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PERTURBATION ANALYSIS FOR SOLUTIONS OF
ALGEBRAIC RICCATI EQUATIONS*

Crex CEHUN-BUT (fA2E)
(Peking University, Beijing, China)

Abstract

This paper discusses the conditioming of algebraic Riccati equations, 1i.e. the influenca of
perturbations in data on the positive semi-definite solution. A perturbation bound for {the solution is

given,

Notation. The symble €™ denotes the set of complex m Xn matrices, and
Cr=Cm1, |+|s denotes the spectral norm and the Euclidear vector norm. The
superseript H is for conjugate transpose. A>0 means that matrix A is positive
semi-definite. A(4A) denotes the spectrum of a matrix A, I, denotes the n—th order
identity matrix. Re A denotes the real part of a complex number A,

y 1. Introduction

Algebraic Ricoati equations arise in optimal control applications, The algebraio
Riceati equation for continuous-time systems takes the form

AEX + XA—XNX+K=0, (L1

where A, N, K €T, N9=Nz=0, K=K >0, The positive semi—definite solution
X=X"2=0o0of (1.1) is required.

Let N=BBY¥ and K = C20 be full-rank factorizations of ¥ and K, respectively,
Under the assumption that (4, B) is stabilizable and (0, 4) is detectable, (1.1) is
known to have a unique positive semi—definite solution X, and A-NX is stable.

Definition 1.1. M cC*** i3 said o be Hamilionian if J M J= — M2 where

(0 z,.)
T k= of

Now ocongider the Hamiltonian matrix

- w4 ¥
(2 %) (1.2)

Under the assumption above, the eigenvalues of M have nonzero real part. If

U
( i)is a 2nXn matrix such that M (U1)=(U1)S, where § is stable, U, is
Uﬂ Uﬂ Uﬂ

invertible and X = —U,U1" is the positive semidefinite solution of (1.1),

* Received Japuary 12, 1987.
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The ocondittoning of algebraic Riccati equations, i. e. the influence of
pertux bations in the data on the solution, was studied to some extent in [8], [4]
and [7]. [B] pointed out that it ig still an open problem. |

By using the perturbation theorem of invariant subspaces of a matrix, [7] ob-
tained some useful results, This paper will continue the diseussion on this problem.

- §2. The Separationlof a Stable Matrix

‘In [6] the separation of two matrices is defined &nd danﬂted by sep(A B)
Now we introduce the following definition.
Deﬂmtmn R.1. Let AcC™, The separation of A is the numbaa' sep(4) defined
b
d sep(4) -—mf [IPA—]—AHPH o | (2.1)
]TPII 1 ' ; =
where |« | denotes any consistent norm on C**,
" In particular, when the norm in (2. 1) is taken to be the spectral norm and
Frobenious norm, it is denoted by seps(4) &nd 9e P (A) respmtwely

——ha

Property 1. Let A, X cCr* with X nonsingular. Then
sep(X 14X ? zop(4)
a ) A n(XE)
where (X ) = IIX || | X-1). If X is umtary, then
| sopp(XPAX) =sepp(4), P=2, F.
Property 2. Let 4, ECCr*» Then
8ep(4) — (| B[+ | B%]) <sep(A-+H) <sop(4)+ (llE!I + 1 E7] ).
Prﬂp_erty-'& ~Let A€ T with A(A) = {A;: 4=1,.2, -+-, n}, Then
sopr(A) <2 min [Re?«.;| P=2 F.

Ici<n

On that basis, we will give a further disoussion on the property of the
separation of a gtable matrix. Let 4 & C** be a stable marix with A(4) = {m(4):
t=1,2, «--, n, | Re M(4)|>--=|Re AM(AY1}., If P is Hermitian, write A(P)=
{M(P): i=1, 2, v, m, [M(P) | M (P)[}.

It is easy o prove the following lemma.

Lemma 2.1. Let Hc C* b Hormitian. Then

||H1|ﬂ—ma,xleHm[
zc G
. ; lzls=1
In addition, if the signs of eigenvalues of H are the same, then
|A(H) | =min " Ha|.
Iola=1

By Lemma 2.1, we can estimate a lower bound of the separation of a stable
mairix, B |

Theorem 2.1, Let A€ Cr* be stable,

(1) If 4 is normal, shen
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(2) If A is diagonalizable and X € T is nonsingular such that X “1AX =4,
where A is diagonal, then

SE’P&(A)??E(—?X-)— min [ReA(4)|. (2.8)

(8) IFf A is undéagonalizable and X € CV" i3 nonsingular such that X AKX =J,,
wilere J, is the Jordan canonical form, and if v denotes the highest order of the Jordan
blocks of J 4, then

1 1 21"—2 : i %
FW -;_—-I( min IRG hi(.ﬁ) |) y HlJ]llRE 24(.&'.) l er

2# — 1 A4 1] 1<éi<n

Sv—-1
1 max{ﬁ(imii{ﬂﬁ.eh(ﬁ)]—l), 1 _(22=2 nin | Re 7‘4(1‘1)]) }:

EBP;&(.A.);“] ng(m) P—l 2:!1—1 1<ian
4 2p—1
1<min |ReM(4) | < T
L _(min|ReM(4)|—1),  min |Rer(d)|>22=>
Hg({ﬁ) lis s ! ! l<i<n 20—2°

(2.4)

Proof. (1) If A is normal, there exists a unitary matrix X such that
X-1AX = A, where A is diagonal. By Property 2 and Lemma 2.1, we have

sepa(A) =seps(A) = inf |PA+ AZP|,= inf max|s®(PA+ A*P)a].
ET—-Q Iﬁ;j; f.-z:EIE:I

For the given Hermitian mairix P, there exists a unit veotor sp such that Pop=—

seps(4)3 inf (A(P) | » |aE(A-+AM)az|) = inf |of (4-+ 45)a]

iP1s=1 1P1,=1
,::amgn]mﬂ(A+AH)m| = | A (A+ A7) | 22 min |ReA(A4)].
Pl s :

Combining with Property 8,we get (2.2) at once.
(2) By Property 2 and (1), (2.8) is immedisate.
(3) From X 14X =J,, it follows tha}

sepa(4) > —yior- 90a(7.). (2.5)
Let : |
Al
Ja=diag(Jq, Jg,--, Jy), Ji= 1 CCrm =1, 2 - F.
| M |
Then p= Eif{m}. Let D =diag{(Dy, Dy, Dy), Di=diag(1,. g, =+, 8" 1), where s€

. (0, 1] is t0 be determined.-Then
D D=JP, JP=diag(JP, I, -, I, (2.6)
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A¢ 8
J'Es]m . s « b %'z]_’ 2,_'”, k. (2_7)
Mg
By Property 2, wo have
1 s 1. s
SBPH(JA) = xg(D) sepe(J ) =Ty sepa(J D). (2.8)
In a manner similar to the proof in (1), we get
sepg(.ff)}miu]mﬂ(.?f]+(Jff")f‘)ml, (2.9)
of 23
brly=1

where

JEHITD)E=diag(J P+ (JE)E, oo, JTE 4+ (JO)EY,

BRE;},;B 1 01
EEJ+<JEF})H= & .:'.:' # EQRE;’L{ 1 ' + & 1 E' -:' i
s 2Re A, | 10

The eigenvalues of J&+ (J)¥ gre

MO=2ReA+28008 —&T . ful 2 u, 3.
v+ 1

If we set 0<s<:1min|R51.,(A)|, then A°<C0, §=1, - p, i=1, -, k. By Lemma
g
2.1, we have
86Pe (VL) 22 (M (J P+ (JP) ) |;2(Fin]Rehi(ﬁ) | —&).
“w e
If

min |Re A,(4) | r—1

l<icn 21’ = 2 !

set

_2v—-2

o O ﬂfilREh(ﬁ)"I
min |ReA,(4) | —e

Then 0<gy<<1, and 1=i<n

attaing ity extremum at &9. Substitniing

1/32{;-—1)
8=2gy into (2.8), we have
sepa(d ) =— (22=2 pin|RoA(4) ) (2.10)
p—1\20—1 1ci<cn
I E35|Ré?u(,&) | >1, get go=1, We have
sepa(J 4) EQEEE(IReh(A) | —1). (2.11)

Combining (2.5) with (2.10) and (2.11), we get (2.4) at once, 3
By Theorem 2.1 we know that the requirement that the separation of a stable
matrix 4 be relatively large is equivalent to the requirement that min Re|A;(4) |

1<isn

be relatively large, i.e., the distance between the spectrum of 4 and the imaginary
axis be relatively large, | |
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§ 3. Perturbation. “Theorem

Before desoribing the perturbation 'theorem, we introduce the concept of
unitary symplectic matrix and the singular value decomposition theorem for a
nnitary sympleoctic matrix,

Definition 8. 1. S€C>*™ js said to be symplectic ¢f J 8 =82, whore J=
& S O |
(~I, 0)'
Definition 8. 2. Q& T3 g ﬂauad @ umtwry symplectic malriz bf Q 78 unitary

and sympleciic.
The following facts are well known (see [4]). Any unitary sympleetm matrix

Qs Qﬂ), where Qi1, Q12€ C"* satisty
— Q19 Q11

Q11Q11+Q13Q1“2—I and QuQ%=Q.Q%. Let M €2 be Hamiltonian whose
eigenvalues have nonzero real part. Then there exigiy a unitary symplectm matrix

@ such that

Q€T can be written in the form Q=(

o (T R
Q MQ—(O _TH), | (3.1)

where 7', R€C»" and T’ is stable. |
The singular value decomposition theorem for 8 mnitary symplectic matrix

can be deseribed as
Theorem 3. 1. et @QEC** ba a wnitary symplectic matriw. Then there exist

two unitary matrices U and ¥V in C" such that
2 A
diag (U7, U%)Qdisg (¥, V)=( P ) (3.2)
where
S=diag(oy, Tg * On), 0<01<0s< - S0,
ﬁ'—diﬂg(ﬁl, 33, ot ﬁ) 6; £ 5 (1—"{]“2)1"{2 ’&=1 2 i
Applying Theorem 4.11 in [6] t0 a Hamiltonian matrix and mnsﬂermg the

properties of Hamiltonian matrioes, we can gat the followmg perturbation theorem

of a Hamiltonian mairix,
Theorem 3. 2. Let M, 3M cC>** bg Hamiltonian with the eigenvalues of M

hawing nonzero real pars. The unitary symplectic matriz §, nXn matrices T and R
are defined by (3. 1) Let QE3MQ be partitioned conformally with (3.1) in the form

(3.3)

R 3.4)
Q Q—-(Em —Ef;)' (8.4
Let ‘
7 & =sep(T’) — ("En""‘"E 1. | (8.5)
N Baul (JB] + | Eaal) '
= T . V-1

there is @ Hermitian matris P € TV satisfying
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|P]< 2"%’“”' ' 3.7)
such that 7 7
QH(M+5M)Q=(O _hTH), (3.8)
I. —P\/(I,+P? -2 2
whers Q=Q ( P I )( ( . ) (I.+ Pﬂ) ) o8 @ ungiary symplectic matriz.

| _. 1 W—
In Theorem 3.2, T = (1,4 P*)Z (P+ Byu+ (R+Ew)P) (I,.—E-Pﬂ)ﬁé. We have that
T is similar t0 T+ Ey+ (R+ E4.) P. Now we disouss that under what conditions 7 ig

stable.
Let X, € C"** be nonsingular such that

XX p=Jn, | (3.9)
where Jp i8 the Jordan canonical form, The orders of Jordan blocks in Jy are my,
Ma, *=*, My, Trespectively, Let

m=max{m,}. o . - (3.10)

1<é &

By Theorem 8 in [2] any AEA(T) there corresponds to a wEA(T) such that

(1+[f;, M”;m —+<#:(Xr) [ B+ (R+ BE1) P| 5.

" | { min | Rea,(T)|™
Byt (B Bip) Pla< s, it e (3.11)
then 1:;-;5;_:-;.
A—pl® B RekfE) |®
A TA=wD)™ ~ @+ i R (D)™
Because i is snrwtly increaging in 420, we have |A— 1o <min | Re (T |.

(14-2)™1
It is eagy to see that Re A<<0, ACA (D), i.e., T ig stable.
Now we consider the perturbed equatlon -

(A+8A)F (X +3X)+(X+3X)(A4+864)
" — (X +3X)Y(N+ON)(X+8X)+ (K +8K)
=0, | (3.12)
where (N +8W)E=N+3N=0, (K+3K)H=K+8K}:-0 By Theorem 3.2, we can
gel the perturbation theorem of the positive semi-definite solution of the algebraic

Riecati equation (1.1), :

Theorem 8.8. COonsider ths algebraic Riccati oQUATLON, (1 1) and the periurbed
equation (3.12). Assume that (A, B) is stabilizable and (C, A) is detectable. The
Hamiltonian matrio M, unitary symplectic matric @, nXn matrices T, R and Xp
are defined by (1.2), (3.1) and (3.9), a*&sp&ct-zwly o1 and m are deﬁa'wd by (3. 2),.
(3.3) and (3.10), respactively. Let !
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da= |84 s+max{|5N]s, |5K s} (3.13)

and
0 =seps(T) —24,. (3.14)
If _
] .1‘. SEP% (T) 0’1 B8P, (TL
Aaﬁmln{4 SBPECT); 4(“R”3+SEP2(T))T 2(l+ﬂ‘1) #
sops(T') fudn | Rak SR 21" |
#2(Xz) (4] Bla+50pa(T)) (T+min[ReadT) ™’ (8.15)
we have |
2/ 2 dg
5 3
¥ : o190pa(T)
In addition, if da< TCET A then
[XTa /102 o19epa(T) " (3.17)

dA oN
Proof. Let 6M =

SK  —(84)* ) Then the  defined by (3.4) satisfies

; +“(acir af)ﬂ,

z - oA 0
[ Byl s< |8 M| 2<< ( 0 ——(BA)H)

=[3A]a+max{[|5N|a [6K [s}=4s.
sepz(7') (| Ba+4s) 1 -
By (3.15) we have d,< 7y ] P (T))’ then 5 <7 Thus condition

(83.6) in Theorem 3.2 is satisfied. Then there is s Hermitian mairix PE'(C"K-

satisfying [[P]a< 2;1“ such that (3.8) is frue. By (8.15) we algo have

| By + (B+Ey) Pla<| Byls+ (| R|a+ | Esls) | Pla<dat (| B n—l-dé)%?-

=A SGPQ(T)‘I_QHRUQQA 25@132(21) +4“R 2
sepa( 1) — 24, sepa(1’)
1 min | Re A(T) |™

1<ian

se0( X 1) (1+m.111|RaJL,(T)|)’“"i’
Thus (3.11) is gatisfied. Then 7T is stable.

LetQ=( Qus Q“‘) md@g( Qn G

. The pogitive semi-definite solu-
QIH Qli Qiﬂ Qii ) pO :
tions of (1.1) and (3.12) are given by X = Q@5 and X +6X ==Q13Q11 , respectively.

i () (-qu) () e

X <
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T U1 T, . D

3X=QBQ11 —QiaQ11= 1HQKE QmQu —Q (Qm :L'L_"Q Qlﬂ)Q
'“Q:LH(QH(Q:I:L Qi) — —QE (Q15— Q1)) Qi = Q7 (QQ) . — Q1) Qi

H . Qlﬂ 1 __ 0 —4n Qli -1
(Qllr erﬂ) ( ) 11 _(IH!X+3X)(_I“ 0)(—'Qin) il

— Q4
: i 0 "_In Q{Li -1
((I: X)"'(O: SX))(—-I,, 0)(_'@;5) 11

(Sl

From (3.2) and (8.8), we have @=U diag(oy, -+, ¢,)V¥ and

and

16X |s=

<(VIH[X[E+ 86X |a) Q5 2. (3.18)

~U diag 31 . ﬁﬂ_)UH_

a

Then
1 V1—o3
w L B 1
||Q1 ”ﬂ"“' o1 and Hxhﬂ— & .

‘( Q%g )L < gy, then

12

Combining with (8.18), we obfain that if

ox_ 1 Mogl I
IIEI:%\/T:? B ( .;zl ) 5 (3.19)
o ” Qiz/ 12

'ﬂ

5 4
Now we estimate H( Qlt ) . Utilizing Theorem 3.2 we get
R 4 ¥
(%)
— Q12 /12

(S H Aot

cfo(F )@Y gyt

, q“((fn+1i’;)1§-fn)(1n+}n)‘%

A

Becanse P is Hermitian we have the decomposition P =UpApUZ, where Up is unitary
and Adp=diag(A:(P), =+ A(P))ER™™, BSubstituting P=UpdpU7 into the
inequality described above, we geot

(8L <l Pt
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r AN IFAKP) —1 "
s o uR
0 o 1+AZ(P)—1
= ~VI+aZ(P)
M(P) | 0 |
VI1I+A2(P) |
0 i }bn(P) /
| | SIFAE(P) e
STHAE(P)—1)? A(P)  \2TVe
‘Eif[(“¢m1+jn§(P)"' _ f(Jl-f-mggp)*) ]
- _H_ 1 5 I
E“E"\/z N 1+25(P) -\/2'\/1 ~I+[Pa
- - N2|Pls

From (3.15), we have dy<—2 50Da(7) . Then

JIit|PE +~IT P

(3.20)

2(1+03)
Q”) VZ|Pls 24
=< | P < 2 < 0y,
”( Qia/! -/1+IIPI|2 +~/1+[P[F 7] 5 s
Substituting (3.20) into (3.19), we get
oX |y 1 VZ|P|, _
1XT: “Vi=a oV 1+IPR +Vi+ [Pl —~ 2 [Pla
Combining with
| Pla<2Ls,
we gel (3.16) at once,
If
ﬂ'iﬂﬁpﬁ(T)
A - 2(2+ﬂ'1) 2
then
244 1
wps(T)—2ds 2"
Combining (3.19} with |
”( Qu) A
Q12 5
we have
[8X |4 1 g Lo gepa(T) <24,
< i i er -
1 Xls ~i1=ct, _ 24 _:1-—-.:-'}": | 24y
g ‘ . ﬂﬂpg(T)'—Qijg
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Thus (3.17) is true. J

By Theorem 3.8 we know that the perturbation property of the solufion of
the algebraic Riccati equation (1.1) ig closely related 10 oy and sepy,(7). Generally
speaking, when ¢ sepa(7") is relatively large, the solution of (1.1) is insensitive
to perturbations in the data. That coinsides with the conelusions in [8], [4] and
[7]. When o is near 1o one, 8.X ig relatively large with respect to X, and | X ||a is
near o zero. - |

§4. The Relation Between (A, B) and o1

Referring to the distance between a controllable system and an nncontrollable
one™, we introduce the following definition.

Definition4.1. Let ACC™ BEC™ with (A, B) sabilizable. Define the
distance between (A, B) and a nearest unstabilizable pair by

#w(4, B) =min| (34, 8B) |, (4.1)

dA3EB

where A C TP 3B C*™ sueh that (A+84, B+6B) is unstabilizable.
We can obtain an equivalent definition from the following theorem,
Theorem 4. 1. TLet (A, B) be stabilizable. Then

#(4, B)=min o,(sI,— 4, B), (4.2)

Reg =0
where o.(5I,— A, B) is the smallest singular value of (sI,—A, B),
Proof. Let P(s)=(sl,—A, B). That (4, B) is stabilizable ig equivalent to
that rank P(s) =n for any s€A(4) and Re >0, and to that rank P(s) =n for any

s&C and Re 0. 5 |
If A€ €™ and 8B &€ C**™ guch that (454, B+8B) ig unstabilizable, there

exigts an s€C which satisfies Res>0 guch that rank (8.~ (4+84), B+3B)<n,
i.e., ou.(sl,—(A+84), B+8B)=0. Observing that (sI,— (4A+84), B+8B) =(sI,+
A, B)+(—384, 8B), by the perturbation theorem of singular values we can get

|oa(slu— (4 +84), B-+8B)—o.(sI,— A, B)|<K|(—84, 8B)|a=] (54, 5B){s.
Thus | (34, 3B),>0.(sI,— A, B)=min ou(sI,— 4, B). Immediately we get

Resgz= ()
" u(4, B) >min o,(sI,~ 4, B). (4.8)
1) :
It can be assumed that min ¢,(s7,—4, B) iy attained at §€C, Re 5,0,

Re 320

Applyiﬁg the singular value decomposition theorem to (8oL, — A, 'B), wo have
(SOIH_-Ar_ B) =U(E: ODVH: 2=dj-3'g(ﬂ'1: O "% ﬂ-n).*s i

Set (—84, 8B) =U (32, 0)V*, where §%=diag(0,---, 0, —¢,). Then rank (soZs~+ (A
+084), B+0B)<n, i.e., (4434, B+3B) is unstabilizable. Observing that -
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(34, 3B) |a=H4(—84, 3B)|a=|U(Z, 0)VF|a=0ca(sols—4, B)
=min ¢ (sl,—A, B),

Res=0

we have
w(A B)<min o,(sI,— A4, B). (4.4)
Re 20

Combining (4.8) with (4.4), we get (4.2). 1

Now we come back to the discussion on algebraic Riccati equations. We know
that o, and seps(T) determine the perturbation property of the solution of (1.1).
The quantity of min|ReA,(T") | determines the quantity of sep.(7T). From the proof

1<icn

of Theorem 4.1 in [4], it is known that if (A4, B) is stabilizable, then ¢41>>0. Now
we demongstrate that when seps(T) is not very small, if (4, B) i very near 10 an
unstabilizale system, then ¢y is very small provided that | B|a is not very large.
Theorem &. 2. COonsider the algebraic Riccati equation. (1.1). Assume thai
(A, B) is stabilizable and (0, A) is detectable. The Hamilionian mairie M, unitary
symplectic matriz @, nxn mairices T, R and Xy are defined by (1.2), (3.1} and
(8.9), respectively. o1 and m are defined by (3.2), (3.8) and (8.10), respectively. Let

b=1Bla+E+y/ (1Bl+ 3 +1 (4.5)
If |
1 . 1 seps(T) gepa(T) _
p(4, BYSFmin{t, g sopa(T), grpttlil) s e A s
E}{EIRBK{(T) |Wl 48
'(1+EngRBM(T)l)““1}’ (#.6)
we have
G e—22 . ld B (4.7)
1 sepa{ T) ek ae e )

Proof. From the definition of (A4, B), there exist 54 £C"" and dBECM™
satisfying | (84, 8B)|a=u(A, B) such that (4-+-84, B-+3B) is unstabilizable. Let

i M_(aﬁ (8B)B"+B(5B)%+ (3B) (SB)H)
0 — (BA)E '
Then the Hy defined by (3.4) satisfies |
| Hylla<<|OM | o< ||0A[ 2+ (2] B2+ |6B]2) | 3B 2= ds.
By (4.8) we have
fam [8A]s+ (2] Blat |5B1s) [5B]s< (1-+- 2| Bla+ 18B]s) -max{|5 Al [5BIs}

<(+2|Blatp(4, B))u(4, BY<(1+2|Bls+3 )u(4, B)<bu(4, B)

sep3(T")
4([ R a+seps(T)) °

In a manner similar 1o ‘'the proof of Theorem 3.8, we know that there ig a
Hermitian mairix P C*** gatisfying

<
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24
Plla< -

such that (3.8) is true. It can also be proved that 7 is stable.

Lot
(o o) =( 32

We can prove that @y, is singular., In fact, if Q4 is nonsingular, it follows from
(3.8) that (A4+34)— (B+8B) (B+8B)2Q:.0i =@ Tql. Thus (4+84, B+58B) is
stabilizable. That contradiets the selection of 54 and 8.8. So we have

; Q:LI"_'Q:H ’
™ e W s <[1@u—Quslla < “( ~ (Q1a— Q13) )’Iﬂ'
From the proof of Theorem 3.8 and (4.6), we get
Qu 24, 2bu(4, B) 4}
0‘1'<H(_Q;=) . < |Pla< seps(7) — 24, “El . ~ seps(T) p(4, B).

2
Thus (4.%7) i8 valid.

§ 5. Concluding Remarks

In summary, the sensitivity of the positive semi-definite solution of the
algebraio Riccati equation (1. 1) to perturbations in data is determined by o4 and
sepa(T'). When o4 seps(T) ig relatively large, the solution of (1.1) ig insensitive to
perturbations in data. That seps(7) is relatively large is equivalent to that

E.El]Re M(T) | is relatively large, i.e., the distance between the spectrum of the

matrix 7' (or M) and the imaginary axis is relatively large. When sep.(7') is not
very small, if (4, B)is very near to an unstabilizable system, then ¢ is very small

provided that | B||s is not vary large.
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