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Abstract

1et ! and ¢4 be upper and lower semicontinuous extended functions on [a, b], respeclively, with
I<u. Iet H be an n—dimensional Haar subspace and K= {p¢ H:l<p<u}. This paper gives complete

characterizations of K satisfying
card K== or 1 o1 <o

under certain assumptions, where card K denotes the cardinality of E

1. Introduction

In approximation by polynomials having restricted ranges™ and in simultaneous
approxnmahﬂnm the following problem may he proposed:

Let I and « be upper and lower semicontinuous functions on X= la, O] (‘Whiﬂh
may take —oo and + oo, but I<< + oo and u> —o0), respeclively, with i<u, Lot H
be an n~dimensional subspace of C (X )and K={p€ H:i< p-@u} Characterize K

guch that
card K =0 or 1 or oo,

where card K denotes the cardinality of K.
In this paper we give an answer to this problem for H being a Haar subspace.
In detail, we give complete oharacterizations of K satisfying card K =0 or 1 or <o

under certain assumptlions.
T'o begin with let us introduce the following notation.

For p &€ H denote
= {2 € X :p(2)<l(2)},
Xi={z€ X :p(z)>u(z)},

XF=X;UX;:
(&) { 1, s€ X;
o) =

g 1, 2E X},

By definition if p(#) =l(a) =u(%), o(z) may take both 1 and —1,
A. system of n-+1 ordered points

mj_{ma{ <ﬂ=g+1 (1)
m I is saad to be an alternation system of p (with res;mt o (I, u)) if it sahﬂﬁea 5
—— (o) =—0o(@), =1, =, n, @

It ahauld be pointed out that the regtrictions on # and u being Twpper and lower
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semicontinuous are trivial, becaunse for any ! and % we can assume
[(s) =Hmsup I(y), w(z)=liminf «(y)
T el .

ingtead, which are upper and lower semicontinuous, respectively™, and gatisfly that
card K —ocard{p€ H:l<p<u},

To verify the lagt equalily we nole that, on the one hand, from I<I<u<u
card K >ocard{p€H:l<p<u} follows, and on the other hand, I<<p=<Cu implies

Jim sup I(y) <limsap p(y) =lim inf p(y) <Hminf «(y),
=T yF y—T =&

namely, 1 () <p(z)<u(s), from which card K <card{p€ H:I<p<u} follows.

2. Main Theorems

Theorem 1. [Let l<u and let H be an n—dimensional Haar subspace. Then for
pE K the following statements are equivalent each to other:

(a) K={p}, @.6., card K =1;

(b) max o(x)q(2)>=0, Vg€ H;

rgeEXp

(6) max o(z)g(e)>0, Vq&€ H\{0};

FEXp . . : :
(@) 0C€ H#{o(zys:'n € X,}, where 3 denotes the convex hull [4, p. 1T] and
&= (0:(2), -, Pal®)) with Py, -, Ps being a basis in H;
(o) p possesses an alternation system with respect to (1, ).
Proof. (a)=>(b). Suppose not and lei ¢ satisfy max o(2)¢(z) <0, i. e,

geEXyp

o(z)g(2)<0, Yo & X, We are 0 prove that r; = p— tg satigfies I <<r<v for some i>0,
Henoe from r;#p a contradiction oocours.

Let h==—-é—- mé? {u(w) —U(2)}(>0) and e=ma§|q(m) |. Denote
w TE

Y= {z€ X :p(z)~1l(z)>h and ¢(2)>0},
V= {o€ X :u(z) —p(z) >h and ¢(2) <0},
Y=‘X\(Y1UY5). |
Taking #;=Ah/e, we have that for €Y 1 and 0<i<<#y
ry(2) =p(@) —ig(2) >l(2) +h—te=U(a)
‘and re(2) =p(@) — (o) <u(o) —tg(w) <u(e),
that is,
| U(z) <r(@) <u(@), (3)
Similarly, (3) holds for z€Y; and 0<t<ty, ' -
On the other hand, it is easy to eee that X, Y1 UY 5 and, hence,
o I(2) <pla)<u(z), Vo€Y. o
Sinoe Y is oo_m];ja.et; we mn ﬁnd a number {3>>0 so thai (3) 13 ‘ﬂléﬁ valld forall €Y
and 0<i<t,, o |
' Thug | <r,<u ig valid for t=min {#;, Z,},
(b)=>(d). (b) implies that the linear ine qualities
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max o(x)g(w) <0
or
o(2)q(2)<0, 2€X, | (4

is inconsistent in H. (4) may be rewritten ag
<¢, ﬂ'(:ﬁ)fﬂ){ﬂ -'DEX,:, .

where g(=) =2, chi(x) and c=(cq, -+, c4). Notmg that X, is compact, by Theorem

on Linear Inequa,lmea [4, p. 191 0€ o (2)2:5€ X oF.
~ (d)=>(e). This is a standard statement and, for example, it may be fﬂund in
(4, p. 75].

(e)=>(0). Suppose on the contrary that 1 max o(2)q(z) <0 or

c@)@<0, Vo X, )
for some ¢ € H\ {0}. Let p have an alterna.tmn system (1) with respeet to (E %),
From (2) and (B) it follows that

(—V'o(z)g(#:)=0, é=1,2, - nt+1

Then ¢=0 {8, Lemma 3], a contradiction.
(e)=>(a). If possible, let r € K\ {p}. From I<r<u it follows that

p(@) —r@)<i(e) —r@)<0, Vs€X},
_ 2(@) —r(2)>u(@) —r(s)>0, Vo XE
Ti::is means that
o(z)(p(@) —r())<0, Vz€X,
or max o(z) (p(z) —r(z)) <0,

I?.I,

But §=p—r+0 and this is a contradiotion.

The proof of the theorem is completed.

Remark 1. If p€ K does not have an alternation syﬂtem by Theorem 1 we may
conoclude that max o (z)g(«) <0 will be valid for some ¢ € H. Acoording o the proof

#.I_p

of (2)=>(b) the function r,=p—tg will satisfy <, < for some number t>0, Whenoce
I+e<r;<<u—¢ will hold for some number >0,

Remark 2. The assumption of I<u could not be dele-’oed It ma-.y be supported
by the following.

Emamplel. Let X =[~1, 1], 1= —2? w=22 and H—spa,n{l x}. Clearly
K = {0} but the function 0 does not have an alternation system.

Wo turn now to characterizing K for which card K =0. To the end we establish

next a preliminary result. |

| Lemma. Letl and u be bounded with I-Qum.Hbemn—d@mwdew
subspace. If K=, then there exisis a number d>0 such that |

0, - t<a,
card Ky={ 1,  t=d,
o2 t>d.r

where K;= {p€ H:l-t<p<u+4}, | | by 2 el wlRe ety
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Proof. It is easy to see that K+ for t large enough. Set
| d=inf{t=>0: K,+0}.

. Weo claim first that Ke# @, In fact, let pa€ Kaia/m, m=1, 9, -, Clearly{pa}
is bounded and possesses' o convergent subsequence. Suppose without loss of gene-
rality that pm—3p, M—>°°. We now show that p€ K4, 1f not, we can find a point @
such that, say, p(z)>u(e)+d. Thus pa(z)>u(z)+d+1/m is true for m large
enough, and hence pn& K ,.1m. This contradiction proves pc K and Ko#%0.

Now K s+ ¢ imples that d>0, p must possess an alternation system with respect
to(l—d, ut+a), because, otherwise, according to Remark 1 to Theorem 1 Ko . %0 for
¢~0 small enough and it will contradiot the definition of &. By Theorem 1 Ks=1p}
and card K,=1., By tbe definition of & we obtain that card K,=0 for t<d and by
on observation we conclude that oard K,=oc for i>d. _

T+ ig to agk whether or not the assumption of boundness of ¢ and w may be
deleted? Unfortunately, the answer 18 negafive. Lot us give an example to show it.

Example 2. Lot (@, b]=[—1, 11, H =span{l, 2},

; {-— oo, —1<o<0,

v o 3 O<z<1

> u={ﬁ’ — <20,
oo, O<o<l,

and .

Tt is easy to verify K =0, In fact, for p=cy+csx from 1(0) =u(0) =0 it follows
that ¢y =0. But for any ¢a the inequality cqrs> o/ & with 0<<o<<1 could not be valid.

On the other hand, for any #>0 card K,=Gard{pEH:I—'-t<lp€u+i} =00,

This shows that there does not exist guch a number d. |

Theorem 2. Let b and u be bounded with I<vu and let H be an n-dimensional
Haar subspace. Then card K =0 if and only if there extsts a@ pC H\K which possesses
an aliernation system with respect to (I, W), |

Proof. Necessity. By lemma there exists & number ¢>>0 such that ocard K =1,
where K= {p€ H:l—d<p<u-+d}.

Lot p € K4 Then p€ K. Moreover, by Theorem 1 p bas an alternation system
with respect to (I—d, u-td). This alternation system is, of course, 0ne of p with
respeot to (I, u). - ,

Sufficiency. If the conclusion is false, suppose ¢ c K. Lot (1) be an alfernation
gystem of p with respeot to (I, v). Then we have that for o{zy) =1 |

_ 2
-P(f-'-’ﬂ.f-—i) e g(%;—»i)%;(ﬂ’m—i) =g (Zy-1)<0, J= L, o [ “—15; ]
and p(tay) — q(@as) >u(@way) — g(ze) =0, J= 1, = [ ﬁzl ]
Hence - ., (=D @@)—g(=))=0, §=1, 2, -, ntl,

This implies p=g. The same conclusion may be deduced for o(ay)=—1, But it is
impossible, because pEK and g€ K,

Combining Theorem 1 and Theorem 2 immediately gives
. mheorem 8. Let I and ube bounded with 1<u and let H be an n-dimensional
Haar subspace. T hen card K<1 if and only if there ewisis & p€ H which possesses an
alternation system with respect 10 (3, w). ' ' S
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-+ Asan equivalent. proposition to Theorem 3.s characterization for. card K —oo
easily yields. | S 4y o B
~ Theorem 4. Under the assumptions of Theorem 8 card K w oo if and only if
there does not exisi 6 9 € H which possesses an alternation system with respect to (I, u)_

Finally we present another characterization for card K moo gg a corollary to
Theorem 1. | o |

' Theorem &. Under the assumptions of Theorem 1 card K w oo if and only if

there ewisis a p € K which does not have an alternation system with respect 40 @, w),
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In this paper we nontmue to0 investigate 'hhlS problam in a geneml ﬂett'ng, where
H is not neoessarily Haar.
" - The method msed in this paper is to reduoce this preblem fo a ﬂﬁrtain one of
minimization. To this end, assume that ! and u are bounded through this paper and
consider a funoction with variables o and y -

.-"

Fo, = fg—o@) (42278 g )

where o= % (I+u) and dm-ﬂuTZH- with the “sup nurm

Some important properties of ¥ are as follows |

“Lemma. F is nmmgm and conves with q'aspect to 4. Fm*thermorﬂ F(a:r, q)
-—F(m g(2)) ds upper semicontinuous with respect to = for any gEH.

Proof. The proof of the- first ‘two olaims' ig trivlal The last nlmm follows from
a.nother equivalent representation of ¥

Pz, g)~max{i(a) —¢(o), q(a:) —u@)}+d, @
in which both {(z) — ¢(#) and ¢(z) — u(m) are upper semmﬂn‘umunua of #z.
An eloment p € H is said $0 be a minimum to F from H if it satisfies thai

|F(:, p)] =e=inf]

Such a minimum must exist, because we have

Theorem 1. There ewists an element p € H satisfying (3).

Proof. Since F (=, y)—><o a8 |g|—oc and F(«, y) is continnous with respect 1o
y for each @€ X, applying Theorem 1 in [1] proves our conolusion.

Wo turn now to relations between our previous problem and the one of mini-
mization which are desoribed in the following theorem.

Theorem 2.

(a) ocard K =0 ¢f and only if e>>d;

(b) card K =1 if and only if e=d and there evists a unique minimwmn.

Proof. -

(a) Let card K =(0. Suppose on the contrary that e<d. Taking pE€H by
Theorem 1 so that it satisfies (3), we have (¥ (-, p)|<d& or F(e, p)<d. According

to (2), we obtain max{l(a:) —p(@), p(m) ()} <0, which mplleﬂ that I(z) <p(2) <

w(m), namely p € K. This is a cu»ntradmtwn Clonversely, since pE€ K means gnooces-
gively max{l{(z)—p(z), p(e)—u(x)} <0 and |[F(-;2) M«gd it follows that e<d.
Whenoe 6>-d implies card K =0.

(b)Y For the necessity by part (2) of this theorem we can first dasert that oard
K =1 implies e<<d. On the other band, if e<(d, letting p€ K such that (8) is satisfied,
for a fixed gGH {with’ Hgl =Land |¢|<d—e we -wonld have p-!—thK and ‘a contradio-
tion ' Bo- p=d. Fufrthenﬁore *‘ii"i&eaay to Bed ﬂiﬂ.‘ls there must exist s ‘unique“nﬁnimum

“For the' suﬁciene 165~ d a.nd 16td ‘uniq'ﬂé minimuom exist! “By"part (a) of this
thenrem card K>0. Bﬁp‘io&*e p, gEK. Then |F(., p)|<d and [F(-, ¢)]<d.
By the definition of ¢ it follows that | F (e , 9){ 6 .and ﬂF( g)ﬂ?a Thus, in faot,
1P, 0) | = F (-, Dl=e. B‘y,_ﬂﬂlqueneﬂﬂ*' =g, 105 087d K=1, ;. " - |

In order to state theorems of Gharantenzaﬁon and uniquenem of a mimmum ta
F we assume the notation in [1] and danbte for pEH ' o

(3)
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X,~ @€ X:F(a, )= 1FC, DI,
Y,={2a€X,ip(a)=v(®)},
1, .. ple)<v(e),
iy B B2
| i1 p(e)>ule).
The characterization for 2 minimum of ¥ is ag follows. .
Theorem 8. A necessary and sufficient condition that pC H be a minimum to F
ssthat - T  py S8 w3 LB Py
Y,#@ or maxo(a)g(e)=>0, V¢c€H, @

r'Exp

Proof. By the previous lemma, # satisfies the assumptions of Theorem 1 in
[2]. According to this theorem p is a minimum 1o F if and only if

sup F'(», p; ¢, p)=>0, Vg€ H, (B)

where - F'(, p; é, ») =3j1§1 2 (m,.pﬁt(q?—t@_—F (2, p) :
A simple calculation yields

g(w) —p(a), p(z) > (o),

F'(z, p;q, p)={ —(g(z) —p(2)), p(z) <v(z),

g * gy -p(®)|,  pla)=v(a).

In the case p(x) %o (x) it is rewritien asg |
F'(w, pyq, p) =(g(2)—p(@))sgn(p(z) —v(@))y=0(e) (p(2) —9(®)).
Thus (b) becomes
¥,40 or maxo(s)(p(z)—g¢(@))>0, VgEH.

e€Elyp
Since H is a linear subspace, the ahove is equivalent to (4).
For the unigueness of a minimum we have the following
Theorém 4. In order that p€ H be the unique manimum to F 4t is necessary and
sufficient that
| Y= and maxge(w)(g(e) —p()) <0, Vg€ H\{p}, (6)

ecXy

where aq(w) 18 the o’s funciion with respect 10 ¢. |
Proof. By Theorem 3 in [2], p€ H is the unique minimum to ¥ if and only if

sup F'(e, ¢; p, ) <0, Vg€ H\{p}, (7)

‘ |  [oa(@)(g(e) —p(@)), (@) *v(a),
where F'(e, g;p, Q)_{]p(m)-—q(m)[, g(@) =v().

Thus, in order that (7) be valid, it is necessary and sufficient that (6) be valid.
With Theorem 2, 8 and 4 we can now deduce the main resulis of this paper.
Theorem B. The following statements are equivalent each to other:

(a) card K =0,
(b) e>d;
| ,_(0). There exists an element pE H\ K satisfying (4).

_Proof. '_Théorem 2 points out the equivalence of (a) and (b) . And the equivalenos
of (b) and (o) follows dire otly from Theorem 3.
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Bimilarly, from Thanre:ﬁ 9 and Theorem 4 it follows that -
Theorem 8. The following statomenis are equivalent each to other:

(a) card K =1; |
(b) e=d and there eaisls a unique minimam; | |
(¢c) e=d and there ewtsis an eloment p© H satisfying (6).
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