Vol. 3 No. 1 JOURNAL OF COMPUTATIONAL MATHEMATICS January 1985

SOLUTION OF THE TWO-DIMENSIONAL
STEFAN PROBLEM BY THE
SINGULARITY-SEPARATING METHOD™

Xv QuaN—sHENG (£&44)
(Haerbin University of Science and Technology, Haerbm, China)

Zuu You-1AN (ki)
(Computing Center, dcademia Sinica, Beijing, China)

Abstract

Tn this paper the idea of “singularity-separating” presented in [10] is used to solve a two—
dimensional phaseschange problem. A difforence scheme with second-order accuracy eveTywhere,
including the ‘region near the boundary between two phases, is constructed for the above problem.
Through the computation it is shown that the singularity—separating method, whose accuracy is high,
is efficient for two—-dimensional phase—change problem.

1. Introduction |

The Stefan problem, a moving boundary problem for parabolie partial differential
equations, is an important subject studied by many scholars for years. It is often
met with in engineerings and geophysics. For the multi-dimensional Stefan problem
the analytic solution cannot be found except for only a few special cases, and
therefore people devote themseft to finding its numerical solution. At pregent the
difference methods and the finite element methods are the main methods for this
problem™-?, Begides, there is 2 method in which the original equation is transformed
0 2 new equation by using the internal energy function, and then the difference
equations are obtained from the new equation.In the Stefan problem the boundaries
among the media with different phases move with time ¢, and so are called moving
boundaries. On the moving boundaries the solutions are weakly discontinuous and
there exist exothermic processes or endothermic processes. Such a singularity maked
it very difficult to find a numerical method with high accuracy for this problem.

We have presented a new numerical method, the singularity-separaling method
for the Stefan problem a heat conduction problem with phase change. Its main
idea goes as follows: First a curvilinear coordinate transformation is used to turn
the moving phase—change boundaries into fixed boundaries of straight lines under
the new coordinates. Thus the whole region in the new coordinates ig divided into
soveral rectangular subregions by the phase-change boundaries. Then in the
subregions a stable difference scheme is constructed for the heat conduction equation

* Recoived Decsmber 17, 1983.
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A,

under the new coordinates. Since difference equations are constructed in each
subregion, there is no difference across discontinuities in the difference equations.
Finally a simultaneous system composed of the difference equations in these
subregions and the Stefan condition can be solved in order to obtain the solution.

The problem in one dimemnsion has been discussed in [6]. Here we study the
case in two dimensions.

II. Mathematical Formulation of the Problem

The problem with phase change is studied in the region D={(z, ) |[0<z< X,
0<y<H}. The solid phase region is denoted .
as £2,(#) and the liquid phase region ag ‘
Q,(t). Suppose that there iz only one
phase—change boundary, which is denoted

£2,(8) liquid
as I'(t) (see Fig. 1). .
According to the heat conservation ray

law, the heat conduction problems in two

H

04(¢)  -solid
dimensions in the solid region and the |
liguid region ca®t be respeciively described 0 £ X _-
uging the following formulae Fig. 1
ou O [, oul|, © ou
= — | | by —— X, 0 : :

ow 0, oull, © [, Ou
T —— e e— AR bl — T H '2
0s Gt =2 ko gt |+ 3y], 0<z<X, fla, ) <y<H, t>0.  (2.2)

Here C;—=C;(u), =1, 2, stand for the specific thermal capacities(that ig, the quantity
of heat which per Volume- of substance needs for its temperature to increase by 1°C);
b=k (w), i=1, 2, for the coefficients of heat conduction. The subscripts 1 and 2
stand for the solid region and the liquid region respectively.

Suppose that the equation of the phase—change boundary I'(¢) is y=f(2, ). On
the surface y=f (¢, t), the connective condition can be written as

u~(z, flz, 1), D =u' (s, fz, 1), ) =uy (2.3)

Ge-(o i)
o T dt 1en Bn ko en /e

Here u~ and u* respectively represent the values of ¥ on the lower side and on the
‘ upper side of y=F (2, t), n# stands for the unit
normal, d¢, for the variation of distance along
nn (see Fig. 2), A for the latent heat of phase—
change and u; for the phase-change temperature.

Formula (2.4) is called the Stefan
condition, and can also be written as

wa‘ out O
AL~ ks Ey -4

_kg

and

(2.4)

y=f(z, t-+di)

upper side
y=5(z, 1)

lower side

z _ L
Fig. 2 The normal direction and g, ( ’

), on y=f(z, %),
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- ou* ou*
Because on y=f (=, 1), - - and 2y satisfy the relation
= - '

ox ov oy’
formula (2.5) can also be written as

B o (2] 2 ) _
L =[1+(L (s g on y=f(, t), (2.7)
or .
o [ 1 /9 ( ou” 3'”') sy
i [3:1: 11 a{G] by T — by S on y=£(z, &). (2.8)
On =0, y=0 and y=H the boundary conditions of the first type are given:
HCOJ Y, t) =¢D(y: #): | 0{y<HJ t}o; (2'9)
u(z, 0, 1) =ga(a, £), 0<z<X, t>0; (2.10)
ule, H, H)=¢s(z, t), 0<aX, 120, (2.11)
On z= X the boundary condition of the second type is given:
—g%=0, O<y<H, t>0. (2.12)
And on the regim; D the initial value
u(z, ¥y, 0) ='~£’(m: Y), O<z< X, Ogygﬂ (2-13)

is gpecified. In the following section we shall solve the problem (2.1)—(2.4) and
(2.9)—(2.18). |

IIl. Solution of the Problem

For the convenisnce of numerical computation the following system of curvilinear
coordinates {z, z, t} is used to transform the moving boundary into a fixed coordinate
suriace:

=1,
Y 0<y<f(& .t
- f(m; t) ] y f( s ).l (3‘1)
| y=f(=, ) |
H_f(m_, t) ' 1} .f(m: t) {:y{H!
=1,
Let .
u(z, ¥, 1) =0(z, 2, 1), (3.2)
; . ou ou Ov OV _.
(learly, the following relations among 2 oy P’ B2 emsb
du v , Ov Oz |
or Oz oz ov’ | har
ou Ov Oz
Py o oy’ i)

Pt ot oz o’
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o ou 0 ov , ov Oz 311 oz
E( oz _E[k oz &z Ox [k( oz ]’ B4)
@fv oz
w(t o) (kaz o) o 1
Moreover, we have
8. peacl
[Hpg 4 O (3.8)
oz | z—2 of |
=7 B 1{?{:2’
Fl, 0<z<1,
-g_;-.=4f1 o B (3.9)
L H e
z of
,  0<z<1,
%_: fzataf L
Z—.u_
T—F ot 122,

According to thesa relations, from equations (2.1) and (2.2) we can derive the
following heat conduction equationg in the new coordinate gystem:

0, oV _ c, oz 3w+az 0 [kl(am . 0% 3@)]+i[k1(3¢1 I .33 311)]

ot ot oz O 07 35'3{,;_ oz B = 5
g; i( g; gw) <o X, 0<2<], >0 (3.11)

onfy--o e bl Lln(r 2 )+ Hln(Er 5 3]
' 3y &(k g; gﬁ)’ 0<z< X, 1<2<2, £>0, (3.12)

And from (2.8) and (2.7) we can derive the following connective conditions in the
new coordinate system:

v (z, 1, =2 (, 1, t) =y, O0<z<X, t>0, (3.183)

_g fi“(ki v~ ks 31:*)
[1+(8m | P Her ) 0<a<X, >0 (3.14)
When the above coordinate transformation is msed, the boundary conditions (2.10)
and (2.11) do not change, but (2.9) should be rewritten as

)={¢’u(ﬂf(0, By tlyiv = 0<2<1, >0,
b (f (0, )4+ (=1 (H~—F(0, ), t), 1l<z<2, t>0,

Because the problem in section II can be considered as a two-dimensional heat
conduction problem with phase change which has symmetry about s=X, (2.12) ig
equivalent to the following relations:

w(ﬁ, z, ¢ (3.15)

-3”(‘:53;; Bt L0, 0<z<2, >0, (3.16)
- BCE,
2 >0, (3.1

-The initial yalue condition (2.13) should be rewritten in the following form
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b (@, 2f (@, 0)), D<o< X, 0<2<],
bz, flz, 0+ @@—1)(H—f(, 0))), 0<aX, 1<2<2,

Therefore solving the problem described in section II is equivalent to obtaining
v(z, 2, t) and f(w, t) which satisfy the relations (8.11)—(3.18), (2.10) and (2.11).

In what follows, we shall give difference schemes for (3.11), (3 12), (8.14),
(8.16) and (3.17).

Suppose that the specific thermal capacity and the coefficient of heat conduction
aro constants in () or £,(¢). (If they are not constants, only slight revision on
the difference scheme is needed.) To treat the boundary condition of the second type
on z=X, the following method is used: The lines of mesh are =0, 4o, -, M4z,
(M+1)4de;2=0, A, +-+, Ldz, (L+1)4z, ---, 2 L4z. Here, Az=%-; do=2X/(2M+1)
(that is X = (M +%) A ) M and L ave positive integers. For subscripts and super-

v(z, 2, 0) -—*{ (8.18)

scripts, the following notation is used:
Fy=F (ido, jdz, ndt), G}=G{(idw, ndl).

Here, F stands for a function of #, 2, f and G for & function of @, t. The following
formula is used to approximate (8.11) and (3.12)

n-+

Yy,
O' L}

1 1
s, SO, ) )"Hm Vige1— Vg1t Vhge1 — Vig-1
2t 2t )., il |

%
g (Vi — 20077 0y o, — 200 vi-1,9)

aﬁ nt+l/3
. (“@")
B Siq1yd (,uu+1

—+ 2 iz $+1, 441 VR jm1 Vi1, 41 — Vi1, ~1)
nt+l/3
k (% i—1,4 n+l nd1 n ]
i Bﬂmﬂﬁ 2 (QJ‘_L,_,_:[ — 1?4_1_1.;.1 - 1?4_1,;’-1-1 — fui----il...j—-l)
Oz \ntl1/2
K (_é}?:l-ﬁ_ i n+1 n+1 n+1 ntl
+ Rz ﬂ; (Ve g1 — Vi1 41— Vst 5-1 T Vi1 01

+ Vfe, 01— Vi, 441 — Vign,y-1+ Vg jo1)

k
1

( By \n+1/2
=) n+1/2
ox /i, [(ﬁ_) n+1 Pl — v )

Vi, 5+1— Uy,
2422 OF /3:341/2 hit 4

32‘ HERIA =+1 n-1 " ]

n

_(_3{13 i i—1/2 ('”i..i _ﬂi..f—i"“whi_q’l,i—l} ]
21—

k ( Sz \nt1/2
3_3}- » ﬁ nt+l/2 .
L [ Ay /us41s3 (W51

3,2 n+1/8 £ £1
1 " b
-_(-5? .4-1/2 (0% h”‘d—l"‘“i.s—”hf"i)]’

§=1,2, -, M; §-L"'=1,2, -, L—1, (3.19)
(3.19) stands for the approximate formula to (8.11) if C=0,, k=Fk, L'=0 or t0

= '”Hi + 05441 — ‘L‘:J}
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(3.12) if O=04, k=ky, L*=1L
Hquation (3.14) can be approximated by the following formula

() -HIEL T Sicignsas
ot /i A Ox /¢

nFl 24z
il 4 n+l n+1l
= Hfic:wr L8 ;ﬁ; Sl l4: ): (3.20)
and (3.16) and (3.17) by the formulas
oW =], §=0, 1, -, 2L; (3.21)
fihi=ra, (3.22)

It is easily known that if o}, f*V/2, fuil2 f2412 gpe oiven, oft! can be determined
by (2.10), (2.11), (3.13), (8.15), (3.19) and (3.21). Furthermore if fr*! fol
are also known, fit' can also be determined by (8.20). It is well known that if
PRI FRRVR FitR f and fiX! possess the accuracy O (da®+ 422+ 4t , the above
scheme has a second order accuracy. When f7 and f7tY2 are known, f**! can be

determined by

Jerl=fit+defpi'?, i=1,2, -, M, (8.23)
f5tt by (2.9) and 4 by (3.22). And 727 can be determined by
g +1 .. Akl
ﬁ;j1___ ¢+12£]%’ -;_.',=11 2’ re, M_ (3.24)

(In many cases because f vo- might be obtained from (2.9), fi%! can also be determined
by (3.20).) Therefore if v7;, f7, fi*¥2, foxl? and f712 are given, o731, i+l o4l gand
J2t* with second—order accuracy can also be obtained. But usually only «%,, f7, f2.
and f7, are known. For this reason f;+/2 futl/2 4172 mpgt he determined first

s

from 2%, f¢, fa.«, fi. Therefore we change the superscripts n+1 in all the above

formulae info n-+ 4. change #-= into n and keep n unchanged. Then ¢}t1/2 fr+1/z

2’ 2
si 5 fei'® can be determined by »},, f2, fu., f., and the errors are O(de® + dz2+
4t%). It i3 seen that by adding an auxiliary level the results with second—order

accuracy can be obtained.

If (83.19) is regarded as a three-level formula in which the step is 1 4t, the

2
results with the same accuracy can also be obtained without adding the auxiliary

level,but the values on the two levels must be reserved in the process of computation.
And at the very beginning of the computation the initial values on the two time
levels must be known. However, the amounts of computation of the above two
methods are equal.

IV. Computed Results

A concrete example is computed by using the above method. The problem is as
follows:

The computational region is a rectangular region, where some water is freezing
gradually. The thermal éﬂpﬂcities and the coefficients of heat passage for ice and
water are ;=500 Cal./M®-°C, O3=730 (Cal./M3-°C; %;=3.38 Oal./M:h-°C, }k,=
1.85 Cal./M+h-°C respectively; the freezing temperature wu,=0°C and the latent
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heat of phase—change is A=234000 Cal./M". The initial value conditions are

#(w, 0) =0.011g(1+50000s), 0<wo<2, (4.1)
(mz"_éfm) (:f(ﬂ?, D) "y) /f (ﬂ{, 0): D-Qy%f(m, 0): DQmQQ’
u(w, y, 0) = | . (4.2)
0, flz, O)<y<H, 0<o<2,
Here, H is a positive number which ig large enough. The boundary conditions are
w(0, y, £) =0, O<y<H, >0, . - (4.3)
2 Y, ) —0, 0<y<H, t>0, (4.4)
| .. ff mE
s o 4,
w(a, 0, ) = (& —do) [1+sin (F-) ], 0<e<2, £>0, (4.5)
ul(w, H, 1) =0, 0<a<2, t>0, - (4.6)

The problem is to find how the water freezes.
Under the coordinate system (, 2, ¢), (4.2)—(4.6) can be written as

P —4g) (1—z), 0<z<], 0<o<2,
‘W({UJ 2, 0) ={( )( 5) 2 <Z (4.7)

0, 122, O,
g v(0, 2, ) =0, 0<2<2, t>0, | (4.8)

ov , O Ov _
ox Ow Oz {ﬂ.s.t}nﬁ’ Deasa, 220, 4.8
o, . 027

v(e, 0, 1) = (o —4a) |1+ sm(4380 |, o<a<e, t>0, (4.10)
o(w, 2, 1) =0, 0<w&<2, 1>0, (4.11)

Under the above conditions the temperature in the Tegion Q.(t) is always 0°C;
therefore the only thing we must do is to treat the region Q:(t).

This problem is computed on an 013-Computer in the Qomputing CUenter,
Academin Sinica, by using the following four different groups of steps:

(1) Am=-—%-m, Az=-—11[T, At =2h,
(2) dm=—;fm, / -—--;—, 4t =2h,
(3) Am==-§4-1—mJ Az———-l%-, Ji=4h,
(4).Am=-—24—1~m, Aas-%—, At =4h,

I+ ig cloar that the result for the first group of steps is the most accurate. The
phase-change boundary obtained by using the first group of steps is given in Table
1 and Fig. 3. -

The comparison between the result in the first case and those in the other three
cases is algo given in Tables 2 and 3. It is known from Table 2 that for {<100 days

the difference between the results in the case Az=~=% and in the case dz= -;—Ois Very

small. With the increase of f, the difference raises, but i8 gtill not large. For
example, the errors at =1100 days in these cages are only about 0.07, that is, the
fractional errors are about 2%. The OPU times on 018-Computer in these cases are
given in Table 4. It is known from the table that if the daia corresponding to the
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No. 1

e e

first 100 days (even 300 days) only are needed, adopting the second group of steps

4 1
(do=57, &=3,
and expend a little CPU time. _

At =100 days the distributions of the temperature in the £,(¥) are given in
Table 5, Figs. 4, 5 and 6. The temperature in 0;(¢) remains 0°C. These results are
obtained by using the sfeps dm=-24—-l,dﬂ=—21I,
ratores are 0°C, —1°C, —2°C, —8°C, —4°C, —5°C, —6°C and —7°C are drawn in
Fig. 4. Fig. b gives the variation of temperature » (@, 2, {) with variable  at =100
days on the lines =0, 0.2, 0.4, 0.6, 0.8. Fig. 6 shows the variation of temperature
v(@, 2, t) with variable z at t=100 days on o=jdz (§=2, 4, 6, 8, 10).

The numerical result of the above problem shows that the singularity—separating
method is very efficient for solution of two dimensional Stefan problems. This
method can save the OPU time because the fairly accurate solution can be obtained
by using a coarse space mesh and quite a large time gtep. Therefore the singularity—

separating method is & satisfactory numerical method for the Stefan problem.

At=2) is reasonable gince we shall obiain quite accurate results

At =2, Kight isotherms whose tempe-

Table 1 The variation of the phase-change boundary (unit: m)
P gt —

' Z
{{days) Az 24 i 3z 4 Az 54z 61 Tz 84z l 9% 104z

f
0 0.0398 | 0.0428 | 0.0446 | 0.0458 | 0.0468 | 0.0476 { 0.0482 | 0.0488 | 0.0493 | 0.0498
10 0.2107 | 0.2758 | 0.8217 | 0.3574 | 0.3848 [ 0,4062 | 0.4225 | 0.4342 | 0.4419 | 0.4460
20 0.3238 | 0.4111 | 0.4735 | 0.5227 | 0.5610 | 0.5908 | 0.6135 | 0.6300 | 0.6409 | 0.6467
30 0.4282 | 0.5299 | 0.6030 | 0.6616 | 0.7073 | 0.7431 | 0.7704 | 0.7903 | 0.8035 | 0.8107
40 0.5285 | 0.6406 | 0.7212 | 0.7869 | 0.8381 | 0.8784 | 0.9093 | 0.9318 | 0.9467 | 0.9550
50 0.6253 | 0.7455 | 0.8317 | 0.9030 | 0.9582 | 1.0022 | 1.0357 | 1.0603 | 1.0766 | 1.0857
100 1.0474 | 1.1905 | 1.2906 | 1.3776 | 1.4433 | 1.4972 | 1.5380 | 1.5682 | 1.5884 | 1.5998
200 1.4927 | 1.6506 | 1.7577 | 1.8547 { 1.9249 | 1.9852 | 2.0295 | 2.0631 | 2.0852 | 2.0978
300 1.5442 | 1.7038 | 1.8116 | 1.9098 | 1.9804 | 2.0415 | 2.0862 | 2.1201 | 2.1424 | 2.1551
400 1.7056 | 1.8676 | 1.9750 | 2.0756 | 2.1462 | 2.2085 | 2.2533 | 2.2877 | 2.3102 | 2.3230
500 2.0393 | 2.2071 | 2.8172 | 2.4204 | 2.4912 | 2.5564 | 2.6014 | 2.6373 | 2.6602 | 2.6734
600 2.1021 | 2.2620 | 2.4741 { 2.5791 | 2.6501 | 2.7168 | 2.7620 | 2.7987 | 2.8219 | 2.8352
700 2.2004 | 2.8808 | 2.4015 | 2.5965 | 2.6676 | 2.7343 | 2.7795 | 2.8162 | 2.8304 | 2.8527
800 2.3650 | 2.5370 | 2.6480 | 2.7535 | 2.8239 | 2.8913 | 2.9361 | 2.9732 | 2.9963 | 8.0097
800 2.5650 | 2.7304 | 2.8512 | 2.9578 | 3.0281 | 5.0966 | 3.1411 | 3.1790 | 3.2021 | 3.2157
1000 2.6205 | 2.7961 | 2.9083 | 3.0156 | 3.0860 | 3.1550 | 3.1995 | 3.2378 | 3.2608 | 3.2746
1100 2.6511 | 2.8264 | 2.9384 | 8.0455 | 3.1156 | 3.1846 | 3.2288 | 3.2672 | 3.2902 | 3.3039
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Table 2 The diiference among the locations of the phase-change
boundary obtained by using different steps

t (days)
steps 10 50 100 | 30 | 500 1100
difference{m)
ey —9h 0
da= 21 , de= 10 , At 0 0 () 0 0
dz=-9—1- Ag== 5 Jt=2h 0.0003 0.0027 0.0073 0.0_162 0.0288 0.0475
s ﬁ ,.;15=_11_0_ M—=dk | 0.0071 0.0137 0.0145 0.0131 0.0118 0.0119
dm-—ﬁ,ﬂs_— , At=4h 0.0071 0.0145 0.0177 0.,0279 0.0461 0.0644
.._._-_—_m_

Table 8 The difference among the temperature fields obtained by uslng different steps

t {(days)
steps 10 30 100 | 300 | 500 1100
differenee (°0)
-[51- _fg

. 8 0 0 0

do—m -, fa 10‘ At=fon | 0 0 0

ﬂr-:%, S % At—=2h | 0.00003 0.00135 0.00362 000084 0.01448 0.02116
1:.-;,=.ﬁ ﬁlz—ﬁ At—an | 0.00190 0.01097 0.01469 0. 00068 0.00650 0.00406
.d.rmél_ dg=€ At=4h | 0.00185 0.02032 0.01048 0.00045 0.00922 0.01710

Tabla 4 The CPU times in difterent cases

: ﬂxﬁim
t 1ma EtEPE 27

1 1 e "

i do= domurs ez

{ (days) At=2h At=2h At=4h dt=4h

10 1m. 38s 17s 39s 78
1100 Zh. 50m 31m. 258 1k. 11m. 15s 12m. 20s
Table 5 The distrlbution of temperature in £2;{¢) at ¢=100 days
Z
g 0 | 4z | 240 | 34p | ddw | Bdw | 64z | T4 | 84z | 94z | 104w
T}
G 0 | -1.44} —2.74} —3.901 —4.91| —5.77 | —6.49 | —-7.07 | —7.50 | —7.79 | —7.94
Az 0 125 —2.38| —3.37| —4.24 | —4.98 | -5.60| —6.09| —6.46 1 —6.71| —6.83
2z 0 | —1.00| —2.06! —2.90| —3.68| —-4.26 | —4.78| -5.18 | —5.51 | —5.72 | —5.82
342 0 | —-0.95| -1.97| —2.47| —8.08| —8.60 ) —4.03}| —4.38| —4.63 | ~4.81 | —4.89
4/ 0 | —0o82| -1.50| —=2.08| —2.58] —2.99 1 —3.34| —3.62 | —8.82 | —3.97 | —4.04
54z 0 0.0 -1.295 | —1711 -2.16| —2.43 | —2.70 | —2.921 ~-3.08 | —=3.19 | —3.85
642 0 9058 —-1.01! —1.361 —1.65| —1.90| —-2.10| —2.26 | —2.89 | —2.47 | —2.51
722 0 —0.46 | —0.77 1 =101 ] —1.22} —1.3¢ | ~1.54| —1.65| ~1.74 | —1.79 | —1.83
8 Az 0 ~0.383}—-052| —0.68 | —0.80} —0.91 ) —1.00| —1.071 —1.13 | —1.16 | —1.18
042 0 —0.18| —0.27 | —0.3¢| —0.40 | —-0.45 | —0.40} —0.52| —-0.55 | —0.57 | —0.58
1042 0 0 0 0 0 0 0 0 0 0 0

I I [ ] .
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1100 days

MO days

K} days

100 doyk

50 days

Fig. 3 The variation of phase—change boundary

Fig. 4 The isotherms in £4(#) at =100 days

1
0 0B 1
2 —-2f
1 2 _

z=0.8 Q ',
z2=0.6 ‘4l ,

g —4 E 2—0-4 .r'r,( H::'E&'
3-0.2 | I“-‘ﬂlﬂdﬁ

~GkF
it z2=Q
i

Fig. 8 The variation of the temperature with
the variabla ¢ at =100 days

~B

Fig. 6 The variation of the temperature with
the variable 2z at =100 days
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