CARDINALITIES OF RESTRICTED RANGES*

SHI YING-GUANG (史应光)

(Computing Center, Academia Sinica, Beijing, China)

I

Abstract

Let l and u be upper and lower semicontinuous extended functions on [a, b], respectively, with $l \le u$. Let H be an n-dimensional Haar subspace and $K = \{p \in H : l \le p \le u\}$. This paper gives complete characterizations of K satisfying

 $\operatorname{card} K = 0 \text{ or } 1 \text{ or } \infty$

under certain assumptions, where card K denotes the cardinality of K.

1. Introduction

In approximation by polynomials having restricted ranges⁽¹⁾ and in simultaneous approximation⁽²⁾ the following problem may be proposed:

Let l and u be upper and lower semicontinuous functions on $X \equiv [a, b]$ (which may take $-\infty$ and $+\infty$, but $l < +\infty$ and $u > -\infty$), respectively, with $l \le u$. Let H be an n-dimensional subspace of C(X) and $K = \{p \in H : l \le p \le u\}$. Characterize K such that

$$\operatorname{card} K = 0 \text{ or } 1 \text{ or } \infty$$
,

where card K denotes the cardinality of K.

In this paper we give an answer to this problem for H being a Haar subspace. In detail, we give complete characterizations of K satisfying card K=0 or 1 or ∞ under certain as sumptions.

To begin with let us introduce the following notation.

For $p \in H$ denote

$$X_{p}^{i} = \{x \in X : p(x) \leq l(x)\},\ X_{p}^{u} = \{x \in X : p(x) \geq u(x)\},\ X_{p} = X_{p}^{l} \cup X_{p}^{u},\ \sigma(x) = \{ \begin{array}{c} 1, \ x \in X_{p}^{l} \\ -1, \ x \in X_{p}^{u}. \end{array}$$

By definition if p(x) = l(x) = u(x), $\sigma(x)$ may take both 1 and -1.

A system of n+1 ordered points

$$x_1 < x_2 < \cdots < x_{n+1} \tag{1}$$

in X_p is said to be an alternation system of p (with respect to (l, u)) if it satisfies

$$\sigma(x_{i+1}) = -\sigma(x_i), \quad i=1, \dots, n.$$

It should be pointed out that the restrictions on I and u being upper and lower

^{*} Received January 20, 1983.

semicontinuous are trivial, because for any l and u we can assume

$$\bar{l}(x) = \limsup_{y \to x} l(y), \quad \bar{u}(x) = \liminf_{y \to x} u(y)$$

instead, which are upper and lower semicontinuous, respectively^[5], and satisfy that card $K = \operatorname{card} \{ p \in H : \bar{l} \leq p \leq \bar{u} \}$,

To verify the last equality we note that, on the one hand, from $l \le \bar{l} \le \bar{u} \le u$ card $K \ge \operatorname{card} \{p \in H : \bar{l} \le p \le \bar{u}\}$ follows, and on the other hand, $l \le p \le u$ implies

$$\limsup_{y\to x} l(y) \leqslant \limsup_{y\to x} p(y) = \liminf_{y\to x} p(y) \leqslant \liminf_{y\to x} u(y),$$

namely, $l(x) \le p(x) \le \bar{u}(x)$, from which card $K \le \operatorname{card} \{p \in H : \bar{l} \le p \le \bar{u}\}$ follows.

2. Main Theorems

Theorem 1. Let l < u and let H be an n-dimensional Haar subspace. Then for $p \in K$ the following statements are equivalent each to other:

- (a) $K = \{p\}$, i.e., card K = 1;
- (b) $\max_{x \in X_p} \sigma(x) q(x) \ge 0$, $\forall q \in H$;
- (c) $\max_{x \in X_p} \sigma(x)q(x) > 0$, $\forall q \in H \setminus \{0\}$;
- (d) $0 \in \mathcal{H}\{\sigma(x) \, \hat{x} : x \in X_g\}$, where \mathcal{H} denotes the convex hull [4, p. 17] and $\hat{x} = (\emptyset_1(x), \dots, \emptyset_n(x))$ with $\emptyset_1, \dots, \emptyset_n$ being a basis in H;
 - (e) p possesses an alternation system with respect to (l, u).

Proof. (a) \Rightarrow (b). Suppose not and let q satisfy $\max_{x \in X_p} \sigma(x) q(x) < 0$, i. e., $\sigma(x)q(x) < 0$, $\forall x \in X_p$. We are to prove that $r_t = p - tq$ satisfies $l < r_t < u$ for some t > 0. Hence from $r_t \neq p$ a contradiction occurs.

Let
$$h = \frac{1}{2} \min_{x \in X} \{u(x) - l(x)\}(>0)$$
 and $e = \max_{x \in X} |q(x)|$. Denote
$$Y_1 = \{x \in X : p(x) - l(x) > h \text{ and } q(x) > 0\},$$
$$Y_2 = \{x \in X : u(x) - p(x) > h \text{ and } q(x) < 0\},$$
$$Y = X \setminus (Y_1 \cup Y_2).$$

Taking $t_1=h/e$, we have that for $x \in Y_1$ and $0 < t \le t_1$

$$r_t(x) = p(x) - tq(x) > l(x) + h - t_1 e = l(x)$$

 $r_t(x) = p(x) - tq(x) \le u(x) - tq(x) \le u(x)$,

and

that is,

$$l(x) < r_t(x) < u(x). \tag{3}$$

Similarly, (3) holds for $x \in Y_2$ and $0 < t \le t_1$.

On the other hand, it is easy to see that $X_p \subset Y_1 \cup Y_2$ and, hence,

$$l(x) < p(x) < u(x), \forall x \in Y.$$

Since Y is compact, we can find a number $t_2>0$ so that (3) is also valid for all $x\in Y$ and $0< t \le t_2$.

Thus $l < r_t < u$ is valid for $t = \min\{t_1, t_2\}$.

(b)⇒(d). (b) implies that the linear inequalities

Che to the second secon

$$\max_{x \in X_p} \sigma(x) q(x) < 0$$

or

$$\sigma(x)q(x)<0, \quad x\in X_{\mathfrak{p}} \tag{4}$$

is inconsistent in H. (4) may be rewritten as

$$\langle c, \sigma(x)\hat{x}\rangle < 0, \quad x \in X_p,$$

where $q(x) = \sum_{i=1}^{n} c_i \emptyset_i(x)$ and $c = (c_1, \dots, c_n)$. Noting that X_p is compact, by Theorem on Linear Inequalities [4, p. 19] $0 \in \mathcal{H}\{\sigma(x)\hat{x}: x \in X_p\}$

(d)⇒(e). This is a standard statement and, for example, it may be found in [4, p. 75].

(e) \Rightarrow (c). Suppose on the contrary that $\max_{x \in X_p} \sigma(x) q(x) \leq 0$ or

$$\sigma(x)q(x) \leq 0, \quad \forall x \in X_p$$
 (5)

for some $q \in H \setminus \{0\}$. Let p have an alternation system (1) with respect to (l, u). From (2) and (5) it follows that

$$(-1)^{i}\sigma(x_{1})q(x_{i}) \ge 0$$
, $i=1, 2, \dots, n+1$.

Then q=0 [3, Lemma 3], a contradiction.

(c) \Rightarrow (a). If possible, let $r \in K \setminus \{p\}$. From $l \leqslant r \leqslant u$ it follows that

$$p(x)-r(x) \leq l(x)-r(x) \leq 0$$
, $\forall x \in X_p^l$

$$p(x)-r(x)\geqslant u(x)-r(x)\geqslant 0$$
, $\forall x\in X_{p_{\bullet}}^{u}$

This means that

$$\sigma(x)(p(x)-r(x)) \leq 0, \quad \forall x \in X_{\mathfrak{p}}$$

$$\max_{x \in X_{\mathfrak{p}}} \sigma(x)(p(x)-r(x)) \leq 0.$$

or

But $q=p-r\neq 0$ and this is a contradiction.

The proof of the theorem is completed.

Remark 1. If $p \in K$ does not have an alternation system, by Theorem 1 we may conclude that $\max_{x \in X_t} \sigma(x) q(x) < 0$ will be valid for some $q \in H$. According to the proof of $(a) \Rightarrow (b)$ the function $r_t = p - tq$ will satisfy $l < r_t < u$ for some number t > 0. Whence $l+s \le r_t \le u-s$ will hold for some number s > 0.

Remark 2. The assumption of l < u could not be deleted. It may be supported by the following.

Example 1. Let X = [-1, 1], $l = -x^2$, $u = x^2$ and $H = \text{span}\{1, x\}$. Clearly $K = \{0\}$ but the function 0 does not have an alternation system.

We turn now to characterizing K for which card K=0. To the end we establish next a preliminary result.

Lemma. Let l and u be bounded with $l \le u$ and H be an n-dimensional Haar subspace. If $K = \emptyset$, then there exists a number d > 0 such that

$$\operatorname{card} K_t = egin{cases} 0, & t < d, \ 1, & t = d, \ \infty, & t > d, \end{cases}$$

where $K_t = \{ p \in H : l - t \leq p \leq u + t \}$.

It is easy to see that $K_t \neq \emptyset$ for t large enough. Set $d=\inf\{t\geq 0: K_t\neq\emptyset\}.$

We claim first that $K_d \neq \emptyset$. In fact, let $p_m \in K_{d+1/m}$, $m=1, 2, \cdots$. Clearly $\{p_m\}$ is bounded and possesses a convergent subsequence. Suppose without loss of generality that $p_m \rightrightarrows p$, $m \to \infty$. We now show that $p \in K_d$. If not, we can find a point xsuch that, say, p(x)>u(x)+d. Thus $p_m(x)>u(x)+d+1/m$ is true for m large enough, and hence $p_m \in K_{d+1/m}$. This contradiction proves $p \in K_d$ and $K_d \neq \emptyset$.

Now $K_a \neq \emptyset$ implies that d>0. p must possess an alternation system with respect to (l-d, u+d), because, otherwise, according to Remark 1 to Theorem 1 $K_{t-s} \neq \emptyset$ for s>0 small enough and it will contradict the definition of d. By Theorem 1 $K_s=\{p\}$ and card $K_t=1$. By the definition of d we obtain that card $K_t=0$ for t< d and by an observation we conclude that card $K_t = \infty$ for t > d.

It is to ask whether or not the assumption of boundness of l and u may be deleted? Unfortunately, the answer is negative. Let us give an example to show it.

Example 2. Let $[a, b] = [-1, 1], H = \text{span}\{1, x\},$

$$l = \begin{cases} -\infty, & -1 \leqslant x < 0, \\ \sqrt{x}, & 0 \leqslant x \leqslant 1 \end{cases}$$

$$u = \begin{cases} \sqrt{-x}, & -1 \leqslant x \leqslant 0, \\ \infty, & 0 < x \leqslant 1. \end{cases}$$

and

It is easy to verify $K = \emptyset$. In fact, for $p = c_1 + c_2 x$ from l(0) = u(0) = 0 it follows that $c_1=0$. But for any c_2 the inequality $c_2x \ge \sqrt{x}$ with $0 \le x \le 1$ could not be valid.

On the other hand, for any t>0 card $K_t=\operatorname{card}\{p\in H: l-t\leqslant p\leqslant u+t\}=\infty$.

This shows that there does not exist such a number d.

Theorem 2. Let l and u be bounded with $l \le u$ and let H be an n-dimensional Haar subspace. Then $\operatorname{card} K = 0$ if and only if there exists a $p \in H \setminus K$ which possesses an alternation system with respect to (l, u).

Proof. Necessity. By lemma there exists a number d>0 such that card $K_d=1$,

where $K_d = \{ p \in H : l - d \leq p \leq u + d \}$.

Let $p \in K_d$. Then $p \in K$. Moreover, by Theorem 1 p has an alternation system with respect to (l-d, u+d). This alternation system is, of course, one of p with respect to (l, u).

Sufficiency. If the conclusion is false, suppose $q \in K$. Let (1) be an alternation

system of p with respect to (l, u). Then we have that for $\sigma(x_1) = 1$

$$p(x_{2j-1}) - q(x_{2j-1}) \leqslant l(x_{2j-1}) - q(x_{2j-1}) \leqslant 0, \quad j=1, \dots, \left[\frac{n+2}{2}\right]$$

 $p(x_{2j})-q(x_{2j})\geqslant u(x_{2j})-q(x_{2j})\geqslant 0, \quad j=1, \dots, \left[\frac{n+1}{2}\right].$ and

Hence $(-1)^{i}(p(x_{i})-q(x_{i}))\geq 0$, $i=1, 2, \dots, n+1$.

This implies p=q. The same conclusion may be deduced for $\sigma(x_1)=-1$. But it is impossible, because $p \in K$ and $q \in K$.

Combining Theorem 1 and Theorem 2 immediately gives

Theorem 3. Let l and u be bounded with l<u and let H be an n-dimensional Haar subspace. Then card $K \leqslant 1$ if and only if there exists a $p \in H$ which possesses an alternation system with respect to (l, u).

As an equivalent proposition to Theorem 3 a characterization for card $K=\infty$ easily yields.

Theorem 4. Under the assumptions of Theorem 3 card $K = \infty$ if and only if there does not exist a $p \in H$ which possesses an alternation system with respect to (l, u).

Finally we present another characterization for card $K = \infty$ as a corollary to Theorem 1.

Theorem 5. Under the assumptions of Theorem 1 card $K - \infty$ if and only if there exists a $p \in K$ which does not have an alternation system with respect to (l, u).

References

- [1] G. D. Taylor, On approximation by polynomials having restricted ranges, SIAM J. Numer. Anal., 5:2 (1968), 241—248.
- [2] Y. G. Shi, Uniqueness of minimization problems, Chinese Annals of Mathematics (to appear).
- [8] Y. G. Shi, Weighted simultaneous Chebyshev approximation, J. Approximation Theory, 8 2:4 (1981), 306—315.
- [4] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

[5] P. J. Laurent, Pham-Dinh-Tuan, Global approximation of a compact set by elements of a convex set in a normed space, Numer. Math., 15: 2(1970), 137—150.

Π^{\bullet}

Abstract .

Let l and -u be upper semicontinuous bounded functions on [a, b] with $l \le u$. For H being an n-dimensional subspace of C[a, b] let $K = \{p \in H: l \le p \le u\}$. This paper characterizes K for which card K = 0 or 1 or ∞ ,

where card K denotes the cardinality of K.

In (I) we have given an answer to the following problem in the case when H is a Haar subspace:

Let l and u be upper and lower semicontinuous functions on X = [a, b] (which may take $-\infty$ and $+\infty$, but $l < +\infty$ and $u > -\infty$), respectively, with l < u. Let H be an n-dimensional subspace of O(X) and $K = \{p \in H: l . Characterize <math>K$ such that

down the spaint C card K=0 or 1 or ∞ ,

where card K denotes the cardinality of K.

^{*} Received March 14, 1983.

In this paper we continue to investigate this problem in a general setting, where H is not necessarily Haar.

The method used in this paper is to reduce this problem to a certain one of minimization. To this end, assume that I and u are bounded through this paper and consider a function with variables x and y

$$F(x, y) = |y-v(x)| + \frac{l(x)-u(x)}{2} + d, \qquad (1)$$

where $v = \frac{1}{2}(l+u)$ and $d = \frac{\|u-l\|}{2}$ with the "sup" norm.

Some important properties of F are as follows.

Lemma. F is nonnegative and convex with respect to y. Furthermore, F(x, q) $\equiv F(x, q(x))$ is upper semicontinuous with respect to x for any $q \in H$.

Proof. The proof of the first two claims is trivial. The last claim follows from another equivalent representation of F

$$F(x, q) = \max\{l(x) - q(x), q(x) - u(x)\} + d, \qquad (2)$$

in which both l(x) - q(x) and q(x) - u(x) are upper semicontinuous of x.

An element $p \in H$ is said to be a minimum to F from H if it satisfies that

$$||F(\cdot, p)|| = e \equiv \inf_{q \in H} ||F(\cdot, q)||.$$
 (3)

Such a minimum must exist, because we have

Theorem 1. There exists an element $p \in H$ satisfying (3).

Proof. Since $F(x, y) \to \infty$ as $|y| \to \infty$ and F(x, y) is continuous with respect to y for each $x \in X$, applying Theorem 1 in [1] proves our conclusion.

We turn now to relations between our previous problem and the one of minimization which are described in the following theorem.

Theorem 2.

- (a) card K=0 if and only if e>d;
- (b) card K=1 if and only if e=d and there exists a unique minimum. Proof.
- (a) Let card K=0. Suppose on the contrary that $e \leq d$. Taking $p \in H$ by Theorem 1 so that it satisfies (3), we have $|F(\cdot, p)| \leq d$ or $F(x, p) \leq d$. According to (2), we obtain $\max\{l(x)-p(x), p(x)-u(x)\} \le 0$, which implies that $l(x) \le p(x) \le 0$ u(x), namely $p \in K$. This is a contradiction. Conversely, since $p \in K$ means successively $\max\{l(x)-p(x), p(x)-u(x)\} \leq 0$ and $\|F(\cdot,p)\| \leq d$, it follows that $e \leq d$. Whence e>d implies card K=0.
- (b) For the necessity by part (a) of this theorem we can first assert that card K=1 implies $e \le d$. On the other hand, if e < d, letting $p \in K$ such that (3) is satisfied, for a fixed $q \in H$ with |q| = 1 and $|t| \le d - e$ we would have $p + tq \in K$ and a contradiction. So e=d. Furthermore, it is easy to see that there must exist a unique minimum.

For the sufficiency let ded and let a unique minimum exist. By part (a) of this theorem, card K>0. Suppose $p, q \in K$. Then $||F(\cdot, p)|| \leq d$ and $||F(\cdot, q)|| \leq d$. By the definition of e it follows that $|F(\cdot,p)| \ge e$ and $|F(\cdot,q)| \ge e$. Thus, in fact, $|F(\cdot,p)| = |F(\cdot,q)| = \epsilon$. By uniqueness p = q, i. e., card K = 1.

In order to state theorems of characterization and uniqueness of a minimum to ".Asit paid a seri da le

F we assume the notation in [1] and denote for $p \in H$

$$X_{p} = \{x \in X : F(x, p) = ||F(\cdot, p)||\},\$$
 $Y_{p} = \{x \in X_{p} : p(x) = v(x)\},\$
 $\sigma(x) = \{ \begin{array}{ll} 1, & p(x) < v(x), \\ -1, & p(x) > v(x). \end{array} \}$

The characterization for a minimum of F is as follows.

Theorem 3. A necessary and sufficient condition that $p \in H$ be a minimum to F is that

$$Y_{p}\neq\emptyset$$
 or $\max_{x\in X_{p}}\sigma(x)q(x)\geqslant0$, $\forall q\in H$. (4)

Proof. By the previous lemma, F satisfies the assumptions of Theorem 1 in [2]. According to this theorem p is a minimum to F if and only if

$$\sup_{x \in X_p} F'(x, p; q, p) \geqslant 0, \quad \forall q \in H, \tag{5}$$

where

1 to a famour of the

$$F'(x, p; q, p) = \lim_{t \to 0+} \frac{F(x, p+t(q-p)) - F(x, p)}{t}$$
.

A simple calculation yields

$$F'(x, p; q, p) = \begin{cases} q(x) - p(x), & p(x) > v(x), \\ -(q(x) - p(x)), & p(x) < v(x), \\ |q(x) - p(x)|, & p(x) = v(x). \end{cases}$$

In the case $p(x) \neq v(x)$ it is rewritten as

$$F'(x, p; q, p) = (q(x) - p(x)) \operatorname{sgn}(p(x) - v(x)) = \sigma(x) (p(x) - q(x)).$$

Thus (5) becomes

$$Y_{p}\neq\emptyset$$
 or $\max_{x\in X_{p}}\sigma(x)(p(x)-q(x))\geqslant0$, $\forall q\in H$.

Since H is a linear subspace, the above is equivalent to (4).

For the uniqueness of a minimum we have the following

Theorem 4. In order that $p \in H$ be the unique minimum to F it is necessary and sufficient that

$$Y_q = \emptyset$$
 and $\max_{x \in X_q} \sigma_q(x)(q(x) - p(x)) < 0, \forall q \in H \setminus \{p\},$ (6)

where $\sigma_q(x)$ is the σ 's function with respect to q.

Proof. By Theorem 3 in [2], $p \in H$ is the unique minimum to F if and only if

$$\sup_{x \in X_q} F'(x, q; p, q) < 0, \forall q \in H \setminus \{p\}, \tag{7}$$

where

$$F'(x, q; p, q) = \begin{cases} \sigma_q(x)(q(x) - p(x)), & q(x) \neq v(x), \\ |p(x) - q(x)|, & q(x) = v(x). \end{cases}$$

Thus, in order that (7) be valid, it is necessary and sufficient that (6) be valid. With Theorem 2, 3 and 4 we can now deduce the main results of this paper. Theorem 5. The following statements are equivalent each to other:

- (a) card K=0;
- (b) e>d;

(c) There exists an element $p \in H \setminus K$ satisfying (4).

Proof. Theorem 2 points out the equivalence of (a) and (b). And the equivalence of (b) and (c) follows dire only from Theorem 3.

Similarly, from Theorem 2 and Theorem 4 it follows that Theorem 6. The following statements are equivalent each to other:

(a) card K=1;

and a did to

- (b) e=d and there exists a unique minimum;
- (c) e=d and there exists an element $p \in H$ satisfying (6).

References

- [1] Y. G. Shi, Minimization and best approximation, Chinese Annals of Mathematics, 2: 2 (1981), 225—231 (Chinese).
- [2] Y. G. Shi, A minimax problem using generalized rational functions, J. Approximation Theory, 36: 2 (1982), 173-180.