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DETECTING CODIMENSION TWO BIFURCATIONS WITH A
PURE IMAGINARY PAIR AND A SIMPLE ZERO
EIGENVALUE®)

| Yang Zhﬂng-hua
(Shanghai Universily of Science and Technology, Shanghai, China)

Abs.tract

An extended system for codimension two bifurcation with a pure imaginary pair
and a simple zero eigenvalue is proposed . Its regularity is proved. An efficient
algorithm for solving the extended system is constructed. Finally, some results on
the axial dispersion problem in a tubular non-adiabatic reactor 15 given.

§1. Introduction

We consider a nonlinear evolution problem with two parameters

dz '
E—F(A,p,ﬂ:) 1

where A,z are real parameters, £ € X, a Hilbert space and F is a smooth mapping
from R x R x X to X.

As well known, codimension two bifurcations with a pure imaginary pair and a
simple zero eigenvalue imply that chaotic motions may happen nearby. The unfoldings
of these local bifurcations contain secondary global bifurcations involving homoclinic
orbits (see [1] for details.) |

The following assumptions are made in the paper:

(1) There is a solution family of z = z(\, i) near A%, u® with z° = z(A°, 1°);

(2) The Frechet derivative Fo(), pt,z{), 1)) has a pair of simple complex conjugate
eigenvalues _

r(A, 1) = u(A, p) £ 1w(A, 1)
and a simple real eigenvalue 2(A, ). We have
u(}kﬂ, 9 =g, w(Ao,pﬂ) =w’ >0, z(,\_",p“) 4 4
The eigenvector corresponding to w? is ¢3 + i¢9 and the real eigenvector corresponding
to z(A,u) is ¢(A, p) with &A%, u®) = ¢°. Let
ker F2 = {c¢°| c € IR}.

There exists a nontrivial ¥° € X such that Range FC = {z € X|(¢°,z) = 0}, where
{-,-) is an inner product. , |
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(3) F)? ¢ Range quai'e*("rbﬂla ) #0;

(4) FC has no eigenvalues of the form kiw® k # £1.

There are two ways for detecting the codimension two bifurcations. One way is to
find the cross point- of the Hopf bifurcation branch and the folds branch with respect
to when g varies. We can get these branches by using the algorithms in {2} and [3].
The other way is to determine the codimension two bifurcations directly. In Section 2,
we propose an extended system for the codimension two bifurcations, which is regular.
An efficient algorithm for solving the extended system is given in Section 3. Finally, we
use the above methods to get the codimension two bifurcations in the axial dispersion
problem in a tubular non-adiabatic reactor.

§2. An Extended System

We propose an extended system for the codimension two bifurcations as follows:
. F(,p,z) | |

Fe(A, p,2)0

ep—1 |

o O e e | .

(P}
where y = (A, 4, w,2,4,p),¢ is a constant vecior with nonzero projection on span
{ﬁf’?: g},t’ € X* is chosen later on. -'

There is a unique vector p® € Span {¢7,#3} such that 0 = (X0, u0, w0, 2%, 4%, p°) is
the isolated solution of (2.1). The Frechet derivative G, (y°) is

gy

Fe 0 0 F? F° 0
Fo. e ! 0 Fy.¢° Fl. ¢° 0
0 € : 0 A 0 0 0
FOFO® + FOFS® 0 FO' 4wl FLFS° + FeF.p° Fl:Fap’ + F2Flap’ 2u0p°
0 0 g | 0 0 0
Let | :
042 2 0 ;0
N([(F2)? + w* I]") = Span {43, %2}
with o
0 i
(WP,4%) =&,  Hi=12.
We can get - |

¥9 = (@ +d) (¥ + da9), Wi =(di+ d3)~ Y (da — d1¥3)

with (#3,p%) = 1, | (1,b2,.p“)_ = 0, where p” = dy¢? + d29) . Let g1; 92 be respectively
the unique solution of . ik |

; {Mfgm = QFy, { 529'2:@531
\ -eqp =1, -\ egg=0 .
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where Q is the project operator onto Range F2.

Theorem 1. If condition (1) - (4) are satisfied and the determinant

|0 (9% FD) (0, FY)
(0, FO ¢°¢°%) (v, FR.¢° — Fs ‘?yl} (Y0, Fuzd® — FO.4°92) | # 0

where

- FP = FA(FL.r°¢°) + F.(F2p°)é"s
FO = FOF ° + FO Fop° — FO(F2,p%1) — Foo(F2P)91,
F9 = FOFY.p° + FO, Fop® — FO(Fo.p°92) — Fo(F7P")92.

Then Gy (y°) is regular.

Proof. The mapping Gy(y°) is one to one and onto from BEX Rx Rx X xXxX
to itself. The open mapping theorem ensures the conclution.
Direct calculations lead to the following lemmas.
du()\°, u°)
0A
Su( A\, u®

Lemma 3. (3, F¥) = w®{{4?, Fo.¢3¢°) + (¥, F2:424")}-
Instead of Theorem 1 we have
Theorem 2. If the conditions (1) — (4) are satisfied and the determinant

Lemma 1. (1,{’2,17?) = 2u° (¢, FP).

- Lemma 2. {(¢2, F2) = 2u°

2 (v°, F2) W°, F%)
_ (¢“,F£,¢“¢“) (4’0,1‘}:‘#“ p f%:ﬁuﬂl) (¥°, FO,4° - F£,¢°gg) -
a ‘}‘ 3 : d A : .
|(42, Fx936%) + (¥3, F2u36%) 2 o) . u(a“u )

 then Gy(y®) is reyular:

§3. An Efficient Algorithm
T . ‘5
A=Fp By = Fedy Ci=-F, Ci=-F:$, Cs=-[F+ullp,
- Cy=1—-{p,p), Cs =—{g,p), Di=F, Da=F, D3= Fr:®,
. Da=Fyey Auw= F? +w?l, By =F==F;P+ FrFzzp,
Djs = FypFzp + FzFycp, - Dg = FuoFep+ F::F#::P .

which are all valu_éd (A’_’F, p.""_, wk, z* ¢F pF) of the k-—th 1terax10n Since G, (yc') is regular,
we can use the Newton method to solve the extended ;system (2.1). The Newton
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iteration for (2.1) is

Abz* + D16XF + Dybu* = C) - B (3.1)
 By6z* + AbF + D3bMF + Dybu* = Co | o (3.2
ed* —1 =0, - | (33)
B, 6x* + Audp* + Ds6XF + Debp® + 2uwkp*bwt = Cs, (3.4)
(2p*,8p%) = C4, - | _ - (35)
(¢*,6p") = Cs. (36)

In real computation(2.1) needs to be discretized. We may as well suppose that X
is already an n-dimensional space ET. We always take

ep—1=¢,—1=0

where ¢, expresses the r-th component of ¢. For convenience we shall choose r = 1.
The main idea in our algorithm is to use the strategy in [4]. Let

Al — (Dﬂﬁ)

which is A with “the first column replaced by D;. Although A is singular at the codi-
ension two bifurcations, A; is nonsingular as F{ ¢ Range Fy. Let -

55T = (6),6z2 — 62105, ++, 83 — 62145,

§tT = (6X, 62, ,66n),

(3.1), (3.2) can be rewritten as
A18s = Cy + Cadzy — Dabp, (3.7)
Alﬁf = Cy — B16z + (D1 — Da)bA — Dsbp. (3.8)

From (3.7) to (3.8) we can express 0, 6t successively in terms of §z; and ép by solv-
ing six linear systems with the same matrix Ay. From the first component of s, ot we
get the expression 6 A and Sy in terms of §21. Substituting §z,6), 6 into (3.4) and solv-
ing it with (3.5), (3.6) we can obtain §p,8zy,6w. Finally we get 6\, 6u, bw,bz,6¢,0p.
So far one step of the Newton iteration is completed.

§4. A Numerical Example

The axial giispgij%_iﬁp'!_prublem in a tubula.f ﬁaﬁ—a.diaba.tic reactor is considered. It
can be described by — = o '

3 = Peods? ~ Bs Da(1 - y) exp(8/(1 +0/).

Bt~ Peg 022 0z =) - B - 4.
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with the boundary condition

3y 06
z =10 Pey*yza, PEg*ﬂ:—a—z—,.
%) '_‘?_3_’__'?_8.-.0
B 8z Oz
Da

—302 —001 0~ 001 0.02
Fig. 1 | | Fig. 2

— — — —Folds branch
Hopf bifurcation branch
* The codimension two bifurcation .

Fixing Pe, = 5, Peg = 5 B=05,0=3,7=25 we have a nonlinear problem with
two parameters Da, 6.. The numerical results are drawn in Fig.1. The folds branch and
Hopf bifurcation branch are computed by using the algorithms in [2] and [3]. By using
the algorithm in Section 3 we have directly computed the codimension two bifurcation
with a pure imaginary pair and a simple zero eigenvalue. The numerical results are

Da=0232, . 6.=-0005, w=00617,

and vy, 8 are drawn in Fig.2.
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