tg-2 +-3ak(wk_+1 + 2pp — Dr—1)] (43)
dip1 = Bk41 — Ch+l
T -;—. C + -—g—d
k+1 = Ck+1 T T9q k41l
'P(-"Jk+1)

}

Die4+1



New ODE Methods for Equality Constrained Optimization (2) — Algorithms _' 131

This method visits the right-hand side of the equation twice perstep. In addition,
it is advantageous in that the local truncation error of the methﬂd can be simply

controlled through ||di+1||oo-
The following is to ensure sufficient accuracy of the integration:

Criterion 4.1 (Acceptance of steps). If (4.4) below is satisfied, accept point |
zx4+1 and proceed to the next step:

{ f(Zis1) < fzh), (4.4a)
ldi+1]l0 < €1, ~ (4.4b)

where £, is a given positive number.
In the case when (4.4) is not satisfied, what we will do is to cut down by half
the stepsize to improve the precision of the integration. We will take two additional

values
ta= (o + tx—1)/2 and  tp = (Tx—1 +&)/2

of ¢ {(see Fig. 1), and compute corresponding points z, and z, on the trajectory and
py through the following formulas:

Te = {Tp—3 + Te-1)/2 + ap(pr_1 — Pk)/s; (4-53)
2y = (21 + 2)/2 + ar{pr—1 — Pk )/8; (4.5b)
Py = 3(zk — zk-1)/2(k) — (Pr-1 + P }/4 (4.5¢)

which are derived by using the Hermite interpolation formula (see, for example,
Powell [11]). We set new z4_3,Tk-2,%k—1,Pk—2 and pr_1 10 Toq,Tk—1,Tb, Pk—1 and
Py, respectively, and then set

| Qxf = O} / 2

and compute 24 again. This procedure is repeated until (4.4) is fulfilled.

7 1. iy £, tg
— : X Y % —
tk-3 te—2 Te1 t

Fig.1. Step size change

It may happen practically, however, that at some k-th step, no matter how
many times the procedure is repeated and how small the stepsize is, as a result of
the effect of rounding errors, condition (4.4) is not satisfied. No further progress is |
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then possible and the integration must be abandoned. This situation is unlikely to
occur unless zx is already close to z”. In practice the procedure is repeated several
times {between 5 and 10) if necessary, and after that z is accepted as the final
estimate of z*. But in general, it is not necessary to have such an accurate one; sO
a practical convergeuce criterion is needed. We will return to this later.

The above numerical integration procedures may be put in the algorithm below:

Algorithm 4.1 (Integration of ECP-equation (4.1}). Given zo € X,a0 > 0and
g1 > 0.

(1) Set k =2,d =10 and j = 0, and compute f = f(zo).

(2) Apply Runge-Kuttas’ method on the ECP-equation (4.1), compute ry1,Z2
and z3, and corresponding p1 = p(z1),P2 = p(z2) and p3 = p(z3). |

(3) _Cﬂmpute fi = f(zgar); if L < fogoto (9)-

(4)If k = 2,set ap = oo /2, and go to (2).

(5) If j > 5, set * = Ty, and go to (14).

(6) Set j=7+1.

(7) Compute (4.5), and set Tp-3 = T2, Th-2 7 Tr—1y Tkl = Thy Pk-2 = Pk-1
and px—1 = Pp 1D sutcession.

(8) Set dx =0, a = ax/2, and go to (11).

(9) If a practical convergence is attained, go to (13)-.

(10) Set k= k + 1, f=fi, 7=0and ax = ak-1.

(11) Compute (4.3). |

(12) If ||dk41)loo < €1, 8O 1O (3); otherwise go to (7).

(13) Set ™ = Ti41- |

(14) Stop.

Note. It would be proper in practice to include in Algorithm 4.1 a device of
restarting to handle the case when the accuracy of a solution approximation is found
not to be within a specified tolerance. . |

The following is supplied for step (9) of Algorithm 4.1:

Criterion 4.2 (Practical convergence). Terminate Algorithm 4.1 if the stepsize
becomes sufficiently small, satisfying

ap < £ (4.6)

where ¢ < 1 is a given positive number.

The simplicity of Criterion 4.2 results from (4.2) (by using the ECP-rate factor
(3.13)). This can be explained as follows. Suppose that (4.6) is satisfied at some
k-th step of Algorithm 4.1. Noting Zr4y = z(tps1) and zx = z(ig), we have by
Remark 3.5 that | _ - -

|l xk41 — zi|ls = ar <E. - | (4.7)
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Since ¢ is sufficiently samll, it is not possible to make. mgmﬁcant progress, and it is
likely to be near z* already. Our experience is that the perfnrmance of Criterion 4.2
is very satisfactory in practice.

Even the criterion is not satisfied, it is often necessary to terminate the inte-
gration if the number NR of steps becomes larger than a given positive integer N,
i.e.,

‘NR> N, ) (4.8) -

partly because sometimes the trajectory of (4.1) may be unbounded, or may have
an infinite length.

§5. Evaluation of the Right-Hand Side

In this section some techniques for the evaluation of p(z) in (4.1) afe considered.
We assume that explicit expressions for f(z), h(z) and their first order derivatives are
supplied. It is often the case, for example when one of the ECP-direction matrices
given in Section 3 is used, that the core of the evaluation of p(x) comprises the two

products

() (V*f(=)b, (i) P(z)b, (5:1)

where V'*’ f(z) and P(z) are the Hessian of f(z) and the projection matrix deter-
mined by (2.1) evaluated at some z, respectively; and b € R" is a given vector.

For the computation of product (i), the simple approximate formula below can
be employed: |
(VEf(2)b ~ [V f(z + 6b) - Vf(2))/5, (5.2)

where & = o/||bl|2 and o is a sufficiently small positive number. The calculation of
V2 f(z) is then bypassed in this way.

It is much more complicated. to deal with product (ii) because of the involvement
of the inverse or the generalized inverse in (2.1). By Q-R decomposition, Theorem
5.1 below will help make a detour. In the following, the matrices and vectors are all
eva.lua.ted at some point z.

Theorem 5.1. Let P be the projection matriz given by (2.1),J be the transpose
af the Jacobian of h and’b € R* be an arbitrary vector. Suppose that an orthogonal
matriz Q € R"%™ has.been compuled such that g

Sl :';i.'E.r;:'.ai"_r ﬂ‘* et e R i B .
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zeros below the diagonal elements in the order of successive columns, and .ﬁna}ly we
have |

(DmnSmn D1 Dmn-1Smn-1D7h -2} + (D13S13 Dy Y D12512)
= (DmnSmn---S12)d (5.16)

being upper triangular. It is also evident that
Q = DynSen - S12 (5.17)

is orthogonal. In order to improve numerical stability and to avoid overflow, the 5;;
and D;; in the above procedures are constructed via Theorem 5.2 or 5.3 according
as d;z% > djz3; or not. In practice, instead of explicitly forming €, it is economical
to leave it in factored form and to access it through Si; and Dma. In addition,
the corresponding S;; is not needed whenever zj; = 0; hence the number ns of
transformations is no greater than the number of elements below the diagonal of J,

i.e.,

ns = n:(m -1}/2 + m(n—- m) = m(2n — m — 1)/2. (5.18)

Taking into account all of the above considerations, we obtain Algorithm 5.1.
Two working vectors @ = (ag) € R™ and b = (Bx) € R™ are introduced in it to
store a and 8 at every k-th transformation, and another vector d = (d¢) € R" to
store the diagonal elements of D;;. At each transformation, once zj; is transitted to
zero, its location becomes free and is then set to 1 or 2, to record which of Theorems
5.2 and 5.3 has been used.

Algorithm 5.1. (Fast Givens Orthogonalization). Given J =(z;;) € R™*™.

(1) Seti=0,k=0andd=1forl=1,---,mn.

(2) Set i = i 4+ 1, and then 7 = 1.

(3) Set 3 =7+ 1.

(4) If z;; =0, go to (8).

(5) Set k =k + 1.

(6) If d;2% > djzfi, then compute (5.8), (5.10) and (5.11), and set zj; = 1; else
compute (5.12), (5.14) and (5.15), and set 2;; = 2. |

(7) Set d,‘ = &;,_dj = Jj:&k = a,ﬁ’k = ﬁ, Zil = ﬁ’,‘; fOl‘ I = i, R [ a.nd Z51 = ij;,
forl=1+1,---,m. |

(8) If § < m, go to (3).

(9) If ¢ < m, go to (2).

(10) Stop.
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Noting (5.4), (5.5) and (5.17), we obtain Pb in terms of S;; and Diyy:

0 o
Ph = 53253‘3 . Siﬂ—lsmn i E T (5"19)
_ _uz
where u4 is determined by
& =
e DmnsmnSm n=-1"*"*" Sl2b- ) (5.20)
[ U2 _

Algorithm 5.2 below gives Pb via (5.19) along with (5.20). In the a.lgurithﬁi the
output of Algorithm 5.1,i.e. D = (d;) € R*, J = (2i;) € R**™, @ = (o) € B™ and
b = (Bx) € R™* are supplied as the input; and finally, Pb overwrites b.

Algorithm 5.2 (Computation of Pb). Given b = (b;) € R".
(1) Set : =0, and & = 0.
(2) Set 7 = i+ 1, and then 7 = 2.
(3)Set j&j+1.
(4) If 2;; = 0, go to (8).
(5) Set k=k+1.
(6) If z;; = 1, then compute ¢ = b; + «:ur;..,lsij.,bJ = Bib; + b;; else compute g =
v b; -|-b_,,b = b; + Bib;.
(7) Set b; = gq.
(8) If 7 < n, go to (3).
(9) If : < m, go to (2).
(10) Set b; = 0,for ¢ = 1,---,m, and b; = b;d;, for j=m + 1,.--,n
(11) If 2;; = 0, go to (14).
(12) If z;; = 1, then compute ¢ = b; + fib; and b; = akd; + bj; else compute
= aipb; + b; and bj = b; + ﬁkbj.
(13) Set b; = gqand k =k — 1.
(14) Set j =3 —1;if 7 > 4, go to (11).
(15) Set t=t-la,nd3 n; if § > 0, go to (11).
(16) Stop. = ¢ ®mT - '

- +§6, Deteérmination of the Initial Point- -

What remains to be'done now is to gain a good estimate of an initial pmnt A
new approach for doing this is presented in this section. |

™



138 _ . | PAN PING-QI

Theorem 6.1. Let h(z) : R* — R™ and Zo € R" be given and suppose. that
h(go) # 0, g{z) = th{z))Th(z), and h(z) is continvously differentiable on the convez
hull of the level set |

S(g,%0) = {z| z € R",9(z) < 9(20)}. ' (6.1)

If for all z € S(g,%Zop) such that h(z) # 0 the transpose J(z) of the Jacobian of h(x)
has full column rank m, [ri(z)]T is the i-th row vector of J(z) and

D(z) = diag '(dl(a:), T ,'dn(x)_)1 (6.2)
where P o Tl
- — { V(@) i 7(2) 0 o
Ly . otherwise,
then the vector
a(z) = —(1/| h(2) lleo) D(2)I (2)h(2) (69
ts a descent direction for g at .

Proof. In the following, the matrices and vectors are all evaluated at z. Note
that the gradient of g is |
Vg =2Jh, (6.5)

h ;é 0 and J has full column rank m. The matrix D is clearly positive definite.
Hence we obtain from {6.4) and (6.5) that

(V9)Tq = —(2/|lhlleo)(JR) D(Jh) < 0. - (66)

Theorem 6.1 is thus proved.
Let %, € .S(g,%0) be the k-th approximation of an initial point and h(x) # 0.
Clearly, by Theorem 6.1,

¢(2x) = —[D(&x) T (E)](h(Zk)/ 12(Zk)lo0 ) _ - (6.7)

is a descent direction for g at ;. Notice that for numerical purpose both the matrix
in the bracket [ ] and the vector in the bracket ( ) are standardized in some sense,
while (6.7) is an expression equivalent to (6.4). Our approach for computation of an
initial point zo is contained in the following:

Algorithm 8.1 (Coi:nputatiﬁn of z¢). Given an estimate Zg of z¢ and o > 0.
(1) Set k = 0.
(2)- Compute gr = g{&:) from (6. 1), if gi < €9, g0 tO (7)

" (3) Compute gx = g(£) from (6.7}, (6.2) and (6.3).
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(4) Comput the smallest 85 > 0 such that
o(Ze + Brgi) = min{g(2x +Aaw)}. | (6.8)

(5) Compute Ex41 = Tk + Pigk-
(6) Set k£ = k+ 1, and go to (2).

(7) Set zp = Zp. |
(8) Stop.

The global convergence of the preceding algorithm lis given below, while its con-
vergence rate will not be considered here. |

Theorem 6.2. Under the same assumptions as in Theorem 6.1, if, in ddditian,
the level set S(g,%o) is bounded, then Algorithm 6.1 with'eg = (0 generates a sequence
{#,} that is either finite, lerminating at some %) such that h(Z;) = 0, or infinile,
having at least one cluster point. If, in addition, at some cluster point, say &, each
row vector [r;(£)]T of J(&) is nonzero, then h(i) = 0.

Proof. It is clear under the assumptions that g(z) is continuously differentiable
on the convex hull of S(g,%0), and h{z) = 0 if and only if Vg(z) = 0 for all
z € S(g,%0). Note also that D(z)/(2]lh(z)llec) is positive defnite at z € S(g,%o)
such that h(z) # 0 and that each row vector of J(£) being nonzero implies that
D(%) is continuous at Z. Then, the remainder of the proof is an analogy to that of
9] for an algorithm in which search direction —B(z)V f(z) is continuous and B{z)
is positive definite, though f should be set to g and B(z) to D(z)/(2||h(z)|lec) in

Qur case.

Remark 6.1. Theorem 6.2 is also valid for Algorithm 6.1 with step (4) modified
by choosing Ok as the first stationary point of g(z) along the direction gx.

Since h(Z) = 0 can not be guaranteed if a row vector of J(Z) is zero, some safe-
guards such as restarting strategy appear to be needed. However, our computational
experience indicates that Algorithm 6.1 works very well, and the safeguards have
not been used. - | S | |

§7. Computational Results

To examine the approach proposed, some computational experiments have been
done. By no means the best, the form of ECP-equation comprising ECP-direction
matrix (3.10) and ECP-rate factor (3.13) is used as our test equation, i.e.,

" IR g
— = PleaBP(VN)(PYS) - (e1 + e)(PVS)] = p(=), (7-la)
m(ﬂ] = Ip, - | (T'Ib)
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where ¢ = 1/|| - |l and | . l |

(VHTPYH - .(7 1c)
~ (PYHT(VE(PVS) '

We take the ratio of ¢z to ¢;, DP = ¢3 fcy > 0, rather than ¢, and ¢; separately,
to specify concrete forms of (7.1). DP is referred to as direction parameter. After
determination of a value of DP, the paramelers ¢ and c; are then given through -
the following: |

p

o1 =1, Y1 TR T
if 0< DP < 1; i DP>1. . (1.1d)
co= DP, P Ts s = hmss - '. " 4

Note that (7.1) with DP = 0 has the same trajectory as Tanabe’s equation that
Brown and Ba;rthéldmeiﬁ tested [2]. o A | .

Model Algorithfﬁ 4.1 on equation (71), supported by Algorithms 5.1, 5.2 and
6.1, has been implemented in a double precision FORTRAN program on a FACOM
230 computer. Unfortunately, the author had not had at hand, for various reasons,
the book by Hock and Schittkowskil® then, and therefore had to construct by himself
the five test prﬂblems' which are collected in Appendix. These problems are casually
formed, some of which are variants of the existing unconstrained ones.

Results of initial feasible points obtained via Algorithm 6.1 with g0 = 10~° are
given in Table 1, where the procedure QUAD by Wolfelll, with its (2.2:20) modified
by using h = Bk-1, I8 utilized for line searches. In Table 1, NI'is the number of
iterations required and the index ¥ C of computational work is defined by |

NC = (NH +n NJ)m, o (12)

where N H is the number of evaluations of h(z) and N J is that of J(z). The symbol -
MORM(H) denotes the value of llh(z0)|]2- It should be indicated that the estimates
£g, listed in Appendix, of initial points are also casually determined by the author
himself: consequently the resulting initial points used are far away from respective
solutions and more iterations are involved.

Table 1. Initial Point Results
boblem . NI NH NJ - NC: . NORM(H)

. TPl 1 6 i .10 .036D-14

Py, g 2, M- Z 20 .. 087D-06 . |
TP3 7 69 7 194 0.26D-05 s
TP4 .- 23 156 23 942 0.68D—05

TP5 14 89 14 477 Q85D-05



New ODE Methods for Equality Constrained Optimization (2) — Algunthms | : 141

In Algerlthm 4.1, €, is predetermiued from Eu ef Algenthm ﬁ 1 threugh the
formula below |

€1 = PEo (7.3)

where the parameter p should be set to a positive number larger than 1, for it can not
be expected that the precision with which the solution z* to be located satisfies the
constraints is hlgher than that of zg. Seemingly appropriate, p = 10 is used in our
program. Tables 2-6 contain results obtained via Algorithm 4.1 with ag = 0.05 and
e; = 10~% on test problems TP1-5 respectively. In the program Criterion 4.1 with
¢ = 10~%and condition (4.8) with N = 10° are employed to terminate computations,
and formula (5. ‘2) Algerlthms i 1 and 5. ‘2 are used for evaluations of the right-hand
side p(:r:) of (7.1). | - 9 | |

In Tables 2-6, N R is the number of eva.luatlens of p{z), and the index of com-
putational work NC is defined by |

NC=NF4+(NG+mNJ)-n, (7.4)

where N.F £.d NG are the numbers of evaluations of the objective function f and
its gradient V f respectively, and NJ is the same as in (7.2), i.e., the number of
evaluations of J(z). Besides, the symbols NORM(H), NORM(PG) and F denote,
respectively, the values of ||Allz, [PV flz and f at z*. By Theorem 3.5, the length
of a trajectory can be given simply by summing up all the stepsizes in the numerical
mtegratmnm However, they are not listed explicitly in the Tables because numbers
of iterations are found nearly to coincide with lengths of respective trajectories; and
therefore N.R can also be an index of lengths of trajectories.

Table 2. Results fer TP1

DP NR NF NC 'NORM(H) NORM (PG) F

00 — - - — — -

20 910 448 7732 0.22D-11 . 0.75D-02 0.3880748401D+03
40 633 310 5378 0.15D-11  0.42D-02 0.3880748401D+-03
6.0 634 311 5387 0.15D-11  0.18D-02 0.3880748401D+03
80 520 259 4495 0.12D-11  0.156D-02 0.3880748401D+03
10.0 510 248 4332 '0.12D-11 0. 73D-ee 0. 3330743401D+03
12.0 514 251 - 4367 0.12D-11 = 0. 12D—01 0.333_0743401D+03
14.0 516 - 251 - 4383 °.012D-11 ~ 0.24D-02 0.3880748401D+03
16.0 500 - 243 4247 012D-11 - 0.10D-01 - 0.3880748401D+03
18.0 508 249 -4317#°042D-11 .% 0.30D-02  ~ 0.3880748401D-+03
20.0 516 -4383.::0:12D<11 < -0.39D—02 0.3880748401D+03

- 261
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DP
¢.0
2.0
4.0
6.0
8.0
10.0
12.0

14.0
16.0
i8.0
20.0

DP
0.0
2.0
4.0
6.0

- 8.0

10.0
12.0
14.0
16.0

18.0
20.0

DP

0.0
2.

4.

6.0
8.0

16.0

12.0
14.0
16.0
18.0

20.0

NR

207
186
195
195

203

201

204
207
200

219

NR

252
216
199
195
192

212

200
200
200
200

NF
97
85
a1
91
95
94

99
97
93
103

NF

19 ,

101

93
92
89

101
97

93

93
94

Table 3. Results for TP2

PAN PING-QI

NC NORM(H) NORM(PG) F

1960 0.61D-06 0.13D—04 0.6891574534D+-00
1759 0.83D—06  0.19D—04 0.6891576724D+00
1846 0.50D—06 0.12D—04  0.6891573382D+00.
1846 0.24D-06 0.13D—04 0.6891570713D+00
1992 0.69D-06 0.79D-05  0.6891575269D+00
1903 0.84D—06  0.25D—05 0.6801576891D+00
1931 0.89D—06 0.28D—04  0.6891577362D+00
1960 092D-06 0.76D-05  0.6891577648D+00
1893 0.80D—06  0.40D—05 0.6891577349D+00
2074 0.89D—06  0.43D—05 0.6891577323D+00

Table 4. Results for TP3

NC NORM(H) NORM(PG) F

4151 0.26D—05  0.82D—02 0.3824632607D+03
3557 0.26D-05 0.82D—02  0.3824632590D+03
3277 0.26D—05 0.18D—02  0.3824632645D+03
3212 0.26D-05 0.36D—03 0.3824632599D+03
3161 0.26D—05 0.33D—02 0.3824632678D+03
3493 0.41D-05 0.60D—03  0.3824633081D+03
3377 0.44D-05 0.84D—03 0.3824633138D+03
3293 0.40D—05 0.24D-02  -0.3824633068D+03
3203 0.35D-05 . 0.21D—-02 0.3824632978D+03
3994 0.42D—05 0.80D—03  0.3824633108D+03

Table 5. Results for TP4

NC NORM(H) NORM(PG) F

7681 0.66D—05 0.11D—05  0.4387117574+00
7069 0.66D=05  0.12D=05 0.4387117476400
8193 0.66D—-05  0.45D-05  0.4387117464+00
8522 0.65D—05  0.20D—05 . 0.4387117485+00
8582 ° 0.65D—05 ° 043D—05. .= 0.4387118043+400
8808 0.64D—05 : 0.81D—-05 0.4387118330+400
9034 0.66D-—05 .:60.49D=05 . 0.4387118571+00
9218 0.66D—05 ':0.81D—05 . 0.4387117555+00
9054 0.92D—05 .. 0.4387119027400

0.66D—-05
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pP NR NF NC NORM(H) NORM(PG) F

00 — — @— - — — o
90 608 207 15497 0.83D-05 0.38D-03  0.1899872760+02
40 497 242 12667 080D-05 0.15D-03  0.1899872157+02
60 458 222 11672 0.83D-05 0.35D-03 0.1899872171+02
80 450 219 11469 0.83D-05 0.18D-03 0.1899872819+402
160 390 189 9939 0.84D-05 0.46D-03 0.1899872941+02 -
129.0 372 180 9480 0.84D-05 0.19D-03 0.1899872983+402
140 207 97 5272 0.82D-05 0.90D-04 0.1899873918+02
160 371 179 9454 0.11D-04 0.75D-04 0.1899873198+02
18.0 410 198 10448 0.11D-04 0.40D-03 0.1899872895+-02
20.0 425 207 10832 0.12D-04 0.74D-04

Table 6. Results for TP5
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0.1899873203402

From 0 up to 20, eleven differing values of D P have been tested 5peciﬁca.lly with
a view to determine the dependence of the performance of equation (7.1) upon the
respective vdlues of DP used. Under values of DP for which no data are listed
convergence is still not attained after VK exceeds 103, whereas under those un-
derlined the least computational work, indexed by NC), is required. The following
can be drawn from Tables 2-6. For all of the problems, the worst results occur
when DP = 0 corresponding to Tanabe’s version that is among the ODE methods
superior to some well-known SQP ones, according to [2]. In general, the lengths
of trajectories get shorter and shorter, as values of DP increase from 0, until the
best results, related to the shortest lengths of trajectories, are attained at some
«moderate” values of DP: and after that the situation is reversed.

The worst performance of equa.tinn (7.1) with DP = 0 is not surprising indeed,
for its discrete version is just the projected steepest descent method. The dependence
of the performance of equation (7.1) upon the values of D P, as described in the last
paragraph, is explained for the case of unconstrained minimization (P = I) by
Panl®. and might be considered similarly with the constrained case. This suggestis
that the value of D P should be determined in the light of the required accuracy of a
solution and the extent of ill-conditioning of the encountered problem: larger value
of DP is in general asked by higher accuracy and/or ill—lmndjt.ipﬁ:ing. According to
the author’s experience, a suitable range of DP seems from 0 to 30, ;'a.nd a preferable
value might be 10 or so. However, it is not yet clear how to gain a@ﬁnptirlial“ value
of DP beforehand. s - e =

Finally, we stress that like what reported by Brown and Bartholomew-Biggs!?,
the author’s computational eéxperience equally indicates the remarkable robustness
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of ODE approach, coinciding with the global analysis made in Section 2.
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Appendix : Test Problems

TP1. n = 4,m = 1 (Variant of Miele and Cantrell [6]) |
f = (exp(z1) —~ 29)% 4 100{z2 — z3)° + te?(z3 — z4) + z3,
hy = &1+ 2(z2 + .'63) + 2.1z4 — 72;
o = (10, 10,10, 10) '
To = (9 9, e e)T where 8 = 10.14084507042254,
= (2.00457, 10.67156, 11.35910, 12.34957) .
TP2‘. n =3me 1
f = 22 + 15.522 + 2.522,
hi = 23+ 21(z1 +23) — 0.7 exp(z2);
20 = (—3,1.5,1.8)T,
o ...__( _ 9 755767454706105, 1.744233545293894, 2.044232736028758)7
z* = (~0.82341, —0.02257,0.03611)7.
TP3. n = 4,m = 2 (Variant of Wood, quoted by Colville [18])
£ = 100(z2 — 22)* + (=1 — 12 4 (z3 - 1)* + 90(:1:%_—— z4)*
$10.1[(z2 — 1)? + (24 = 1]+ 19.8(z2 — 1)(za = 1),
hy = 21 + 2z2 + £3) + 324 + 717334 ~ 52,
g h2=m4 - 23+ 2; o
 %0=(-2, 16, 05, -1Fy
PE 97958006498282 L 510471872002512,4. 479587006498282,

et -y =G
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3.205355006031058)7 '

z* = (1.44879, 1.69?15&2.54165,6.29624)T.

TP4. n = 5,m = 2 (Variant of Miele et al. [7])

f=(z =1+ (21— 22)* + (w3 = 1)? + 13(z4 = 1)* + 10(z5 — 1)°,

hy = :I:f.rq + sin{x4 — z5) ~ 2\/5,

hy = 22 + .:rli:r:g',- 8 — v/2;

30 = (=05, -1, 1, 3, -0.8)7,

zo = (0.9980086750148415, _0.9649589916751778, 1.035041008324820,
3.007227386646867, —0.3019913369060872)7,

z* = (1.33875,1.36159, 1.49269, 1.27358, 0.69621 .
TP5. n = 5,m = 3 (Variant of Powell [10])
F :
f = (21 + 1023)* + 5(z3 — 24)? + (22 — 223)* + 10(z; — 24)* + 23,

hy = @33 4 224 88 0 — 0,

oo, o
I
1l

LT3 — OT4T5 + T4,

ha = 23 + 23 + 1

20 = (~1.7, 2.0, 2.0, —0.8, —1.0)",

zo = (—1.797000406080387, 1.687204801504492, 1.728714139965678,
—0.6176618997576491, —0.7444301413251398)7,

z* = (~1.00033,0.09953,0.03071, —0.00019, —2.99808)T.
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