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Abetr&et

In this paper we ehew local error estimates for the Galerkin finite element
method applied to strongly elliptic pseudo-differential equations on closed curves.
In these lpcal estimates the right hand sides are obtained as the sum of a local
norm of the residual, which is computable, and additional terms of higher order
with respect to the meshwidth. Hence, asymptotically, here the residual is an error
indicator which provides a enrrespendmg self-adaptive boundary element method.

§1. Introduction

Adaptive procedures for finite element methods as well as for boundary element
methods play an increasingly decisive role in corresponding algorithms and have been
recently analyzed also rigorously (see e.g. [2], [5], [6], [12], [13], [21], [30-37]). The
heart of adaptivity is some computable expression defined by the approximate solution
which can serve as an error indicator and which, on the other hand, is related to a
reasonable a-posteriori error estimate. In [30] we have already shown that for strongly
elliptic boundary integral equations and some boundary element approximations the
residual is a local error indicator. These results were based on a discrete analogon to
the pseudo-locahty of pseude-dxﬂ'erentlal operators in terms of the so called influence
1ndex and correepondmg restrictions for the family of meshes.

‘- Here we ebta.m a.ga.m for the boundary element Galerkin method that the residual
can se‘rve ag’ ldlcal error mdjca.tor, however, we do not need the mﬂuenee indéx anymore,
we nﬁl}' wsﬁ‘me ‘2" lm:al pmperty, ie, .K —meehes These new reeulte are based on
ptin ey dbﬂ STTOr ﬂ"tlmates as we]l ason leeal eetnnates The a.symptutmglobal
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error estimates require for two-dimensional problems which are governed by pseudo-
differential equations on closed curves, that for the spline Galerkin boundary element
methods the boundary integral operators must be strongly el]iptic.[zsl (For“this class
of operators see also [29].) Our local error estimates apply in particular to Symm’s
integral equation of the first kind which is of order -1 (see [15]). For quasiregular
families of meshes and this special case, Braun in [8],[9] gave a local error estimate.
But there the right hand side contains terms in local norm as well as in global norm
which are both of the same order. For more general equations but also for quasiregular
Hesh families, Saranen proved in [24] local estimates with right hand sides of the same
form. Hence, these results are not desirable as a-posteriori error bounds or indicators
in adaptive methods. oy o

In this paper we will improve our results in [30] by avoiding the concept of influerice
indeces and by using the local ostimates for K-meshes. These meshes can be used for
adaptive refinement and therefore are desirable for a feedback method based on our
local a-posteriori estimates. Here, the right hand side consists of the local norm of the
residual which is computable by using the approximate solution, and additional terms
of higher order which are negligible for the local error indicator. |

"As in [3] we will reatrict our Eieﬁentation here to two-dimensional boundary value
problems with corresponding strongly elliptic boundary integral equations on closed
boundary curves. Moreover, for technical reasons we consider only the case |a| < 2

where a denotes the order of the corresponding pseudo-differential operator. If this

restriction could be omitted then our results could be extended to naive boundary
element collocation involving smoothest splines of odd dEgree.[m

For 3-D boundary element methods on two-dimensional surfaces and product splines
we would need additional approximate derivatives of the solution; these generalizations
are yet to be done.

§2. The Main Result

Let T be a plane Jordan curve given by a regular parametric representation

B (;1(..3).,.'32(3)] = z1(s) + iz3(8),

-

where z is a l-periodic function of a real variable s and |dz/ds| > 0. In boundary
element methods, I'is the boundary of a given domain associated with some boundary

value problem. Via the parametrization we have a.one-to-one gnngspondgnge between .
functions on T and 1-periodic functions. More generally, for a system of mutually.

1=

T with L-vector valued 1-pg;_ripdic functions. We thus limit b me]-ﬁﬂ 'W'ithouﬁ_i;_ loss " f

_ _ :
disjoint Jordan curves I' = uk_,T'; we may parametrize each and identify functions. on
genérality to eilu”a.tions of th@e'fdrni_f;__'_{.'_ T L

e A . e (1)

-
a0
=

i
.

s
bl
o

“ra

-




A-Posteriori Local Error Estimates of Boundary Element Methods with ... 275

where u = (u1(s), -, uy(8)) denotes the unknown 1-periodic p-vector valued function,
f = (f1(8);* -, fp(s)) is the right hand side, and A is a given p X p miatrix of bounded
hnea.r pseudo-differential operators of real order & = 27 mapping HY — H~7 contin-
uously. We further assume that (1) has a unique solution. Here H” denotes p copies
of the periodic Sobolev space of order p € R, i.e. the closure of all smooth real-valued

1-periodic functions with respect to the norm

Wl = { UHOP + 3 1tk |2=-rk|2ﬂ)}

=1 0£k€Z
where |

fj(k) = _/I E_Z’ik'fj(cs)ds,' k€ Z,

are the Fourier coefficients. By (-,:) we denote the L, scalar. product on the periedlc
functions which also can be expressed via Parseval’s equality by
(f,9) = E D fi(k)a;(F).
1=1keZ

Note that the scalar product extends to a dualityapairing'between H? and H™? for
arbitrary p € & a’.nd, moreover,
| (v, w)
Iell = =2 i, ) ,
In [3] one finds several examples of systems of boundary integral equations belonging
to our class. In particular, the Fredholm integral equation of the first kind with leg-
arithmic kernel is discussed in [8], [9], [17], [29] and has the order a = -1. Singular
integral equations of Cauchy’s type are those with o = 0 including the classical Fred-
holm integral equations of the second kind. For a > 0 we have hypersingular integral
equations as in {13}, [18] and [29]. All these types of equations are used to solve many
different problems in applications as, e.g. in elasticity; some of the applleatlens w:th
a=-1,a=0,and a =1 are listed in [3], [17] and [29]. |

- For the a,ppmxlmate solution of (1) we consider approximating spaces S}, = .5' ,0 <
k<t a fa.m.lly of 1- penedJc finite element spacee associated with a family of pa.rtltlens
D of maximal meshwidth A. For Sh we require the fe]lewmg properties:

i)

Sh—S 0oty NI EEET (2)

"ﬂ x"; < Chm !"t’"m: 0 < f < m <t . l<k . % : ' (3)
fer a.ll v E H ’“&_I‘,), w]lere the ceneta_.jnt c 13 mdependeﬁt of v a,nd R
o 111) Thed'a,m.lly of meshee cenmste of K *,meshee, where D is ca.lled a I{ mesh 1f fer

.ﬂ\" of the pamtmn D with A n A’ # 0 there
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K—-l { 'ﬁfl
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2 L M =
7 EEa : re s o a’ .:'E' ',_ ; :|
r r e T




276 " W.L. WENDLAND AND YU DE-HAO -

~ with fixed K > 1 for the whole family and |A[,]A’] the length of A and A, respectively.
Mostly, adaptive meshes can be constructed as K-meshes. In what follows we shall
always assume that the meshes D of cui Lamily ate K-mesghes which is obtained from

‘some originally uniform mesh by consecutive finite subdivisions into two subintervals.
In (2) and (3), t refers to the local approximation order of Sy, which usualy consists
of piecewise polynomial functions of degree t — 1. k indicates the global smoothness of
these functions. As usual, a typical finite element functioh space will satisfy (2), (3)
and some ‘inverse relation’. Here however, we only assume Sj to satisfy (2) and (3), -
since we want to apply our results to adaptive meshes with (4), on which 5p usually
can not satisfy the inverse relation. | |
For the approximate solution of (1) we consider a conforming Galerkin boundary
element methﬂd', i.e., o S
: <k

R

Sy Cc HY(), 7=

and find u, € S such that |
~(Aup,vp) = (f,vs) for all v € Sh. | (5)

We further assume that ahe Galerkin method converges asymptotically and globally of
optimal order, i.e. that

constant ho > 0. | :

Due to Schmidt’s results in {25], for a uniform family of partitions, this would imply
that A is a strongly elliptic pseudo-differential operator. Conversely, for strongly elliptic
A, (6) was shown in [16], see also 131, [17], [22], [23], [29].

For feedback mesh refinement, the estimate (6) does not provide information on the
local error at some point or on some closed subinterval I; ¢ T. In [8], 9], [24] local
error estimates are shown. These, however require regular families of mesh refinements
.nd the inverse relation. Here, for |a| < 2, we will show local error estimates which are
based on the local behavior of the residual, defined by the computable expression

R=f- Au, | - (7)

on the subinterval I, with Iy C I3 C'I‘, I2 the open interior of I, and higher order re-
mainders which are negligible for sufficiently small k. The main results are summarized -
in the following theorem. : . R __ -
Theorem 2.1. Let A be a strongly elliptic -pséudﬁ-diﬂemntigl operator of orderq":};
with —2 < @ < 2. Lett—12 k2 |a| + min{0,§} and let the boundary elementsbe
defined on a family of k-meshes. Let u € H*(I;) n Ho(T)yn Ly(T), I cBcC I‘ Then*‘*
for 0 < h < ho, the local error of the Galerkin boundary element method mtwﬁesﬁiﬁ%ﬁ}i
estimates, : | " Ty

R A4 : é
e — wally() < CLR* lullo + A*IBll-a + | Rlla-e(nm)) | (_31%
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for-—-2<a<0and
[ = Balleg(n) < CLR™RErS =4y, + h“‘“‘("‘*“ “lIRIIo + h° “R”Lg(fz)} (9)

for 0 €< a < 2.

Remark. The boundary integral operators in most applications have operators of
orders a = —1015029 o = 013h(%9] and o = 1311829 For these cases, (8) and (9),
'respectwely, specialize to the following estimates:

a=-1:lu—unllon < C{r*tY|ullor + A*||Rll1r + [|Rl]x, il
a=0:|lu—ullos < C{R*|ullor + R*||Rllor + | Rllo,.}»

< C{r+*Hlufly o + KA+ Rllor + hlIBllos )

'The results (8) and (9) show us that for stmngly elliptic boundary integral equa.tmns
- of order a with |a] < 2 and for K-meshes, the local error of their Galerkin approximate
solution can be estimated by calculating the residual in a local norm. These estimates
~can be used to design an adaptive boundary element method and for a-posteriori error
estimates providing information on the error distribution over the mesh. According to
this information, the mesh of the approximation structure can be changed automatically
s0 as to improvg the quality of the numerical solution with less computational work than
by uniform refinement. This is the basic idea of feedback adaptive methods. Numerical
examples with the residual as indicator can be found in [14] and [30].

=1

§3. Some Fundamental Properties of the Operators Involved

Lemma 3.1. IfA: H"’(I‘) — H-*(T) is a strongly elliptic pseudo-differential
operator of order o = 27 then the adjoint operator A* 15 also a strongly elliptic pseudo-
differential operator of order a. A and A* are continuous. Uniqueness of (1) then
implies that A~! and A*~1 are also strongly elliptic pseudo-differential operators of
order —a and continuous.

For the proof see [27] and [29].

Nowlet hccLcC L CT and J;,1 <4 <9, satisfy

- h=Lh CClCC--CC I C e

where Iy, J;, I}, I, are subarcs of I'. By I; CC I; we denote the properties L=54LC
(IL)°. Let further w; € C§°(T),1 < i < 8 be cut-off functions associated with Ji and
| satlsfymg |

1) wi=1 in J.

i) suppw; CC J,+1 and
)0 w <1, i=l,-.-,8.
' For ;samphcnty we denote
w; = 1 — w;.

FRE B i .t BT R
4 E P S e : ST }r‘j_q... "?

Thenmhaﬁeﬁfthﬁ fdlmngtwo lemmas. For their proofs see [27] and [4, Lemma 3,2].
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Lemma 3.2. For any distribution v on I' we have
D1 A'wiv € C7(T),
~and for arbitrary real | and m and v € H"‘.(l"),
@i Awivll < Clivllm,
where C is independent of v. , |
Lemma 3.3. The commutator wA* - A*w 150 pseudo-differential operator of order

a — 1, for every w € CF°(T).

- §4. Local Approximation on K -Meshes

~ For any A €D we déﬁne' the influence region Ia for A by using the interpolation
basis functions ¥, corresponding to any node p,
T —

where g |
D, = {A € D|A C suppp}.

With these definitions it4s easily seen that the inequality

Ia| < C(K)IA|
bolds with a constant C(X) depending only on the constant K of the K -mesh.

Lemma 4.1. Let In« be the influence region for the standard element A* = [0,1],
then there is a constant C = C(K) > 0 such that for z € H™(Ias) with m > 1, and

2z = 0 at the ends of Ia+, then
' inf |2 = gllm,as < Cl2lm 1ae

« - gEQ
where O is the set of all polynomials of degree m — 1 on Ia+ which vanish at the ends

'Offﬁt. s

Here and in the following, we use the m-th order seminorm

1
hmase = { [ 108}

Proof. Suppose the lemma were not true, then we could find 2, € H M(Iae),n =
1,2,-++, such that = P B . o ;

coar o R M R _ (0)

Without loss of generality we may as well suppose that :

| inf ||zn ~ Fae=1 . | | llf

' | 4€Q lzn = glim.2a - W T P ( ) .

(by taking suitable multiples of the original z, if necessary) and | ; Eﬁ

. C lonletae €2 N O F

(by adding a suitable ¢, € Q to each of the original z, if necessary). From (12)_?;;:

we conclude, by ‘using the Rellich Lemma, that a sequence of the {zs} --convergesf;ﬁ._5.:
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H™=1(Ia.). We can suppose that this subsequence is the entire original sequence (by
deleting members of the original sequence if necessary) From (10) a,nd (11) we find

11m |2y |m 1, = 0.
Thus 2z, converges in H™(Ia+). Let 2z, be the limit. Obviously,
200 |m, 220 = 0,
and as Jp. is connected, 2, is on Ia+ a polynomial of degree m — 1. Moreover, 2o, = 0

at the ends of Jao+. Then z, € @ in contradiction to (11). Since there are only finitely -
many possibilities of standard influence regions Ip« for fixed K, the constant C in this

lemma is only dependent on X .
Lemma 4.2. There i3 a constant C = C(K) > 0 such that for any = € H™(I),

1<m<t ICT, with z=0 at the ends of I, and for any K-mesh D, there ezists a
function 1z € S,{I) with 11z = 0 at the ends of I, such that

|z = zl1a < ClAI™ Y2lm1,, 0<I<m<t, A€ D),

where In is the influence region for the element A.
Proof. Let ®(£) be a polynomial in one variable satisfying

. [ aede= . (13)
and |

]ﬂlf-ftli(.f)d.f:(] for j=1,2,---,¢4—1. (14)

For any ¢ > 0 define

| (I’(EE_I) for £ € [0:8]1

®, = ¢ B(-£c71) for £ € [—¢,0],
0 for |£] > «.

For any node p of D let
y 1
2 AEIJ,

Obviously S, C supp 1{), For any y € H™(I) let
L o)z -

dzx
S.'F

€p =5 min |A, Sy ={zelllz-p|<¢e}.

Yy =

'a.nd_deﬁ.ne__ | | |
C My =) Yy, (15)
. ~ pEl°

where J° = [ nterm of 1. ¢p is the 1nterpola.tmn basis function corresponding to P.
Then IIy E 5;, ami ”jlyﬂ:—ﬁ"ﬂ ‘at the ends of I. Suppose, A € 'D(I ) Then

Iﬂvh.a < Eﬂ}"ﬂ’plm <c ¥ mllaEt, 1o

PEI'" . s : PE-F' ﬁEI’p
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Moreover, | | o
|  wlio,s, | Pepllo,s - ‘
1¥p] < ple® < Cep *|iylloss,-
dz
SF
Thus
Myha <€ 52 1A Nglloss, < ClAIT llgllotas (16)
PEIG*I&EDF '

where C = C(K) is a mﬁstant. Upon rescaling A to the unit interval, i.e. 7a : & —
[0,1] = A%, (16) becomes

iy o 73 ego) < Cliy © 72 llo.zae
hence

(y - Ty) 075 o) € Clyo 73 lhm faes  for m 212 0. (17)

f{isonlpa polynomial of degree m — 1 which vanishes at the ends of Ja, then ¢ can
trivially be extended by zero to all of I. Direct calculation shows that

¢ = z {]S ((z)®., (z — p)dm/[g d:!:}tbp = Z ((p)Yp=¢ for m <

pEl® pelo
because of the definitiofi (13) and (14) of ®(£). Hence, for any given z € H™(I) with
» = O at the ends of I, let

y=2z-—C.
Then we obtain from (17)

zorg) — Tzora |y =infl(z - Q)orz ~Tz=C)e ra ltjo
< Ci%f [(z— ()0 r‘;l"mifh., for 0<I<mZ<&Ll

Clearly, as { ranges over H™(I ),va,nish-ing at the endpoints of I, (o 1';1 ranges-over
all polynomials of degree m — 1 on s+ vanishing at the endpoints of Ja+. Thus, by
Lemma 4.1,

|z 0 1'31 — Iz o T.Ell!,lﬁal < Clzo Tgllm'fn., for 0<I<m<Ht.

Rescaling back to A gives the_- desired result

1z — Hzlia < CIAI 2lmpa  for 0<ism <t,A€D, (18)
where the constant C = C(K) is mesh independent.
- Now let R T '
 E=u—t (19)

byt :' L A
_| lr-l':_":}i_--. 5'

bé the error, i a. the difference betﬁegﬂ 1:11+ ;lﬁtim; of the equation (1) and the solution
of problem (5). Consider the auxiliary perlem | f

. Aw= nE, | . (20)
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where wy € C(T) is defined as above with . suppw; CC Jz For u € H "(Jg), we ha.ve
w E € H¥(T), and therefore with Lemma 3.1, -

| w= A* Y (w E) € H**%(T).

Lemma 4.3. There ezists a constant C = C(K) > 0 such that for any u E-
H*(J2) n HY(T') and the associated solution w of problem (20) there exists ( € .5'
w:th supp( C J3 CC J4 such that

lwew — Clia, < €A™ ol 2
for—q<l<1mn(k m),2 — g < m < min(k + a,1),0 < b < ho. Hereq)Z:saﬂ
arbitrary fized posilive integer. -

Proof. From the definition of w and w,, we know that

| wow € HH‘“(I‘) and  supp (wow) CC J3 CC Js.
Define - i |
D (@)= [ f6)}E, a<z<h

where J4 = [a,b]. Let ¢ > 2 be an arbitrary fixed positive integer and
v = D7 wyw). |

We have v € HErete(J) with v(a) = 0. Obviously, in J4\Js v is 2 polynomial of
degree q — i Now, we can easily choose a polynomial p; of degree 1 and show that
pi(a) = 0 and py(d) = v(b). Then |

v —p € H*t9(J) and - v(e) - pl(a) = v(b) — p1(d) = 0,
and v — p; is a polynomial of degree ¢ — 1 in J.I\Jg 'By Lemma 4.2 there exists a
function II{(v — ;) € SH"'H"(J ), which vanishes at the ends of Jy, such that

(v = p1) = H(v = p1)li,a < CIAI™ 7|9 — pilmtq.1a
forall0LI<m+g < min(k + a+g,t+¢q),m+¢ 2 1,A € D(Jy). From the definition
of I[ in the proof of Lemma 4.2 we know that

Mv—p)=v—p1 inJs\Js.
Because Uags, Ja CC Jy when h is small enough, we have

(v = 1) = (v — Pz, = 1(v = p1) = T(w — p)l1,gs < ™ v = Prlmqds
for0<I<m+gq<minfk+a+gqgt+qg)i<kt+gmitqg2>l. Observe that p; = IIpy;
and D’“""*pl 0 when m + ¢ > 2, hence we obtain

L v =Tvjp 4, € ch™ l"'h-l|"|1ﬂrn+—«1n.mln .
far 0<{ '< m+q < mln(k+a+q,t+q) I < k+q,m+q> 2. Obviously, in the above
mequa.hty the le:[t Bemmnrm |+ 1,7, can be replaced by the norm || N ITEA:

LS & ﬂ : % “I;l — Hﬂ";_h < eh™t9- Ilvlm-i-q,.h | | (21)
for.0 < ! < {n,.,+ﬂ Smin(k+a+q,t+ ghl<k+gm+q22 Let (= D"(Hﬂ], then
C€ S (J ),§ = 0 in J.;\Ja a.nd so supp ¢ C Ja. Thus we have
' 5 6§ vy I(“J?w CI f)-hl | |(D'3(eu H‘D), f)J4|

waw — (I- = sup =" sup
“ | | ""J‘ meﬂg{h) S ||q,.h CORfEHI(N) T lere
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Integration by parts yields

v—To,Df)al |
T ey e e
osrerisy  IMllad

From (21) with [ = O there follows
lwaw — Cll—gue < Nlv = Mollog, € ™ olmtade = ch™ 9| D™ " vllo.s,

= ch™ || D™ (waw)lfo, s, < b wllm.ae (22)

for 2—q < m < min(k + a,t). Moreover, from (21) with I = min(m + g,k + q) we have

v — To|lmin(m+ak+a)de S chma-min(mF ekt iyl o g,

1.e. s &
lwzw — ¢llmin(m &} S chm—min (k) o)y, g, < chm=minlmF o)l g, (23)

t). Interpolation between (22) and (23) yields the desired

for 2 — ¢ < m < min(k + @,

estimate
(24)

lwaw — Clinzy < ch™ wllm,2
Cfor—g << min(m,k),2-¢<m=s min(k + a,1).

Now we consider )
, ¢ = o1+ o1,

of wpw, which is defined by Lemina 4.3,

where &1 € Sy is the local approximation ¢
e auxiliary problem

supp ¢1 & J3, and ¢; € Sy, is the solution of th
{ Find & €8,  such that

(A{waw — $1),%) =0 for all 9 € Sk,

i.e. ¢y is the Galerkin approximation of waw. Let

§1=¢2w'—$1, E=w-— ¢ (25)

£y = WolW — @1,
then
£ = (wow — ¢1) + (Waw — ) = €1+ £r.

ma 4.4. There exist positive constants C = C(K) and ho such that for any

Lem
u€ H*Jp)n HY(D),t 2 oyt = 12 k2 yl,g 2 max(2,2 - a),0 < h < ho,
1) |
| lealli £ 4{':1"1"""”"ll.E]lm1 for —-¢q<l< min(k, a), - {26)
: llEdle < cpmintktat)-liE|,,  for a-t<lsTS k, (27)

S (28)

o O T e R . -
g .:'.-Th;‘ ::.rﬂ.f'::.':{:"l;"'"'-r-i‘? ' I .:5;.._': o W : IIE“WI = (le,E)- 5

St il fy ST

s " :*_.,:‘.l\: 1::.1 . : 'j_.:_ ;_"-b ; .._,* ) S : m_l
gl - leillr = llwaw — dallea, < k™ fiwlim

W e
7y
]
Lk
e
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“
LR T | kT e
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for all —g <! €< min(k,m),2-¢g< m < mm(k+ a,t). Takingm = o a.nd using Lemma
3.1, we obtain |

lealls < ﬂh“"||WIIn 5 < che || A wllo,5, = ch®{lwr Ello < ch* | Ella,

for all —¢ <1< mm(k a).
(i1) Using the global error estimate (6) for the Ga.lerkm a.pproxlmatmn of wyw, and

taking m = min(t,k + o), we have
éxllr = ll@aw — 1l < ch™=E k+a)_,"wﬂw"mm[t k+a)
= cpmin(tk+a)=tis, A*-lulan,,ﬁ,,(t kro) for a—t<I<y<k

- Then we obtain by the use of Lemma 3.2 the desired estimate

1611l < eh™nE ko=l Ello < chmintte: O-UE|,, for a—t<I<y<Ek.

§5. A-Posteriori Local Error Estimates for 'Eqﬁatinns of Negative
Order o with -2 < a <0 -

In this seftion we discuss equation (1) and prove Theorem 2.1 for -2 < a < 0.

Lemma 5.1. Ifu € H¥(I;)N Ly(T) is the solution of equation (1) for —2 < a <0,
t—-12>k 2 —y = —%, then for 0 < h < ho, the local ervor of the ﬁmte element solution

up, of (6) on every subam I cC I, cC I; C T can be estimated by
1Elo.5, < C{A* M ullor + ARl -ar + | Rll-a,2 + BlIEllo, 15 }

with @ constant C = C(K) > 0 which is independent of h,u; uy.
Proof Let J"w. and @; be defined as before. Then

ER, < IIEH2 = (wE,E) = (4"0, E) = (v, AE) = (v - ¢, AE)
=(c,AE) = (E,A%¢) = (E,d‘:ﬁA*s) + (E,wsA%¢)
= (E,QEA*w4£) + (E,05A%046) + (E,ws A”¢)
=T1 + T:z it Ta, . | (29)

where

(E,wsA qu), Ty = (E bJsA me), T5 = (E,w5A"'E). (30)
u:tig";i“ 5 |

Usmg Lemma.i32'2, I.el_mha. 4 4 and the globa.l error estlmate (6), a.nd abserving that

% 4} w4e) < ||E||—t+a||W5A *wiélfe-a S C||E||-t+a||€"-t+n
s 5 ﬁ, _,;ﬂﬂti-n(uf fl-t4+a + ||€ 1"-t+ar)

(31)
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Using Lemma J. 3. Lemma 4.4, the global error estimate (6), and observing that wyey =
0 due to Supp £1-C Js and wq = 0 in Jy4, we have

ITy| = |(B, @5 A%G4e)| = [(E, D5 A"0a(e1 + éD)l |
= |(E, wsA” w451)| = |(E, (w wsA” — A Ws)h-’:t&l) + (E A Ws“—’dfl)l
< C{NEl-1ll(&sA* — A%s)o4éalls + I(AE,@s@4é1)|}
< C{IEl-1lléslle + AN -olléslla}
< C{hllullor + BN -ar YR I Bl

< C{R**Yullor + B Rll-ar HIE|w: - | o (32)
Using Lemma 3.3, Lemma 3.2, Lemma 4.4 and the global error estimate (6), we have

115\ = I(E,wsA%e)] = (E,(wsA® - A*ws)e) + (E, A*wse)|

—|(E,we(wsA* — A"ws)e) + (E,we(ws A” — A'ws)e) + (E,A%wse)|
=|(we B, (ws A™ — A*ws)e) - (E, 06 A%wse) + (wsAE,€)]
<UB s ws A" = A"n)ello + [ El|-srelioAwselle—e + s AE|-alella
<CllE N lielat + IEl-tsallell-tra + | Rll-asllella)
<CUEou (BllEllon + B E k) + B lello,r (Bl Ellus + B+ Elln)
+ 1Bll-auty (1 Ellen + B1Ellen)}
<C{hl|Ellos + h*lullor + |1 Bll-at Yl | (33)

Since here we have the restriction —2 <i a<Q0andt—12k2 -*1', we can apply Lemma
4.4 and the global error estimate (6) in all estimates (31), (32) and (33). Combining
(29-33), we obtain

\EIZ 1, < IEIR, < T3]+ T2 + [Tl
< C{(* = + B Yflullor + h*[|Rll-ar + [Rll-auta + BIENo.z; I Ellen

< C{p¥ |lullor + h*IRll-ar + IRll-a.zz + Bl Elio, I Efler

l.e.

||El|o n < C{hHl"““ﬂI‘ + hk"R"-a,r + IIR"—:: 2 + k|| Ello, 13 }-

Proof of Theorem 2.1 far -2 < a < 0. In this case our assumptlons slmphfy to
u € HYI)N L,(r) and t - 12 k> —7. Let

e i cckoc e hacc ke T.
Using Lemma 5.1 (k + 1)-times, we obtain
fju — unllo, C {hk"'l‘llﬂllu r+h HIRl=ar + [ Rll-o.s + hHlllEllo I}
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< C{A* Y ullor + A*(|Bll-ar + 1Rll-ap + A7 || Rl -ar)
< C{R¥* ullor + A*[IRll-ar + | Bll-a.r. }-

§6. A-Posteriori Local Error Estimates for Equations
of Positive and Zero Order with 0 < a < 2

Lemma 6.1. If u € H*(I3) N H*(T') is the solution of equation (1) for 0 < a<?2,
t—1>k>a=2y, then for 0 < h < hg, the local error of the finite element solution
up of (1) on every subarc ) CC L, CC I, C I‘. can be estimnted by

|1Ello., < C{hminlk+etF1=7] 1y 4 I Rllo,r, + Al Ello,z3},

with a constant C = C(Ii) > 0 which is independent of h U, Up.

Proof. Let J;,w; and w; be defined as above. Then similar to the proof of Lemma
5.1 we have |

NE||3 g B ||E||2 <Ty+ T+ 13,

where T;,7 = 1,2,3, are given by (30). Usmg Lemma 3.2, Lemma 4.4 and the global
estimate (ﬁ), ye have

IT1| = [(E, @5 A*w4e)| < || Ell-t4allis A"wae]|e-o
< CHE|-e4allell-t4a < Ch ™ "u|l(le1ll-t+a + Héill-t4a)
< Ch=Mully (B Ellu, + K¢t =0 Bll,,.)
< Ch*|jull | Elle - - (34)

Using Lemma 3.3, Lemma 4.4, the global error estimate (6) and observing that wye; =
0, we have

[Tyl = (B s A*ae)| = |(B,5 A"a(er + 1))
= [(E, & A*04é1)| = |(E, (@sA* — A"05)4é1) + (E, A"0saéy)
< IEoll(@sA* — A*@s)ouéillo + | AE olléxll
N C(||EI|0 rlléilla=1 + | Bllo.rllé1llo)
-'.-< C(Hfalfy chin 9~V Bl + |[Rllorh™ O] E]u,)

i iep = GBI g 4 g | Rl )|l (35)
S .‘: 1 11 gyh._ AL ;
Usmg Inn:ma 3.3 Lemma. 3 2, Lemma 4. 4 and the global error estlmate (ﬁ), we find

|T3| 1(3,&5'}4 I"' I(E wﬁ(w5A"' A*w5)£) + (E —wﬁA"w5£) + (E A W58)|
PR Sl

-l(mas (usd” = A"wg)e) — (B0eAwse) + (wsAEye)l . -

1

X “"":||1‘7||:»m;ﬂ(w'ti4‘1""“‘"“1$ A'WS)S ||0 + IIEII_H&lIweA"wsslh_a + |lws A Efollello
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<CUElwg lellat + NEll-t+allel-c+a + 1Rl ligllo)
 <C{lIE Mg (hl|Ellw, + hrinlktat)=att|i Bl )
+ bl r(BY| Elly + Rt B, )
+ || Rllws (A Ellay + B¢+ EYL,, )}
SC{h| Ellws + 527 |ulby,r + A% Rllus HIE o,

<C{AEllog; + B lullyr + b RNo LM Eller - (36)

Because of the restriction 0 < @ < 2and t— 1> k > a we can apply Lemma 4.4 and
the global error estimate (6) in each of the above three estimates by using ¢ 2t —a in
Lemma 4.4 in order to obtain (34) and (36). Combining (34-36), from

"E"g,h < “E"f.u < V0 + ] + T3] < C{(hzt—'r + hnﬁn(k+a,t]+1-—'r)|lul|%r
4 pmin(e+at)y pito 4 B2 Rllo,zs + Rl Eo,z: I Elle,
< C{pminlk+ot)+1-v|jy|| 1 4 prinliran)| Rl

+ 5| Rllo.tyt B Ello,i I Ellen
we obtain | |
Ello.;, < C{hminlk+atltl=v|jy|| 4 pminlktadii Rlior + 2% Rllo,, + Rl Ello,z }-

Proof of Theorem 2.1 for 0 < a < 2. Here our assumptions simplify to u €
CHRI)N H*(I),t— 12k 2> a. Let

LcclhicchhicCc---CCTypacClCT.

Using Lemma 6.1 (k + 1)-times, we have |
i = unllo,n, < CLR™ER I uflyp + pminte N Rllor

| +h“IIRII o> + A** Y| Ello fz}
Since
| h*+ | Ello.; < CE*Y" |yl p
and

k-l—1+1'2min(k+1+7,t+1—7)=min(k+a,t)+1-—7,

we abta.in the desired estimate -
- H“ — tplo,, <C {(h“““(““ A1y o h"”””')llﬂllw.r + pmintt et Rilor + h%|| Rllo, }

<C {h'““‘“‘*“ D=y, ' h“““"‘*“")llRII or + A%|| Rllo,r, }-

Remark. If v € H(I') instead of u € H“(I‘)n L4(T) in Theorem 2.1, max(a,0) < <
' < k, then the local error satisfies the estimates,

Nl — wallor, < C{RM I lull+ A¥IRY-o + | R]|-0,1,} (37)
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for —2 < a < 0 and |
lu — vpllo, £C {h"““{k”'”“"”“\\ﬂll 4 prein(bte, ”IIRH + A° ||R\|u L} (38)
for 0 < & < 2 (See [38]) |
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