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ON THE COLLOCATION METHODS FOR HIGH-ORDER VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS”

Tang Tao
(Dept. of Appl. Math. Studses, University of Leeds, Leeds, L52 9JT, United Kingdom)

Abstract

We study the numerical solution of high-order Volterra inte gro-differential equations
by means of collocation techniques in certain polynomial spline spaces. The attainable
order of global convergence and local superconvergence of these methods is analyzed.

§1. Introduction

In this paper we shall be concerned with the approximate solution of the initial-value
~ problem for a nonlinear (high-order) Volterra integro-differential equation {VIDE])

S = He vl i) + [ klesyle) oy ()ds, b L=(0,T], (1

0

with initial conditions y!¥){0) = y0;,0 < j < r—1. Here,r > 1isa natural number; the
given functions f : I x IR" — IR and k: § x IR" — IR (with § := {(t,8) : 0 < s <t<T}
are assumed to be continuous and such that (1.1) has a unique solution y € CT (1) satisfying
the given intial conditions.

The analysis of the convergence properties of any numerical method for (1.1} will neces-
sarily involve the linearization of the given equation and lead to a problem of the form

y!"(t) = iﬂ:‘(ﬂym(t]+b(t)+/:(ri K;(t,s)yV (s))ds, tel. (1.2)

3=0 =0

Equations of the form (1.1) (or (1.2)) have a frequent use in the mathematical modeling
of various physical and biological phenomena. Many anthors studied the first-order problem
using collocation methods. A complete convergence theory of collocation approximations in

S (Zx) (see (1.5) for the symbol) for (1.1) when r = 1, including local superconvergence
results and the discretization of the collocation equations, may be found in Brunner (1984}

and Brunner & Houwen (1986). For r = 2, Aguilar & Brunner (1986} considered the
equations of the form

i

(0 = fley@) + [ Kesylo)ds, tel (1.3)

0

The equations of the form {1.3) arise, for example, in one-dimensional visco-elastic problems,
in the construction of a field-theoretical model for electron-beam devices, and in problems
of one-dimensional heat flow in materials with memory (see Burton (1983), and Hrusa &
Nohel {1984)). For the linear counterpart of (1.3}, the attainable order of (local) convergence
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of the numerical method used is analysed in Aguilar & Brunner {1986). Furthermore, the
convergence analysis of high-order equations of the form

S0 = p)sle) +a(0)+ [ Ht,olulelds, tel (1.4

could be found in Aguilar (1986).

In practical applications, one occasionally encounters high-order integro-differential equa-
tions which are of the form (1.1) or (1.2} (see also Burton (1983}}. Pouzet (1962) introduced
a special class of explicit Runge-Kutta methos for the numerical solutions of certain classes

of (1.1) when r = 2. Wahr (1977) investigated the convergencé and application of collocation
methods to high-order linear VIDEs. The recent paper by Bellen (1985) and recent book by

Bruuner & Houwen (1986) contatin, among other things, a concise survey of recent advances
in the numerical solution of VIDEs by collocation and related methods.

In this paper, VIDEs of the form (1.1) will be solved numerically in certain polynomial
spline spaces. In order to describe these approximation spaces, let

My :0=to<t) < - <ty=7T, wheret, =t
be a mesh for the giveu interval [, and set
Gui= Buitusi]i Bai=tagy —ta: R =005 — 1
Z,:={t,:n=1,---, N — 1} (interior mesh points, or knots),
Zn=ZyuUT.

Moreover, let P, denote the space of (real) polynomials of degree not exceeding k. We then
define, for given integers k and d with 0 < d < k- 1,

S}:d}(ZN) = {u:u=u“EPk on o,, 0 < n< N —1; (15)
ul?) | (t) = ul?) (t,) for t, € Zy and 0 < 7 < d}

to be the space of polynomial splines (or piecewise polynomials) of degree k whose elements
possess the knots Zy, and d times continuously differentiable on I. It 1s easily seen that
the dimension of this linear vector space is equal to N(k — d) + (d + 1). In the following we

shall deal with the space s,‘,:‘;jll(zﬂ), with r > 1, whose dimension is given by ¥Nm + T

In order to determine an approximation u € S,{,:;:_)_l(ZN) to the solution of the VIDE

(1.1), let {c,;} be a given set of parameters satisfying
0<c1< < <ep <1
and define the points
bni i=tnt eiha, =1, M n=O,---,N-— 1, (1.6a)

with
X, = g v = 1,0 = o}, (1.6b)
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and

N-1
X = |} Xu (1.6¢)
n=0

We shall refer to {c;} as the collocation parameters; the set X(N) will be called the set of
collocation points. We now seek an element u € § (r;:ll(ZN) satisfying the VIDE (1.1) on

m

- X(N) and subjected to the given initial conditions, i.e.,

t

'_ﬁ.'i".‘j(ti'n: F(t,u(t), -+, ul"" () +/; k(t,s,u(s), --,ulr"Y(s))ds, forte X(N),

with _
uld) (0) = yo;.

This collocation equation may be written in the form

qu)(tﬂJl) = f(tn.f: Un (tﬂ;"): R :u}'lrh”(tﬂi))

+h,, / k(tn; tn + shy, up(t, + shy,), - -,uL’_l}(tn + sh,))ds (1.7a)
0

q'Fﬂ(tnj':uﬂ:"':ui(':HI]): J: 1:"':m;n=0:"':N_1:

>

where
n—1 1
Fa(t,u, -+, " V) = 3 " by / k(t,ti + shq,ui(ts + shi), -, ul" "V (& + shy))ds, t € o,
1=0 0

(1.7b)

denotes the so-called lag term with respect to the subinterval o,,. Note that if the collocation

parameters are chosen so that ¢; = 0 and ¢,,, = 1, then the approximation u lies in the
smoother spline space

: st (Zw) () CT ) = 84— 1 (2Zn).

We now rewrite (1.7a) in a form which is more amenable to numerical computations.

(r)

Since up ° 18 a polynomial of degree at most m — 1, we may write

il (tn + shy) =) L;i(8)Ynj, tn+sh, €0, (1.8a)
3=l
where
Yoj := h (tns),

7

Li(s) = ] (s — cx)/les — ci),

_ k#£7
and oy := 09,0}, = {tn,tp+1],n=1,---, N — 1. It then follows that

ulr=a (¢, + sh,) = Z Wn,r—i(shn )T 7" /(g —4)! + hi(z a;(s)¥n;) /(g — 1) (1.8b)

q=11“'lr;
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with wy, ,_; 1= u,[:_':)(tn] and

al(s) = '/: (s - 2)9"'L;{2)dz, q=1,--,r (1.8¢)

Submitting (1.8) to equation (1.7a), we find that, for each n =0, -, N — 1, equation
(1.7a) is a system of m nonlinear equations for Y, := (Yn1, -, ¥Yum)?. Once Y;, has been

computed, the approximating spline u € Sjr::}_l(ZN) and its derivatives are completely

determined on the subinterval o, by (1.8). Furthermore, at £ = ¢, the values of u and its
derivatives are given by

ul(t,41) = EL Y., (1.9a)

and

q
ulr (tas1) = 8 (tag1) = 3 Wnormgh®™F /(g —i)! + AL (Z (1)Ya,)/(q — 1)1,

=1

. (1.9b)

As mentioned in Aguilar and Brunner (1986), most applications yield linear VIDEs

of the form (1.2} (where the kernel is often of convolution type : K;(t, s} = G;{t — s3)).

We shall present the global convergence and local superconvergence results to this case in

Sections 2 and 3. The analogous convergence results hold for the nonlinear VIDE (1.1)
under appropriate assumptions on functions f and k (see Section 2).

§2. Convergence Results: Globle Convergence and Local Superconvergence

For ease of exposition we shall give the convergence results for linear VIDE,

r—1 r-1

) = 3 as(e)y' (2) + b(2) + / (ZK (t,8)y') (s))ds, tel. (2.1)

1=0

with intial conditions y{¥(0) = y,,0 < 7 < r — 1. It can be shown that, under ap-
propriate assumptions on f and k& {concerning essentially the boundedness of functions
Lk, 3f(t,z1, -, zo—1)/02; and Bk(t, 8,21, - ,2,-1)/0%;,1 <1 £ r — 1), analogous con-
vergence results hold for the nonlinear VIDE (1.1). Moreover, recall that A denotes the
diameter of the mesh Ily, A := max(h, :0 < n < N — 1). Let

Y(t) = (y(t),y'(t),---,y[r_”[t)]:r, ' (2‘23)
P(t) = [ oo edeed ] , (2.2b)
Q(t) := (0, -,0,8(t))T, | (2.2¢)

and

K16 = | e Homaten) | - .
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Here O,,, denotes the m X n zero matrix (m = r — 1,n = 1l or r) and I,_;,_; the
(r — 1) x {r — 1) identity matrix. Then Eq. (2.1) is equivalent to

Y'(t) = P(e)Y () + Q(t) + /Dt K(t, s)Y(s)ds, tel, (2.2¢)

with initial condition Y (0} = Y5 := (%00, ¥o1, " s ¥o,r—1)7%.

Theorem 2.1. In (2.1) leta; e C™(I),K; € C™(S),0< 7 <r~1, andb e C™(I)(m >
1). Let h > 0 be sufficiently small, so that for all h € (0,h) the collocation equation (1.7)
defines a unique approzimaiion u € gie—1) (Zn) to the solution y of (2.1}). Then we have

m-+r—

lyt*) — u¥) = O(x™), k=0,---,r—1 (2.3)

for all collocation parameters {c;} withO0<c¢; <cg < - <ecm < 1. Here ||y®) — ul®) .=
sup(|y¥)(¢) - u®)(¢)] : ¢ € 1)

Without loss of generality we will restrict our discussion to uniform partitions of I. The
generalization to quasi-uniform partitions, where the quantities

Hy :=min{h, :0<n < N ~ 1},
¢ Hyy = max{h, :0<n< N — 1}

satisfy H},/H} < const. for all N, is straightforward. Furthermore, without loss of gener-
ality we will restrict our discussion to r = 2.

Proof. Let U(t) := (u(t), w'(t}, - -, ul""D(8))%. It follows from (2.2) (with t = t,, + c,h)
and from the linear counterpart of (1.7) that

ey (tni) = Pltni)en(tns) + h/; K(tni, tn + sh)e,(t, + sh)ds
(2.4)

n—1

1
+h Z'/‘ K(tm;, L Bh}ﬂk(t;; b Sh)d&',
k=0 ¥ 0

where e(t) := Y {t) — U[t).
When r = 2, we have Y (t) = (y(¢), ¥'(¢))T,U(t) = (u(t), v'(t))T. Since ag,a;,t € C™(J)
and Ko, K, € C™(S), we have y € C™1%(I}). Then we may write

m+1
el (t, + sh) := y(tp, + sh) — up(tn +sh) = AT Z dn;s? +hR.(3)), tn+sh€ay,, (2.5)
3=0
and
e+ 1 .
er(tn+3h) = ¢ (t, +sh)—ul (t, +sh) = hm[z jdnis? T +hR!(s)), rtn+sh€a,, (2.6)
F=1
m+1
€2 (tn + 8h) 1= y"(tn + sh) — ull(tn + sh) = B™ 7YY (5 — 1)dnss"" + hR!(s)),
=g (2‘7}

ti SR € WBhitagxs B=0 o N1
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Here, A™*'d,; 1= ¢p; — apnj{j = 0,---,m), with Cpj = R yld) (t,) /7Y, u,(t, + sh) :=
m-+1

E ayj;s’, and

3=0

R (3] »= ./:(s — 2)MHLymA2) (4 4 2h)dz/(m + 1), (2.8)

Since e(t) := Y (t) — U(t), we have

m+1
en(tn +sh) = R™( > d.;s7 + AR, (5)), (2.9)

7=0

and
m+1

el (tn + sh) = A™ 7L E 1dn;8° "1 + RR'(s)), (2.10)

=1

where
Jn_f s (hdnj'l (j s 1]dn,j+1)T: 0< .?. <m,

»,_
dpy 1= (hdn;, 007, 7 =m+1,

Ri(s) == (ARa(s), Ry (s))".
Along the lines of |5|, we have

m+1

- = c‘ 1 —
Z (7¢I Iz — hP(tni)e] — hzf K(tni, tn + sh)s’ds)dn,
0

i=1

e, n—1 1
= (AP (tn;) +h2/ K(tni, tn + sh)ds)dno + h? Z/ K(t,;, tx + sh)dsdio
0 k=1 0

rn—1m+1l .3 (2.11a)
+h? Z Z / K(t,, tx +sh)s’dsdy; + Gni, 1=1,---,m,
k=0 y=1 "9
with
Gni = —hR (c;) + h2P(t,;) R, (c;) + h° /ﬂ‘ K(tni,tn + sh)R,.(s)ds
. (2.11b)

n—1 1
he 3 f Bttt ) Bl 8)its,
0

k=0

where I; on the left-hand side of (2.11a) is the 2 x 2 identity matrix. We first note that
the matrix defined by the coefficients of {d,;} on the left-hand side of (2.11a) is inversible
whenever A > 0 is sufficiently small: this follows from the fact that ||P(¢})l; < const.,
| K (¢, 8)||s < const. for all t € I and (¢,s) € §, and the observation that, for A = 0, the

determinant of this matrix is (m! H(c; — ¢4))%. Furthermore, in complete analogy to the
:Ii}_f
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technique used by Brunner {1984), we have

m—+1

ldnls := Z |l dnil|* = O(R), (2.12a)

and

ldno|* = O{1), (2.12b)

when h is sufficiently small. Here || ||* denotes the {;-norm for 2-dimension vectors, i.e., if
= (v1, vz), then ||V|* := |v1| 4 |v2]. Hence, from (2.9} and (2.10), we obtain

len(tn + 8h)|" = O(R™), lleq(tn + sh)|" = O(R™).

The proof of Theorem 2.1 is thereby complete.

Aguilar and Brunner (1986) considered the equations of the form (1.3). They found
that there exist some sets of collocation parameters {c;} such that, at the mesh points
Zn, the convergence rate of u (and u/,u") is superior to the globle convergence rate in
Theorem 2.1. In [1], Aguilar considered the equations of the form {1.4) when r > 2. The
anologous results are obtained in this case. In the following we shall be concerned with
the following question: are there some analogous resuits for the general high-order Volterra
integro-differential equation (2.1})7? The fﬂllﬂWillg theorems concerning this question will be
given precisely.

Theorem 2.2. Assume that a; € C**(),K; € C°™(8),0 < 3 < r—1, and b €

C*™(I(m > 1). Let u € SL:_,_:L(ZN) be the collocation approzimation determined by

(1.7). If the collocation parameters {c;} are the zeros of P, (23 — 1) (i.e., the m Gauss
points for (0,1)) , then

max |y*)(t.) — u'F(t,)| = O(K®™), 0<k<r-—1, (2.13a)
tn.E-zN
while
m:?,zx |y("}(t ) — {'"J(t,,}| = O[h™), (2.13Db)

as h — 0, (with Nh < const. T). The values ul®)(t,),0 < k < r, are given by (1.9).
Theorem 2.3. In (2.1) let a; € C*™~1(I),K; € C*""1(8),0 < 3 < r—1, and
be C*mS) (withm > 1). I[fuc€ S['__I_r 1(Zn) denotes the collocation approzimation

determined by (1.7), and s3f the collocatio. parameters {c;} are the zeros of the polynomial
FPr.(2s — 1) — Pp_1(2s — 1} (1.e., the m Radau Il Points for (0,1]), then

e Iyt i) — wt i (8,)| = O(RP™Y), 0<k <, (2.14)
as h — 04 {(with Nh < const. T).

Note that the collocation approximations occurring in Theorems 2.2 and 2.3 are in
CT=1(1) but, in general, not in C"(I). If u is to be in C"(I), then the local supercon-
vergence orders of (2.13a) and (2.14) cannot be attained (compare also [2}).

Theorem 2.4. In (2.1) let a; € 02"“2(.{) K;, € C°™2(8),0 € § < r—1, and

b€ C™m=2(I){with m > 2], and let u € C(r_l_r (Zn) be the collocation solution defined
by (1.7), with the underlying collocation parameters {c;} being given by the zeros of the
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polynomial s{s — 1) P! _,(2s — 1) (1.e., the m Lobatto poinis for |0,1}; here ¢; = O and
¢ = 1). We then have

max [y*(t,) - ulH(ta)] = O(R™™7%), 0<k<r, (2.15)
as b —~+ 0 (with Nh < const. T).

For a comprehensive analysis of the quadrature formulas of Gauss, Radau and Lobatto

we refer the reader to Ghizzetti & Ossicini (1970) and Brunner & Houwen (1986).
The Proofs of the local superconvergence results given in Theorems 2.2, 2.3 and 2.4 will

be presented in the following section.

§3. Local superconvergence : Proofs

Consider linear integro-differential equations

t

X'{t) = H(t) + A(t) X(¢t) +/ B(t,s)X(s)ds, tel, (3.1)

0

with initial condition X({0) = X, € IR", where H : ] — IR" is continuous, 4 an r X r matrix
continuous on I and B and r X r matrix continuous on §.

Lemma 3.1. Assume that H, A € C'(I) and B € C*(S). Then the {unique) solution
X € C'1{I) of (3.1) may be expressed in the form

t
X(t) = R(t,0) X, +[ R(t,s)H[s)ds, tel (3.2)
3 .
Here, R(t, s) denotes the resolvent associated with (3.1}; it is defined by the resolvent equa-
tions

dR(t,s)
0Js

_R(t, 5) A(s) — / R(t,u)B(u,s)du, (t,s) €S (3.3a)
with
R(t,t) =1, fortel, (3.3b)

where I, is the r X r identity matrix. Moreover, we have R € C't1(S).
The proof of this result may be found in Grossman & Miller (1973} or in Burton (1983).

Using Lemma 3.1, we can easily obtain the following result.
lemma 3.2. Consider equations of the form

Y'(¢) = P(t)Y (t) + Q[¢) + /: K(t,s)Y(s)ds, te€ I, (3.4)

with Y (0) = Yy, where Y (t), P(t), Q(t) and K(t,s) are defined in (2.2a), (2.2b), (2.2c) end
(2.2d) respectively. Assume P,Q € C'(I) and K € C*(S). Then the (unigue) solution
Y € C'*Y(I) of (3.4) may be ezpressed in the form

Y(¢) = R(t,0)Ys + ft R(t,s)Q(s)ds, tel. (3.5)

Here, the resolvent R(t,s) satisfies

oR(t, s)
ds

—R(t, .;!*)P(s] —'/; R(t,u)K(u,s)du, (¢t 3) €S, (3.6a)
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with
Rit,t) =1, fortel (3.6b)

Moreover, we have R € C'11(S).
As a corollary of the above results, we have

Lemma 3.3, it (2.1) leta; € C*(I),K; € C*(I),0 < j<r—1,andb € C*(I) (with
k > 1). Then the {unique) solution y € Ck+r{I) of the initial value problem for the VIDE
(2.1) 13 given by :

yt B (t) = - Zr:Ri:'(t,ﬂ}y:'ﬂ - /: R (t,s)b(s)ds, tel, (8.7)

g==1

with 1 <1 < r. Here R;; is an element of the r X r matriz R = |R;;| which was defined by

(3.6).

The collocation equation defined by the approximation u € § it

mtr—1{Zn) to the solution
of VIDE (2.1) may be written in the form

r—1 ¢+ r—1

() =Y a; ()l () + b(t) + #(2) +/ {Z K;(t,s)ul?(s))ds, tel, (3.8)
U j=0

j=08

with initial conditions u!¥)(0) = y,0,0 < 7 < r — 1. Here the residual r vanishes at the
collocation points X{N), i.e., r(t,;) =0for 1 < 7 < m,0 < n £ N — 1. Moreover, if the
given functions a;, K;,0 < 5 < r — 1, and b are smooth on their respective domains, then r
is smooth on each of the subintervals ¢,,0 < n < N — 1. Note also that r(¢) is uniformly
bounded on [ as b — 0, ( and Nh < const. T) since u converges uniformly to y (cf.
Theorem 2.1).

Let e := y — u denote the collocation error. Then e satisfies that VIDE

r—1 ¢t r—1
(D) = 5 ay(8)el (8) — r(2) + f (3 K{t,5)elD(s))ds, tel,  (3.9a)
31=0 Q =0
and the 1mitial conditions |
e)0)=0, 1<5j<r—1. (3.9b)

The following result is a corollary of Lemma 3.2 and Lemma 3.3. ,

Lemma 3.4. In (3.9), assume a; € C'(I) and K; € C}(5),0< j <r— 1,1 > 1. Then,
there exist functions R; € C*T1(S)(0 < j < r — 1) satisfying R;(¢t,t) = O(7 # r — 1) and
R;(t,t) = 1{y = » — 1), such that

;
/ R;(t,s)r(s)ds, 0<j<r-1,
0

r(t) +./; aRr:;t(t’S)r(s)ds, 3=

el (¢) = (3.10)

By use of the above result and a discussion analogous to [2] (see also [5] and [9]), the
 conclusions given in Theorems 2.2, 2.3 and 2.4 can be obtained. Then the proof of the local
superconvergence is thereby complete.
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§4. Full Discretization of the Collocation Equations

The Convergence results established in the previous section were derived under the as-
sumption that the integrals occurring in the collocation equation (1.7) can be evaluated
analytically. Since this is rarely possible in concrete applications, there arises a question
of how to approximate these integrals. The discretized collocation equation {1.7) will then
yield an approximation & € S ,E: A ) 1(Zx) which, in general, is different from u.

If m-point quadrature formulas with abscissas based on the collocation parameters are
employed to carry out this additional discretization step, then we have {for ease of notation,
we still use the notation u instead of @ in this section)

u’(:) = f(tn.f:"n(tn.f): :“l{: lj(tnj’))

+h, E Wikk(bny, tn + cjckhn, tnlt, + cjckhnl), - -, uL"lJ (tn + cicihy))
k=1

+Zh.2wkk (tngstnks wiltin), - ui D (t)), =1, ,min=0,---, N — 1.
1=0 k=1 |
(4.1a)

Here, we have w;;. := cqwi (1 < 7,k < m), where

wy 1= fl L;(s)ds. (4.1b)

The collocation approximation u € S,E,::_)_I(ZN] may be determined by (4.1), (1.8) and
(1.9).

It can be shown, along the lines of [5], that if the discretized version of the collocation
equation 18 derived by means of interpolatory m-point quadrature formulas based on the
coliocation parameters, then the resulting collocation approximation and its derivatives
exhibit again the local superconvergence behavior described in Theorems 2.2, 2.3 and 2.4.

Finally, we shall give an example for the case r = 3. For the cases r = 1 and r = 2, one
can see [5] and [2]. |

For r = 3, the fully discretized version of the collocation equations (4.1a) may be rewrit-
ten as

Yﬂ.f = f(tﬂ.f! nj? A?’lj ’ A?lj}

+hnﬂj Z wkk(tnj: In + cj'ckh'n: Bf]';.jkl szﬁ:! Bﬁjk)

=1
n—1
T E h, Z wkk’(tﬂ:: nk; Ckn ktl Ckl) (4.2)
1i=0
where
An; = Zn + hnciyn + (hnc;)’2n /2 + b3, (Z aj(c;)Ynr)/2; (4.3a)

§ k=1
T = talta ) Un = w20 ), 20 1= ul(t:); (4.3b)



164 TANG TAO

integro-differential equations

v = f(t,y(t), - o (8)
¢ (5.1)
+[ (t—8) % f(t,8,y(s), -,y V(a))ds, tel,0<ax<],
0

with y(¥)(0) = y;0(f = 1,---,7 — 1),r > 1, the given initial values. We can follow the work
of Brunner {1985 a) and (1985 b) (compare also {9]) and the method used in this paper, to
give a detailed numerical analysis. This will be considered in a subsequent paper.

Acknowledgements. The author wishes to express his appreciation to Professor Her-
mann Brunner for many helpful communications and Professor Derek Ingham for his careful
reading of the manuscript. Thanks are alsc due to the University of Leeds for financial
support.

References

(1] M. Aguilar, Thesis, University of Fribourg, Switzerland, M.Sc. Thesis, 1986.

(2] M. Aguilar and H. Brunner, Collocation methods for second-order Volterra integro-
differential equations, Appl. Numer. Math., 1986,

3] C. T. H. Baker, Thg Numerical Treatment of Integral Equations, Clarendon Press, Ox-
ford, 1977. - | |

|4] A. Bellen, Constrained mesh methods for functional differential equations, in: Delay
Equations, Approximation and Application (G. Meinardus & G. Nurnberger, eds.), In-
ternat. Ser. Numer. Math. 74, Birkhauser Verlag, Basel-Boston, 1985, 52-70.

[5] H. Brunner, Implicit Runge-Kutta methods of optimal order for Volterra integro-differential
equations, Math. Comp., 42 (1984}, 95-109.

6] H. Brunner, The numerical solution of weakly singular Volterra equations by collocation
on graded meshes, Math. Comp., 45 (1985), 417-437.

[7] H. Brunner, On the numerical solution by collocation of Volterra integro-differential
equations with nonsmooth solutions, in: Constructive Methods for the Practical Treat-
ment of Integral Equations (G. Hammerlin & K. - H. Hoffmann, eda.), Int. Ser. Numer.
Math., 73, Birkhauser Verlag, Basel-Boston-Stuttgart, 1985, 74-92.

[8] H. Brunner, The application of the variation of constants formulas in the numerical
analysis of integral and integro-differential equations, Utilitas Math. 19 (1981), 255-290.

[9] H. Brunner and van der P. J. Houwen, The Numerical Solution of Volterra Equations,
North-Holland, Amsterdam-New York, 1986.

[10] T. A. Burton, Volterra Integral and Differential Equations, Academic Press, New York,
1983.

[11] A. Ghizgzetti and A. Ossicini, Quadrature Formulae, 2nd ed., McGraw-Hill, New York,
1970.

[12} S. I. Grossman and R. K. Miller, Nonlinear Volterra integro-differential equations with
L'-kernels, J. Differential Equations, 13 (1973), 551-566.

|13] W. J. Hrusa and J. A. Nohel, Global existence and asymptotics in one-dimensional
nonlinear viscoelasticity, in: Trends and Apphcations of Pure Mathematics to Mechanics
(P. G. Ciarlet and M. Roseau, eds.), Lecture Notes in Phys. 195, Springer-Verlag, Berlin-
Heidelberg-New York, 165-187. -

|14] P. Pouzet, University of Strasbourg, Ph. D. Thesis, 1962.

[15]' H. Wahr, Dissertation, University of Karisruhe, 1977.




On the Collocation Methods for High-Order Volterra Integro-Differential Equations 193

ay (8) := /:(s — z)¥ 1L (2)dz;  (cf.(1.8)) (4.3c)

A?;J- 1= Yn + hpc;2n + hi(z aﬁ(cj-)Ynk); (4.3d)
k=1
A3 = 2y + ha() |, okles)Yar); (4.3¢)
k=1
¢ 3
Bk i= Tn + hncjcxyn + (Ancjcr)’zn /2 + hi(z a3 (cicr)Yna)/2: (4.3f)
' =1
m
Bi;‘k i= Yn + Rncjcpzy - hﬁ(z af[cjck]}’m); (4.3¢)
a=1
B:j'k =2t hn(z ﬂi (‘:;":k)Yna); (4.3h)
=1 .
CL :=z; + hiceyi + (hick )z /2 + h?[z a; (cx ) Yia)/2; (4.31)
a=1
P m
CE =y + hickz + h?(z a2 (ck)Yes); (4.3j)
8=1
CRi =z + k(D al{ex)Ya). (4.3k)
s=1

From (4.2) and (4.3), the values Y,;(7 = 1,---,m) can be obtained. Once Y,,; :=
ul®{(t,;)(5 = 1,-- -, m) have been computed, the values of the collocation approximation u
and its derivatives w' and u” at the next mesh point ¢t = t,,; may be found by means of

the formulas (1.9).

Again, as we mentioned before, the resulting collocation approximation and its deriva-
tives obtained by (4.2), (4.3), (1.9) exhibit the local superconvergence behavior described in
Theorems 2.2, 2.3 and 2.4.

§6. Conclusion and Remarks

In this paper we considered the numerical solution of high-order Volterra integro-differen-
tial equations by means of collocation techniques in polynomial spline spaces Sg;:ll[ZN}.
The attainable order of local superconvergence of the numerical methods used was analyzed
in detail. It was found that, for (first-order) ordinary differential equations, Volterra or
Fredholm integral equations, or integro-differential equations of Volterra type, the analysis
of superconvergence of collocation methods could be carried out (see Brunner {1981) and
Brunner & Houwen (1986)). We believe that most results for first order equations may be

generalized to high-order equations.

The technique of employing vector notations used in the proof of Theorem 2.1 seems to
be applicable to some high-order equations of other forms. For example, for the Abel type
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