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LEAST-SQUARES FINITE ELEMENT METHODS FOR
FIRST-ORDER ELLIPTIC SYSTEMS

PAVEL BOCHEV

Abstract. Least-squares principles use artificial “energy” functionals to pro-

vide a Rayleigh-Ritz-like setting for the finite element method. These function-

als are defined in terms of PDE’s residuals and are not unique. We show that

viable methods result from reconciliation of a mathematical setting dictated by

the norm-equivalence of least-squares functionals with practicality constraints

dictated by the algorithmic design. We identify four universal patterns that

arise in this process and develop this paradigm for first-order ADN elliptic sys-

tems. Special attention is paid to the effects that each discretization pattern

has on the computational and analytic properties of finite element methods, in-

cluding error estimates, conditioning of the algebraic systems and the existence

of efficient preconditioners.
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1. Introduction

After a somewhat disappointing start in the early seventies1, the use of least-
squares finite elements has been steadily increasing over the last decade. A key
factor for the renewed interest in such methods was the idea of their application
to equivalent first-order systems rather than to the original PDE problem; see [17],
[22], [18], [11] and [13]. This paid off in turning least-squares methods into a viable
alternative to Galerkin finite elements, especially in fluid flow computations; see [6]–
[12], [18]–[21], [23], and [27]–[29]. From a mathematical viewpoint another notion,
namely the concept of norm-equivalent least-squares “energy” functionals emerged
as a universal prerequisite for recovering fully the Rayleigh-Ritz setting. However,
it was soon realized that norm-equivalence is often in conflict with practicality, even
for first-order systems (see [6], [11] and [12]); and because practicality is usually
the rigid constraint in the algorithmic development, norm equivalence was often
neglected.

The main goal of this paper is to establish the reconciliation between practi-
cality, as driven by algorithmic development, and norm-equivalence, as motivated
by mathematical analyses, as the defining paradigm of least-squares finite element
methods. The key components of this paradigm are a continuous least-squares prin-
ciple (CLSP) which describes a mathematically well-posed, but perhaps impractical,
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variational setting, and an associated discrete least-squares principle (DLSP) which
describes an algorithmically feasible setting. The relation between a CLSP and
a DLSP follows four universal patterns which lead to four classes of least-squares
finite element methods with distinctly different properties.

We develop this paradigm for the important class of first-order systems that are
elliptic in the sense of Agmon-Douglis-Nirenberg [1]. In particular, we show that
degradation of fundamental properties of least-squares methods such as condition
numbers, asymptotic convergence rates, and existence of spectrally equivalent pre-
conditioners occurs when DLSP deviates from the conforming setting induced by a
given CLSP.

In what follows Ω will denote a simply connected bounded region in Rn, n = 2, 3
with a sufficiently smooth boundary Γ. Throughout the paper we employ the
usual notations Hd(Ω), ‖ · ‖d; d ≥ 0 for the Sobolev spaces of all functions having
square integrable derivatives up to order d on Ω, and the standard Sobolev norm,
respectively. As usual, Hd

0 (Ω) will denote the closure of C∞(Ω) with respect to the
norm ‖ · ‖d and H−d(Ω) will denote the dual of Hd

0 (Ω). The symbol Sh
d will stand

for a space of continuous, piecewise polynomial functions defined with respect to a
regular triangulation Th of the domain Ω. It is assumed that for every u ∈ Hd+1(Ω)
there exists uh ∈ Sh

d with

(1) ‖u− uh‖0 + h‖u− uh‖1 ≤ Chd+1‖u‖d+1.

For regular triangulations the Euclidean norm of the coefficient vector of uh, de-
noted by |ξ|, and the L2 norm of uh are related by the inequality

(2) C−1hM |ξ| ≤ ‖uh‖0 ≤ ChM |ξ| ,

where M denotes the dimension of Sh
d . We will also need the inverse inequality

(3) ‖uh‖1 ≤ Ch−1‖uh‖0

which holds for most standard finite element spaces on regular triangulations; see
[16].

2. Continuous and discrete least-squares principles

We consider boundary value problems of the form

(4) L(x, D) u = f in Ω and R(x, D) u = g on Γ.

Here u = (u1, u2, . . . , uN ) is a vector of dependent variables, L(x, D) = Lij(x, D),
i, j = 1, . . . , N and R(x, D) = Rlj(x, D), l = 1, . . . , L, j = 1, . . . , N . For simplicity,
in what follows we will write Lu and Ru. Concerning (4), we make the following
assumption:

A.: There exist Hilbert spaces X = X(Ω), Y = Y (Ω), and Z = Z(Γ) such
that

(5) C2‖u‖X ≤ ‖Lu‖Y + ‖Ru‖Z ≤ C1‖u‖X .

This relation is fundamental to least-squares methods because it defines the proper
“balance” between solution energy as measured by ‖u‖X and data energy, as mea-
sured by ‖Lu‖Y + ‖Ru‖Z . We note that the setting determined by (5) is not, in
general, unique2.

2For example, if (L,R) has a complete set of homeomorphisms (5) holds on a Hilbert scale;
see [24] and [25].
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2.1. Continuous least-squares principles. A continuous least-squares princi-
ple, or CLSP, for (4) is a pair {X, J(·)} where the functional

(6) J(u; f ,g) =
1
2

(
‖Lu− f‖2

Y + ‖Ru− g‖2
Z

)
is minimized over the space X, i.e., we solve the optimization problem

(7) seek u ∈ X such that J(u; f ,g) ≤ J(v, f ,g) ∀v ∈ X .

For simplicity we will write J(u) instead of J(u; 0, 0).

Theorem 1. Assume that A. holds. Then,

(1) the functional (6) is norm-equivalent in the sense that

(8)
1
4
C2

2‖u‖2
X ≤ J(u) ≤ 1

2
C2

1‖u‖2
X ∀u ∈ X ;

(2) problem (7) has a unique minimizer u such that

(9) ‖u‖X ≤ C (‖f‖Y + ‖g‖Z) .

Moreover, u is the unique minimizer of (6) if and only if u is the unique
solution of (4).

Proof. To prove 1 it suffices to note that J(u) = 1
2

(
‖Lu‖2

X + ‖Ru‖2
Z

)
so that the

norm-equivalence (8) follows from (5). To prove 2, note that minimizers of (6)
satisfy the Euler-Lagrange equation

(10) seek u ∈ X such that Q(u;v) = F (v) ∀v ∈ X .

The form Q(·; ·) and the functional F (·) in (10) are given by

(11) Q(u;v) = (Lu,Lv)Y + (Ru,Rv)Z

and

(12) F (v) = (f ,Lv)Y + (g,Rv)Z ,

respectively. From the lower bound in (5), we obtain

Q(u;u) = 2J(u) = ‖Lu‖2
X + ‖Ru‖2

Z ≥ 1
2
C2

2‖u‖2
X ,

while Cauchy’s inequality and the upper bound in (5) yield continuity of Q(·; ·).
Likewise, it is easy to see that ‖F‖ ≤ C1(‖f‖Y + ‖g‖Z)., i.e., F (v) is a bounded
linear functional on X. As a result, the existence and uniqueness of a minimizer u
that solves (10) follows from the Lax-Milgram Theorem. Then, (9) easily follows
from the coercivity of Q(·; ·) and the continuity of F (·). �

Theorem 1 affirms that {X, J(·)} is an external Rayleigh-Ritz principle for (4).
The “energy” inner product associated with {X, J(·)} is Q(·; ·), while |||u|||2 =
Q(u;u) = 2J(u) is the “energy” norm. The least-squares problem (7) is equivalent
to (4) in the sense that their solutions belonging to the space X coincide. However,
the variational problem (10) is not a standard, e.g., Galerkin, weak form of (4).
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3. Discrete least-squares principles

A conforming discrete least-squares principle (DLSP) is a pair {Xh,J } where
Xh = span{φh

i }M
i=1 is a finite element subspace of X and J(·) is given by (6). A

conforming DLSP leads to finite element methods for (4) which recover all attractive
features of a Rayleigh-Ritz setting: non-restrictive choice of finite element spaces,
symmetric and positive definite algebraic systems, and quasioptimal error estimates.
Furthermore, if Ah = Q(φh

i ;φh
j ) and Kh = (φh

i , φh
j )X , the equivalence between

Q(·; ·) and the standard inner product (·, ·)X implies that

(13) C−1ξT Khξ ≤ ξT Ahξ ≤ CξT Khξ, ∀ξ ∈ RM ,

that is, Ah and Kh are spectrally equivalent.
However, depending on L, R and the choice of X, Y and Z dictated by (5), the

pair {Xh, J(·)} may be inconvenient for actual implementation. Then, practicality
considerations (discussed in §4.1) may force us to abandon the conforming setting
described above and consider instead another pair, denoted by {Xh, Jh(·)}. In this
pair Xh is not necessarily a subspace of X and Jh(·) is not necessarily the same as
J(·). The pair {Xh, Jh(·)} gives rise to another DLSP:

(14) min
vh∈Xh

Jh(vh; f ,g).

Let us show that (14) can actually produce meaningful results under the following
two very general hypotheses:

D.1: Jh(·) is consistent in the sense that Jh(u; f ,g) = 0 for all smooth data
f and g and all smooth solutions u of (4);

D.2: Jh(·) is positive: Jh(vh) > 0 ∀ 0 6= vh ∈ Xh .

From D.2 we can infer the existence of an inner product

(15) ((·, ·))h : Xh ×Xh 7→ R,

called discrete energy inner product. Therefore,

(16) ((vh,vh))h = |||vh|||2h ≡ Jh(vh)

is a norm on Xh, which we refer to as the discrete energy norm.

Theorem 2. Assume that D.1 and D.2 hold for the pair {Xh, Jh(·)} and let
u denote a smooth solution of (4). Then, problem (14) has a unique minimizer
uh ∈ Xh. This minimizer is the orthogonal projection of u with respect to (15).

Proof. The minimizer of (14) solves the problem:

(17) seek uh in Xh such that Bh(uh;vh) = Fh(vh) ∀vh ∈ Xh ,

where Bh(·; ·) = ((·, ·))h and Fh(·) = ((u, ·))h. Let uh =
∑M

i=1 ξiφ
h
i . Problem (17)

is a linear system with matrix Ah
ij = ((φh

j , φh
i ))h and right hand side Fi = ((u, φh

i ))h.
From D.2 it follows that Ah is symmetric, positive definite and so (17) has a unique
solution. To prove the second part note that (17) can be recast as

((uh − u,vh))h = 0 for all vh ∈ Xh.

which means that uh is orthogonal projection of u relative to ((·, ·))h. �

Corollary 1. The least-squares solution uh minimizes the discrete energy norm
error, that is

(18) |||u− uh|||h = inf
vh∈Xh

|||u− vh|||h.
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3.0.1. Classes of discrete least-squares principles. Substitution of the con-
forming DLSP by another principle constitutes a variational crime. Theorem 2
indicates that the penalty for this crime is much less severe than in other methods.
It also explains the remarkable robustness of least-squares methods: almost any
sensible pair {Xh, Jh(·)} will satisfy D.1-D.2. However, this by no means implies
that the CLSP setting established in §2.1 is superficial and may be ignored in the
algorithmic development.

Indeed, consider the following situation. Assume that both ||| · ||| and ‖ · ‖X are
meaningful for uh ∈ Xh so that their restrictions to Xh are well-defined norms.
Since ||| · |||h is another norm on this finite-dimensional space, it must be equivalent
to the restrictions of ||| · ||| and ‖ · ‖X . As a result, for every fixed h > 0, there are
positive numbers γ1(h), γ2(h), δ1(h) and δ2(h), such that

(19) γ1(h)‖uh‖X ≤ |||uh|||h ≤ γ2(h)‖uh‖X ∀uh ∈ Xh;

(20) δ1(h)ξT Khξ ≤ ξT Ahξ ≤ δ2(h)ξT Khξ ∀ξ ∈ RM .

Thus, a discrete version of (5) and (13) holds for any fixed h. However, the asymp-
totic behavior of γi(h) and δi(h) depends entirely on the relation between the two
energy norms and neither D.1 nor D.2 can control the growth (or decay) of γi(h)
and δi(h).

Conforming DLSP, introduced at the beginning of §3, are restrictions of a given
CLSP, i.e, the pair {Xh, Jh(·)} represents a subspace Xh of X and Jh(·) = J(·).
Thus, (19) is a restriction of (5) to Xh which means that γi(h) and δi(h) are
independent of h; in fact they coincide with the constants C1 and C2 from (5).

A deviation from this setting may strengthen the dependence on h and lead
to deterioration of algebraic systems and asymptotic convergence of least-squares
solutions, as h 7→ 0. There are three possible scenarios according to which this may
happen.

Norm-equivalent DLSP are pairs {Xh, Jh(·)} for which Xh ⊂ X and (19) holds
with γi and δi independent of h. In general, for such methods Jh(·) 6= J(·), and
(19) is not a restriction of (5). Nevertheless, norm-equivalent methods do recover
all advantages of a Rayleigh-Ritz setting.

Quasi-norm-equivalent DLSP are pairs {Xh, Jh(·)} for which Xh ⊂ X but (19)
holds with γi and δi dependent on h. These methods yield optimal convergence
rates, however, dependence on h in the equivalence bound leads to higher condition
numbers and/or lack of spectral equivalence with the natural inner product on
X ×X.

And lastly, non-equivalent DLSP are pairs {Xh, Jh(·)} for which Xh is not nec-
essarily a subspace of X and Jh(·) 6= J(·). As a result, (19) holds with different3

spaces for the lower and upper bounds. Thus, nothing much can be said about such
methods beyond Theorem 2.

4. Application to ADN elliptic systems

To discuss practicality constraints that may force one to abandon the conforming
setting we focus on a specific class of PDE problems. For these problems we use
Agmon, Douglis and Nirenberg (ADN) theory; see [1], to identify settings which

3If Xh satisfies an inverse inequality these bounds may be converted to bounds in terms of the
same function space. This necessarily will introduce dependence on h in the lower and/or upper
equivalence constants.
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verify hypothesis A. and lead to well-posed CLS principles. For earlier work based
on ADN theory4 we refer to [2], [11], [12], and [15].

Definition 1. The system (4) is ADN-elliptic if there exist integer weights {si}
and {tj}, for the equations and the unknowns, respectively, such that degLij(x, ξ) ≤
si + tj; Lij ≡ 0 whenever si + tj < 0; detLP

ij(x, ξ) 6= 0 for all real ξ 6= 0; where the
principal part LP of L is defined as all terms Lij for which degLij(x, ξ) = si + tj.
L is called uniformly elliptic if there exists a positive constant C, such that

(21) C−1|ξ|2m ≤ |detLP (x, ξ)| ≤ C|ξ|2m.

For nondegenerate systems one can always find si and tj so that the principal
part LP does not vanish identically; see [31]. The orders of Rlj will also depend on
two sets of integer weights: the set {tj} already defined for L, and a new set {rl}
where each rl is attached to the lth condition in R. As before, it will be required
that degRlj(x, ξ) ≤ rl + tj , with the understanding that Rlj ≡ 0 when rl + tj < 0.
The principal part RP of the boundary operator will be defined as all terms Rlj

such that degRlj(x, ξ) = rl + tj . The three sets of indices can always be normalized
in such a way that si ≤ 0, rl ≤ 0 and tj ≥ 0. However, even with that normalization
the sets of indices may not be unique. This means that several concurrent principal
parts may exist. An important subset of ADN elliptic systems is introduced below.

Definition 2. A system is elliptic in the sense of Petrovski if it is elliptic in the
sense of ADN and s1 = . . . = sN = 0. If in addition t1 = . . . = tN , the system is
called homogeneous elliptic.

The boundary value problem (4) will be well-posed only if R “complements”
L in a proper way. A necessary and sufficient condition for this is given by the
complementing condition of [1]. We will call (4) ADN elliptic when L is uniformly
elliptic and R satisfies the complementing condition. Let

(22) Xq =
N∏

j=1

Hq+tj (Ω); Yq =
N∏

i=1

Hq−si(Ω); Zq =
m∏

l=1

Hq−rl−1/2(Γ).

We now proceed to show that ADN elliptic systems satisfy hypothesis A. of §2.1.
The first part of the hypothesis follows from a general result due to Agmon, Douglis
and Nirenberg [1].

Theorem 3. Let t′ = max tj, q ≥ d = max(0,max rl + 1) and assume that Ω is
a bounded domain of class Cq+t′ . Furthermore, assume that the coefficients of L
are of class Cq−si(Ω̄) and that the coefficients of R are of class Cq−rl(Γ). If (4) is
elliptic and f ∈ Yq, g ∈ Zq then

(1) Every solution u ∈ Xd is in fact in Xq.
(2) There exists C > 0, independent of u, f and g, such that, for every solution

u ∈ Xq

(23)
N∑

j=1

‖uj‖q+tj
≤ C

 N∑
i=1

‖fi‖q−si
+

m∑
l=1

‖gl‖q−rl−1/2 +
N∑

j=1

‖uj‖0,Ω

 .

If (4) has a unique solution the L2-norm in (23) can be omitted.

4For elliptic problems in the plane a simplified theory exists; see [30], which also has been used
in the development of least-squares methods. For examples the reader can consult Wedland’s
book [30] and the papers [14]–[15].
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Since ADN elliptic operators are of Fredholm type; see [24], [25], [30], their range
is closed and both the kernel and the co-range are finite dimensional. Therefore,
(L,R) can be augmented by a finite number of constraints so that (4) always has a
unique solution. As a result, the L2 term can be omitted for the modified problem.
Lastly, it will be assumed that (23) is valid5 for q < 0. Then (23) can be restated
as follows: for all smooth functions u in Ω and all integers q

(24) ‖u‖Xq ≤ C
(
‖Lu‖Yq + ‖Ru‖Zq

)
.

4.1. First-order ADN-elliptic systems. The class of all continuous least-squares
principles {X, J(·)} for an ADN system follows from Theorem 3 and (24). We iden-
tify X with the space Xq, while

(25) J(u; f ,g) =
1
2

(
‖Lu− f‖2

Yq
+ ‖Ru− g‖2

Zq

)
is the “energy” functional. Thus, {Xq, J(·)} corresponds to the optimization prob-
lem

(26) min
u∈Xq

J(u; f ,g).

The conforming DLSP {Xh, J(·)}, where Xh ⊂ Xq, provides a Rayleigh-Ritz-like
setting for the finite element method. However, this DLSP may be ill-suited for
implementation. To deem a DLSP practical we require that at least

• the discrete systems can be obtained with no more difficulty than for a
Galerkin method;

• their condition numbers should be comparable to those in the Galerkin
method;

• discretization should be accomplished using standard, easy to use finite
element spaces.

The first condition will be violated if (25) involves, fractional or negative order
Sobolev space norms because such norms are not computable. The second and
third conditions will be violated if for some si and tj we have that si + tj ≥ 2. In
this case the term ‖Lijuj − fi‖0−si will effectively involve second, or higher order
derivatives.

For simplicity we consider the case when Xq is constrained by the boundary con-
dition in (4) and (25) does not involve trace norms6. Next, (4) will be transformed
to a first-order problem. Here we rely on the important fact that any ADN-elliptic
system of order higher than one can be transformed into an equivalent first-order
system which is also ADN elliptic7. Even though we will see that this by itself is not
enough to ensure practical conforming DLSP, first-order systems remain the most
convenient setting for least-squares methods. This transformation can be effected
through the following process; see [1]. First, all variables are divided into two sets
according to their indices: a set {uk′} containing all variables for which tj > 1 and
a set {uk′′} of all variables for which tj ≤ 1. Then, the new variables are introduced
as uk′,j = ∂juk′ and these equations are appended to L. Next, all terms in L where
u′k is not differentiated remain unchanged. A term in which u′k is differentiated
is substituted according to the rule Dα(∂juk′) 7→ Dα(uk′,j). Although rewriting

5This amounts to existence of complete sets of homeomorphisms for (4), and is known to hold
for self-adjoint ADN and Petrovski systems; see [24]–[25].

6For examples of such least-squares methods we refer to [2], [26], and [30].
7This is not true if the usual definition of ellipticity, involving only differentiated terms, is

used.
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of L is not unique it can be shown; see [1], that the new operator is elliptic and
that max tj ≤ 2, min si ≥ −1. R is transformed to a boundary operator for the
first-order system in a similar manner. While this transformation is not unique too,
the relevant fact is that the new operator will satisfy the complementing condition
provided it was satisfied by the original R. As a result, we are guaranteed that the
first-order system remains ADN elliptic.

4.2. Least-squares functionals for first-order systems. Consider first the
case when (4) is homogeneous elliptic. Then si = 0 for all i = 1, . . . , N and
therefore tj = 1 for all j = 1, . . . , N . Assuming that Xq is constrained by R the
bound (24) specializes to

(27) ‖u‖Xq
=

N∑
j=1

‖uj‖q+1 ≤ C
N∑

i=1

‖
N∑

j=1

Lijuj‖q.

If (4) is not homogeneous elliptic, then there will be at least one equation index
si = −1. Since all Lij are at most of order one, there will be at least one index
tj = 2. Without loss of generality we can assume that for some 1 ≤ k ≤ N and
1 ≤ l ≤ N

(28) s1 = . . . = sk = 0; sk+1 = . . . = sN = −1;

(29) t1 = . . . = tl = 1; tl+1 = . . . = tN = 2,

respectively. As a result, now (24) specializes to

(30)
l∑

j=1

‖uj‖q+1 +
N∑

j=l+1

‖uj‖q+2 ≤ C
( k∑

i=1

‖
N∑

j=1

Lijuj‖q +
N∑

i=k+1

‖
N∑

j=1

Lijuj‖q+1

)
To define the norm-equivalent functionals we further restrict the range of q to -1
and 0. The choice q = 0 in (27) gives the functional

(31) JP (u; f) =
1
2

N∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
0,

while the choices q = −1 or q = 0 in (30) yield

(32) J−1(u; f) =
1
2

( k∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
−1 +

N∑
i=k+1

‖
N∑

j=1

Lijuj − fi‖2
0

)
and

(33) J0(u; f) =
1
2

( k∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
0 +

N∑
i=k+1

‖
N∑

j=1

Lijuj − fi‖2
1

)
,

respectively.

5. Continuous and discrete least-squares principles

All three functionals (31)-(33) are norm equivalent and lead to well-posed princi-
ples {Xq, J(·)}; however, only (31) is practical in the sense discussed in §4.1. Func-
tional (32) contains negative order norms while (33) has terms with tj − si = 2,
i.e., their total order is two. Thus, if the first-order system fails to be homogeneous
elliptic then the conforming DLSP is impractical and we must consider the choices
of norm equivalent, quasi-norm equivalent, or perhaps even non-equivalent DLSP.



LEAST-SQUARES FEM FOR FIRST-ORDER ELLIPTIC SYSTEMS 57

5.1. Homogeneous systems. Consider a first-order homogeneous system and
its associated CLS principle {X0, JP (·)}. The minimization space is X0 = {u |u ∈∏N

j=1 H1(Ω); Ru = 0 on Γ}, and the necessary condition is given by the variational
equation

(34) seek u ∈ X0 such that Q(u;v) = F (v) ∀v ∈ X0 ,

where now

Q(u;v) =
N∑

i=1

( N∑
j=1

Lijuj ,
N∑

j=1

Lijvj

)
0

and F (v) = (f ,
N∑

j=1

Lijvj)0.

The next theorem shows that a conforming DLSP {Xh, JP (·)} is practical, quasi-
optimal, and leads to easy to precondition matrices with condition numbers com-
parable to those in Galerkin methods.

Theorem 4. Assume that (4) is homogeneous elliptic and let

Xh = {uh |uh ∈
N∏

j=1

Sh
d , Ruh = 0 on Γ}

for some integer d ≥ 1. Assume that u ∈ Xq for some q ≥ 0. Then,
(1) the least-squares variational problem (34) has a unique solution u ∈ X0 for

any f ∈ Y0;
(2) the discrete least-squares variational problem

(35) seek uh ∈ Xh such that Q(uh;vh) = F (vh) ∀vh ∈ Xh ,

has a unique solution uh such that

(36) ‖u− uh‖1 ≤ Chd̃‖u‖d̃+1, d̃ = min{d, q};

(3) the least-squares discretization matrix Ah defined by Ah
ij = Q(φh

i ;φh
j ) is

spectrally equivalent to the block diagonal matrix diag(D, . . . , D) with Dij =
(φh

i , φh
j )1. Here {φh

i } and {φh
i } denote standard nodal bases for Xh and Sh

d ,
respectively. Furthermore, cond(A) = O(h−2).

Proof. Since each Lij is of order at most one,(
Lijuj ,Lklvl

)
0
≤ ‖Lijuj‖0‖Lklvl‖0 ≤ C‖uj‖1‖vl‖1.

In combination with (27) this verifies hypothesis A. for the homogeneous elliptic
case and implies that Q(·; ·) is continuous and coercive on X0×X0. Thus 1. follows
from Theorem 1. The second part follows from the fact that Xh ⊂ X0 by standard
finite element arguments.

Let ξ and ξi denote the nodal coefficients of uh and uh
i . From the identities

ξT Ahξ = Q(uh;uh) and ξT
i Dξi = (uh

i , uh
i )1 and the fact that Q(·; ·) is continuous

and coercive it follows that

C−1
N∑

i=1

ξT
i Dξi ≤ ξT Ahξ ≤ C

N∑
i=1

ξT
i Dξi,

i.e., Ah and diag(D, . . . , D) are spectrally equivalent. To find a bound for the
condition number of Ah, we use (2) and coercivity of Q(·; ·):

C−1h2M |ξ|2 ≤ ‖uh‖2
0 ≤ Q(uh;uh) ≤ C‖uh‖2

1 ≤ Ch2M−2|ξ|2

The last inequality follows from (3). Thus, cond(Ah) = O(h−2). �
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5.2. Non-homogeneous systems. For non-homogeneous systems conforming DLSP
violates one or more practicality conditions. Here we consider practical DLSP which
deviate from the conforming setting. We discuss the impact of such deviations upon
the finite element method.

5.2.1. Weighted least-squares principles. Weighted least-squares principles
are based on the premise that in finite dimensional spaces all norms are equivalent.
Thus, a norm which appears in a least-squares functional and is impractical can be
replaced by L2 norm weighted by the appropriate equivalence constant. For (32)
and (33) this substitution formally leads to two different discrete functionals given
by

(37) Jh(u; f) =
1
2

(
h2

k∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
0 +

N∑
i=k+1

‖
N∑

j=1

Lijuj − fi‖2
0

)
;

(38) Jh(u; f) =
1
2

( k∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
0 + h−2

N∑
i=k+1

‖
N∑

j=1

Lijuj − fi‖2
0

)
,

and two different principles {Xh, Jh(·)}. However, it is easy to see that both prin-
ciples belong to an equivalence class of optimization problems

(39) min
uh∈Xh

Jh(uh; f) .

where Jh(·) is a functional obtained from (37) or (38) by multiplication with a
common (and unimportant for the minimization) factor hα. For reasons that will
become clear later we consider (37) to be the generating member of this class. The
necessary condition for (37) is

(40) seek uh ∈ Xh such that Bh(uh;vh) = Fh(vh) ∀vh ∈ Xh ,

where now

Bh(uh;vh) = h2
k∑

i=1

( N∑
j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)
+

n∑
i=k+1

( N∑
j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)

Fh(v) = h2
k∑

i=1

(fi,
N∑

j=1

Lijv
h
j ) +

N∑
i=k+1

(fi,
N∑

j=1

Lijv
h
j ) .

Theorem 5. Assume that the indices si, tj are given by (28) and (29), respectively,
and let

(41) Xh = {uh |uh ∈
l∏

j=1

Sh
d ×

N∏
j=l+1

Sh
d+1; Ruh = 0 on Γ}

where Sh
d and Sh

d+1 are finite element spaces satisfying (1) for some d ≥ 1. Also,
assume that there exists a positive integer r ≥ d such that the exact solution u of
(4) belongs to the space

Xr = {u |u ∈
l∏

j=1

Hr+1(Ω)×
N∏

j=l+1

Hr+2(Ω); Ru = 0 on Γ}.

Then,
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(1) the least-squares problem (40) has a unique solution uh and

(42)
l∑

j=1

‖uj − uh
j ‖0 +

N∑
j=l+1

‖uj − uh
j ‖1 ≤ hd+1

( l∑
j=1

‖uj‖d+1 +
N∑

j=l+1

‖uj‖d+2

)
;

(2) condition number of the matrix in (40) is bounded by O(h−4).

Proof. The first part of this theorem is a modification of a result of Aziz et. al. [2].
To show the second part we use (30) with q = −1 and proceed as in Theorem 4 to
find that now

C−1h2M+2|ξ|2 ≤ h2‖uh‖2
0 ≤ Bh(uh;uh) ≤ C‖uh‖2

1 ≤ Ch2M−2|ξ|2.

�

The weighted DLSP described here differs substantially from the conforming
setting of §5.1. The CLSP related to the generating member of (39) is the pair
{X−1, J−1(·)} where X−1 =

∏l
j=1 L2(Ω) ×

∏n
j=l+1 H1(Ω) and J−1(·) is (32). In

the DLSP this functional is replaced by (37) which is minimized over the subspace
Xh of X−1. As a result, (32) can be restricted to Xh, but (37) is not meaningful
for X−1. Furthermore, if (3) holds for Xh one can show that

(43)
h2

C

( l∑
j=1

‖uh
j ‖20 +

N∑
j=l+1

‖uh
j ‖21

)
≤ Jh(uh) ≤ C

( l∑
j=1

‖uh
j ‖20 +

N∑
j=l+1

‖uh
j ‖21

)
,

while in the conforming setting the bounds are independent of h. As a result, now
the spectral equivalence between the least-squares matrix and the matrix associated
with the standard inner product on X−1 degrades as h → 0. According to §3 we
call such DLS principles quasi norm-equivalent. The other weighted functional can
be formally associated with {X0, J(·)} where X0 =

∏l
j=1 H1(Ω)×

∏n
j=l+1 H2(Ω),

and J(·) is (33). In this case Xh is not a subspace of X0 and (33) is not meaningful
for discrete functions. For this reason we prefer to consider the class (39) as being
generated by the first functional. Finally, note that for (38)

(44)
1

C

( l∑
j=1

‖uh
j ‖20 +

N∑
j=l+1

‖uh
j ‖21

)
≤ Jh(uh) ≤ C

h2

( l∑
j=1

‖uh
j ‖20 +

N∑
j=l+1

‖uh
j ‖21

)
.

5.2.2. Discrete negative norm least-squares principles. The appearance of
the factor h2 in (43) is caused by the fact that h‖φh‖−1 ≤ hC‖φh‖0 ≤ C‖φh‖−1,
which means that the equivalence between h‖ · ‖0 and ‖ · ‖−1 degrades as h → 0.
Thus, asymptotically, h‖ · ‖0 is not a good approximation of the negative norm. To
define a DLSP with better equivalence properties we use an approach suggested by
Bramble et. al. in [5]. As before, let Dij = (φi, φj)1 and let Bh denote a symmetric
and positive semidefinite operator that is spectrally equivalent to D−1 in the sense
that

(45) C−1(D−1v, v) ≤ (Bhv, v) ≤ C(D−1v, v), ∀v ∈ L2(Ω) .

We define the discrete negative norm as8

(46) ‖v‖−h = ((h2I + Bh)v, v)1/2, ∀v ∈ L2(Ω) .

8Without Bh norm ‖ · ‖−h reduces to h‖ · ‖0, i.e., this term is critical.



60 PAVEL BOCHEV

Lemma 1. There exists a constant C such that for any u ∈ L2(Ω)

(47) C−1‖u‖−1 ≤ ‖u‖−h ≤ C(h‖u‖0 + ‖u‖−1) .

If the inverse inequality (3) holds for Sh
d then

(48) C−1‖uh‖−1 ≤ ‖uh‖−h ≤ C‖uh‖−1 ,

that is, ‖ · ‖−h is equivalent to ‖ · ‖−1 on Sh
d .

For a proof of this lemma we refer to [8]. To define the norm-equivalent DLS
principle we replace (32) by the discrete negative norm functional

(49) J−h(u; f) =
1
2

( k∑
i=1

‖
N∑

j=1

Lijuj − fi‖2
−h +

N∑
i=k+1

‖
N∑

j=1

Lijuj − fi‖2
0

)
and consider the pair {Xh, J−h(·)} where the space Xh is defined as in (41). The
discrete optimization problem is

(50) min
uh∈Xh

J−h(uh; f).

The discrete variational problem is given by

(51) seek uh ∈ Xh such that B−h(uh;vh) = F−h(vh) ∀vh ∈ Xh ,

where

B−h(uh;vh) =
k∑

i=1

( N∑
j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)
−h

+
N∑

i=k+1

( N∑
j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)

F−h(v) =
k∑

i=1

(fi,
N∑

j=1

Lijv
h
j )−h +

N∑
i=k+1

(fi,
N∑

j=1

Lijv
h
j ) .

Theorem 6. Assume that Xh is defined by (41) for some integer d ≥ 1 and that
the exact solution u of (4) belongs to the space Xr, defined in Theorem 5, for some
r ≥ 0. Then,

(1) the least-squares variational problem (51) has a unique solution uh and

(52)

l∑
j=1

‖uj − uh
j ‖0 +

N∑
j=l+1

‖uj − uh
j ‖1 ≤ C hd̃+1

( l∑
j=1

‖uj‖d̃+1 +

N∑
j=l+1

‖uj‖d̃+2

)
where d̃ = min{r, d};

(2) the condition number of the least-squares discretization matrix for (51) is
bounded by O(h−2) and this matrix is spectrally equivalent to the block-
diagonal matrix

M = (G, . . . , G︸ ︷︷ ︸
l

, D, . . . ,D︸ ︷︷ ︸
N−l

),

where G = (φh
i , φh

j )0 and D = (φh
i , φh

j )1.

Proof. We first show that B−h(·; ·) is continuous and coercive on Xh ×Xh. Since
uh

j ∈ Sh
d or Sh

d+1 and the order of each Lij is at most one, it follows that Liju
h
j ∈
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L2(Ω) for all i, j = 1, . . . , n. Then, using the lower bound in (47), the norm-
equivalence of (32) and the fact that Xh is a subspace of X−1 yields

B−h(uh;uh) =
k∑

i=1

‖
N∑

j=1

Liju
h
j ‖2
−h +

N∑
i=k+1

‖
N∑

j=1

Liju
h
j ‖2

0

≥ C
( k∑

i=1

‖
N∑

j=1

Liju
h
j ‖2
−1 +

N∑
i=k+1

‖
N∑

j=1

Liju
h
j ‖2

0

)

= CJ−1(uh) ≥ C
( l∑

j=1

‖uh
j ‖2

0 +
N∑

j=l+1

‖uh
j ‖2

1

)
= ‖uh‖2

X−1
.

To show continuity we note that all discrete negative norm terms in B−h(·; ·) corre-
spond to an equation index si = 0; i = 1, . . . , k, while all L2 terms - to an equation
index si = −1; i = k + 1, . . . , n. Let us fix 1 ≤ i ≤ k so that si = 0. Then, using
Cauchy’s inequality, the fact that the order of each Lij is at most one, and the
inverse inequality (3), the i−th term in B−h(·; ·) can be bounded as follows:( N∑

j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)
−h

≤
( N∑

j=1

‖Liju
h
j ‖−h

)( N∑
j=1

‖Lijv
h
j ‖−h

)

≤
N∑

j=1

(
h‖Liju

h
j ‖0 + ‖Liju

h
j ‖−1

) N∑
j=1

(
h‖Lijv

h
j ‖0 + ‖Lijv

h
j ‖−1

)

≤
N∑

j=1

(
h‖uh

j ‖1 + ‖uh
j ‖0

) N∑
j=1

(
h‖vh

j ‖1 + ‖vh
j ‖0

)

≤
N∑

j=1

‖uh
j ‖0

N∑
j=1

‖vh
j ‖0 .

Next consider a term with k + 1 ≤ i ≤ n so that si = −1. Since degLij ≤ si + tj
and tj = 1 for j = 1, . . . , l it follows that the first l differential operators have
order zero, while the last N − l have orders bounded by 1, that is, degLij = 0 for
j = 1, . . . , l and degLij ≤ 1 for j = l + 1, . . . , N . Then,( N∑

j=1

Liju
h
j ,

N∑
j=1

Lijv
h
j

)
0
≤

N∑
j=1

‖Liju
h
j ‖0

N∑
j=1

‖Lijv
h
j ‖0

=
( l∑

j=1

‖Liju
h
j ‖0 +

N∑
j=l+1

‖Liju
h
j ‖0

)( l∑
j=1

‖Lijv
h
j ‖0 +

N∑
j=l+1

‖Lijv
h
j ‖0

)

≤ C
( l∑

j=1

‖uh
j ‖0 +

N∑
j=l+1

‖uh
j ‖1

)( l∑
j=1

‖vh
j ‖0 +

N∑
j=l+1

‖vh
j ‖1

)
Combining both inequalities yields continuity in the norm of X−1:

B−h(uh;vh) ≤
( l∑

j=1

‖uh
j ‖0 +

N∑
j=l+1

‖uh
j ‖1

)( l∑
j=1

‖vh
j ‖0 +

N∑
j=l+1

‖vh
j ‖1

)
= ‖uh‖X−1‖vh‖X−1 .(53)

This establishes existence and uniqueness of the least-squares solution uh. To prove
the error estimate we note that (51) is a consistent scheme and thus, B−h(u −
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uh;vh) = 0 for all vh ∈ Xh. However, the error estimate cannot be established
using a standard finite element argument because B−h(·; ·) is coercive and contin-
uous only on Xh×Xh. Thus, we proceed as follows. Let uh

I denote the interpolant
of the exact solution u so that from (1) it follows that

‖u− uh
I ‖X−1 ≤ hd̃+1‖u‖Xd̃

.

Since
‖u− uh‖X−1 ≤ ‖u− uh

I ‖X−1 + ‖uh − uh
I ‖X−1

we only need to bound the last term above, which belongs to Xh:

‖uh − uh
I ‖2

X−1
≤ CB−h(uh − uh

I ;uh − uh
I ) = CB−h(uh

I − u;uh − uh
I )

≤ CB−h(uh
I − u;uh

I − u)1/2B−h(uh − uh
I ;uh − uh

I )1/2

≤ CB−h(uh
I − u;uh

I − u)1/2‖uh − uh
I ‖X−1 .

Thus,
‖uh − uh

I ‖X−1 ≤ CB−h(uh
I − u;uh

I − u)1/2.

To bound the energy norm of uh
I − u = E note that

B−h(E;E)1/2 ≤ C
( k∑

i=1

‖
N∑

j=1

LijEj‖−h +
N∑

i=k+1

‖
N∑

j=1

LijEj‖0

)
.

Using (47) for 1 ≤ i ≤ k,

‖
N∑

j=1

LijEj‖−h ≤
N∑

j=1

(
h‖LijEj‖0 + ‖LijEj‖−1

)
≤

N∑
j=1

(
h‖Ej‖1 + ‖Ej‖0

)
≤ hd̃+1

l∑
j=1

‖uj‖d̃+1 + hd̃+2
N∑

j=l+1

‖uj‖d̃+2.

For k + 1 ≤ i ≤ N , we separate terms of orders zero and one:

‖
N∑

j=1

LijEj‖0 ≤
l∑

j=1

‖LijEj‖0 +
N∑

j=l+1

‖LijEj‖0

≤ C
( l∑

j=1

‖Ej‖0 +
N∑

j=l+1

‖Ej‖1

)
≤ Chd̃+1

( l∑
j=1

‖uj‖d̃+1 +
N∑

j=l+1

‖uj‖d̃+2

)
.

This establishes (52). Lastly, the spectral equivalence between the least-squares
discretization matrix Ah and the matrix M follows from the identities ξT Aξ =
B−h(uh;uh), ξT

j Dξj = (uh
j , uh

j )1, ξT
j Gξj = (uh

j , uh
j )0, and continuity and coercivity

of the bilinear form. This also implies that cond(A) = O(h−2). �

Both the weighted norm DLSP, considered in §5.2.1, and the discrete negative
norm DLSP introduced in this section, are associated with the same CLSP given by
the pair {X−1, J−1(·)}, but do not represent a conforming DLS principle. However,
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for the weighted functional (37) the lower equivalence bound in (43) depends on h,
while for (49) one can show that

1
C

( l∑
j=1

‖uh
j ‖2

0 +
N∑

j=l+1

‖uh
j ‖2

1

)
≤ J−h(uh) ≤ C

( l∑
j=1

‖uh
j ‖2

0 +
N∑

j=l+1

‖uh
j ‖2

1

)
.

According to the terminology of §3 we call such DLSP norm-equivalent. Norm
equivalent principles give rise to linear systems which are much easier to precon-
dition than systems obtained from quasi-norm equivalent principles. Since the
Gramm matrix G is spectrally equivalent to h2 I, where I is the unit matrix in RM ,
the matrix

(54) L = diag(h2 I, . . . , h2 I︸ ︷︷ ︸
l

, T, . . . , T︸ ︷︷ ︸
N−l

)

where T is a preconditioner for the Poisson equation, is a preconditioner for (51).
Existence of good preconditioners is critical to the utility of the negative norm
DLSP because it leads to dense matrices and must be implemented in an assembly
free manner. This rules out the use of direct methods to solve (51).
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