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ESTIMATE OF CONDITION NUMBER FOR SOME
DISCRETE ILL-POSED EQUATIONS*
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Abstract

Thies paper extends the numerical method and the estimate of the condition number
for some discrete ill-posed equations with positive definite matrix in [2] to the case with
generalized positive definite matrix.

§1. Introduction
This paper considers the following discrete ili-posed problem:
Az = b (1.1)
where A belongs to the set
D={Ae€ R"""|(Az,z) > 0,z € R" \ 0}, (1.2)

and the data b and solution z lie in the n-dimensional vector space BR™. In practice, this
problem is ill-posed as A has a large condition number, which is defined as the radio of the
largest to the smallest singular values. Here a bounded inverse of A does exist in theory,
but the solution z = A~} is numerically unstable.

Let b5 be approximate or measured data satisfying

165 — b]|2 < 4, (1.3)
where || - ||z is Euclid’s norm, § > 0. Here we can replace equation (1.1) by an approximate
equation with prior estimate (1.3)

Az = b&. (1.4)

For the ill-posed problem (1.4), Tikhonov [1] et al. have developed several very useful
numerical methods based on the least-squares principle:

|Az — bs]i2 + o*||z||2 = min. 1.5}

*Received December 5, 1989.



6 TANG LONG-II

The minimal solution 1s
Tq = (A*A+ o?I)" A%bs. (1.6)

in (2], J.N. Franklin has analyzed a different numerical method. (1.4) is replaced by the

following approximate equation
g

(A o ﬂI)Ia = bs, (1.7)

in which @ > 0, A is a positive definite matrix and [ is the unit matrix. The solution by
Franklin’s method has a simple form

Zo = (A + al) " bs. (1.8)

Above-mentioned Franklin’s method is generally less applicable than Tikhonov’s, because
it applies only to the ill-posed problem Az = b in which A is a positive definite operator.
In this paper, Franklin's method will be extended to the discrete ill-posed problem {1.4) in
which A belongs to set D. And we will give an estimate of the condition number for (1.6)
and (1.8) for A€ D. |

We now define | - ||z to be the spectral norm, and K(A) the spectral condition number
of matrix A. Moreover, we define several sets:

D, = {B € R™*"|B is a positive definite matrix},
D, = {B € R**"|B* = Bj.

§2. Estimate of Condition Number

Although Franklin’s method is less applicable than Tikhonov’s, its simple form of solution
has many advantages in numerical analysis. 2] gives the following estimate of the condition
number for the two methods:

K?(A + ol) &5
K(A*A+o2]) = 7

(2.1)

= ol
5=

where A € Dy,

(2.1) implies that Franklin’s method is not only simpler but also stabler than Tikhonov’s
as A belongs to D;. In the following, we will give an estimate of the condition number

similar to {2.1) when A belongs to D.

Let {X;(A4)},{0i(4)},s = 1,2,- -, n, be the eigenvalues and the singular values of matrix
A, respectively. And we assume

oy S B oo B, | (2.2)

If A€ D3, then suppose
%y B dy B B s (2.3)

Lemma 1. If A€ D, then A+ A* € D,.
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Lemma 2 (Weyl). Let A, B € D;. Then the followtng inequality holds:
Ai(A) + An(B) < A (A+ B) < A (A) + A1 (B). (2.4)
Lemma 3. If A € R™*", then
M(A+ AT) < 20;(A). (2.5)

Our main results are the following
Theorem 1. Let A€ D). Then we have the estimate:

1 p K*{(A+ al) { 2
1+ S(a)K{A*A) ~ K(A*A+a2]) — ar, {4+ A¥)
An(A*A) + a2

<2, (2.6)
1+

where S(a) = 2a/01(A).

Proof. From Lemmas 1 and 2, we can obtain

oi(A+al) < A(AA+a?l)+ ol (A + A7), (2.7)

o2(A+al) 2 M(AA+PT) + ar, (A + A%). (2.8)
Again by L'emma 3 and the arithmetic mean inequality, we have
Ai(A* A+ oaPI) = A (A" A) + a® > 2222 (A% A) > al(A + A7), (2.9)
l.e.,
adi(A+ A*)/ M (A*A+ o) <1, i=1,2,--,n. (2.10)

Thus, using inequaliies (2.7)—(2.10), we have

c?(A+ al) & M(A*A 4+ a®I) + ad (A + A*)
c2(A+al) = A(A*A+ A2]) + ad, (A + A*)
1+ ad;(A+ A*) /) (A% A + o®])
1+ ad{A+ A%)/ A, (A*A + o2])
2
14 adn(A+ A*) /A (A*A + o2])
< 2K(A*A+ &?1). (2.11)

K*(A +al) =

= K(A* A + o2])

< K(A*A + o?1)

Similarly to the above proof, we also have

c2(A+al) > A {AA + a®l), (2.12)
ci(A+ al) <A, (A* A+ a?]) + ali(A + A*)
< An(A*A + o21) + 2a2}/%(4* A). (2.13)
Thus ” ) 5
o} (A+al) A (A*A+ a2
o2(A+al) T A, (A*A+o2]) + 2221/ (4% A)
K(A*A+ o?])
> .
— 1+ 2aK(A*A)/o,(A)

K?(A+al) =

(2.14)
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Clearly, {2.11) and (2.14) imply (2.6).
Theorem 1 proves that algorithm (1.7) is very stable numerically.
Using the method in this paper, we can also prove that if A € Dy, then

K*(A+al) _ 2
K(A*A +a2I) = 1+ 2a).(A)/(A2(A) + a?)

Obviously, (2.15) improves inequality (2.1).
Theorem 2. If A € D and K{A*A) > K(A+ A*), then there 13 the estimate
' K(A+ al) < K(A). (2.16)
Proof. From (2.7) and (2.8}, we have inequality
oi(A+al) A (A*A) + ary (A + A%) + o { A (A*A) + aX (A + A7)

< 2. (2.15)

o2(A+al) = A(A*A)+ar(A+ A*)+a® T An(A*A) + adn(A + A%) (2:41)
Again by using the assumption , we have
M{A*A) +alr (A + A*) - A{A*A) | (2.18)
Ao (A*A) + ad, (A + A*) T A{A*A) -
Hence o,
K(A+al)= :((‘: i ‘:?) < \/ :;Eﬁ:f} = K(A).

Remark. The estimate {2.16) implies that the condition of matrix A+ o/l is not inferior
to that of matrix A. If A € Dy, then K(A4*A) = A(A)/X5(4) 2 2x1{A)/2X.(A), so the
condition K(A*A) > K(A + A"} holds naturally.

Moreover, our numerical experiences indicate that Franklin’s method can also be ex-
tended to solve some ill-posed equations Az = b in which A4 is a non-symmetrical matrix
and has positive eigenvalues or other characteristics. For example, it is well known that
the discrete algebraic equations for integral equations of the first kind with smooth nonseli-
conjugate kernel belong to ill-posed problems 3], [4]. We have obtained satisfactory nu-
merical results by using the method of this paper. But, in those cases, it is very difficult
to make an estimate of the condition number. Some research results will be discussed In
another paper. _
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