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Abstract

The object of this paper is to construct a class of multivariate rational interpolation formmlas
that can be used to solve interpolation problems with function data given at equidistant knots of
various directed lines in the higher dimensional Euclidean space. Our formulas are built up of some
explicit multivariate rational fanctions involving three sets of free parameters so that they enjoy
sutficient flexibility for interpolating functions of seversl variables possessing certain kinds of singu-
larities (poles). The method adopted is an extension and modification of that deseribed im our

previous papers (¢f. 3], [5]).
’-

§ 1. Rational Interpolation S (f:z) on a Directed Line

Denote by R* and C" the n—dimensional real Euclidean space and complex
Euclidean space respectively. We shall adopt the following usual notations:

w=($1.r Ty mﬂ) ERH; 2= (zl: Ty zﬂ) Ecﬂl
<Z, §>=§zi Ei:r (E: EE@“):

1

1 7 AT
|z[=<ﬁ, E>E:(2ﬁiﬂi) .

=1

In particular, we write € instead of C’,

Given a set of points 4, €C"(£=0, 1, 2, --+, m)}, and a function f: € — C. Tt is
easily observed that Gould—-Hsu’s inversion formulas™ can be put in the following
form

9(4) = 3 (—0*(; Yok, 9f (4), ' (1.1)
: ¥ Qua1THhoby,a (9
Fd) = B (-prfmtiial e(dy,  (1.2)

where =0, 1, +--, m, and {a;}, {b;} €C are sequences of parameters and Y (w, k) is
& sequence of polynomials defined by

Yz, k) =‘Iz[l(m¢+b;m), Yz, 0)=1, zCC,

in which {a,} and {b;} are chosen such that (o, k) =0 for @, k=0, 1, 2, ---,

In what follows let the set of points {4,}7 take the form A;=A4,+jh(j=0,1, -,
m) with A= (hy, -+, h,) €C" and k(é=1, +--, n) being complex constants. Suppose
that g, »;): € X C"— C is a homogeneous function of v with o;,€C* (j=0, 1, ---,
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m), viz. (M, ;) =Ap(u, ;) for real A. Then, applying the process of construction
for interpolation formulas as described in [3], substituting (1 1) into the equation
(1.2) with s=m, and replacing the disorete variable m by the continmous parameter

g (z— Ao, v5) /o (R, v;) €EC
in each term of the resuliant summation, we obtain

< 3 el Lo B\ o6 de, v) ‘1
Su(f; D= 374 3 ?«.,n( ot )¢( e

b
silinis R () (ak+1+kbk+1)(j)¢(j, B, 4, k=0,1, -, m,

That (1.8) is actnally a multivariate interpolation formula for f(z) can be
proved as a theorem.

We may rewrite (1.3) in the form

Sn(f; ) = 21F(4) B @) (1.4)
with .
» @(z2— Ao, v;) 3
- @ -3 ; pe—do, 1) o1\
i (2) Ezﬁxﬁ.,( @ ;5@;) )l;-( s @f)j ,k+1) : (1.5)
Theorem 1. The summation Sy (f: 2) defined by (1.4) satisfies the interpolation
conditions 3
Sm(f; -A-r) “_".f(-A-r): ‘T"__O,r 1: see, m, | (1'6)

Proof. In the formula (1.4) (or (1.3)) put z=A4.,. Since @(u, +) is a homo-
geneous function of ¥ we have - |

p(A,— Ao, v) _ @(rh, v;)
qj(h: 'uj) ‘P(h: ﬁ.f)
Thus we may evaluate 1™ (4,) as follows

i (4,) = 3 aa( ) Jlr, kD)

: )(E Yo (G, Db (r, BHD™ (0 Gpatkbu)

=9".

e g ('1)“501:(

T — §\

-(5) B 0 (G, B, D7

k=4

“(")Z <0 (TG ke, kit

= (', Jou=tn.

Here the final result is attained by making use of the orthogonality relation (3.2) of
the paper [2]. Consequently we have

Su(f; 4 = BF AU (A) = 27 (A)8 =1 (4D,
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It is olear that for a given sequence of points {4,} the formula (1.3) (or (1.4))
is a multivariate interpolation formula in which the sequences {a;}, {b:}, {v.} and
the auxiliary funotion ¢: C*XC"—> C may be assigned arbitrarily. As the proof
shows, the fact that (1.3) satisfies the interpolation condition (1.6) is independent
of the choices of tho sequences {az}, {bx}, {vz} and @. Thus (1.8) involves a large
class of mulfivariate interpolation formulas.

In particular we can get a class of rational interpolation formulas of the form

ST YR -
Sn(f; D)= 2F(A) B dnl By wd g (S > , kL)L @D

This follows from (1.8) by taking p(u, v) =<u, v>.
For the case z€C and {4,} and {%;} being sequences of points of C we have

2—Ao, v2/<h, v>=(2—40)v;/he ‘Uf‘“(’ff'_AO)/h.

Thus it i3 clear that (1.7) may be regarded as an extension of the one-dimensional
generalized Newton inferpolation formula (of. [4], [5]).

Remark 1. Using geometrical terminology, the knots of interpolation A,= A,
+4h(9=0, 1, «-, m) aze all lying on the directed line I which passes through A4,
with preassigned direction h= (1, *-+, hy) €EC". Hence (1.8) just represents an
interpolation prooess along the fixed dlI‘Eﬁth line L, so that it can only be used for
approximate computation of the function f(2) on L or near L. However, in order to
compute the approximate values of f(z) in & given domain of C", one should make
use of an interpolation formula with inferpolation knots distributed on various
directed lines pieroing through the given domain. Such formulas will be constructed
in § 3, .
Remark 2. The proof of Theorem 1 shows that I™ (4,) =3, (r={) 1, e, m)
does not depend on m. Consequently the summation (1.8) may be extended into a
formal series, namely we have

def -

§(f; =2 f (44 (),

where

st =[2G Ao, v) @-gm o
Z,(z) gjlﬂp( ‘P(}"}; 'UJ) l{' i alh *v;)j k+1) .

Obviously, §(f;2) satisfies the interpolation conditions
S(f; 4)=f(4,),  r=0,1,2,

Remark 8. Ior the rational interpolation formula (1 7) wfsh n>2 it is seen
that the eguafions

<z_'-A-0: ‘IJ> stz of . sne
',b( T k+1)—0 51,; 0, 1, 2,

represent some hyperplanes in the space €®, on which every pomﬁ is & singunlarity
(pole) of 8m(f; 2). The hyperplanes may be called singularity regions. If we know
such regions relating to f(z) in advanece, we may suitably choose {a;}, {8} and {v;}
in order t0 make the formula S, (f; z) reflects those s:mgula,rlty regions as much as
possible.
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§ 2. A Connection with Kergin’s Interpolation

Ag is known, Kergin’s interpolation is essentially a kind of extension of
Lagrange’s polynomial interpolation in €", so that it is quite different from the
interpolation considered in this paper. However there is some connection between
their methodology. T

As an illugtration, let us take »;=A,;(§=0, 1, -+, m), so that (1.7) gives

Sn(f; ) = 3} F(ADU™ () (2.1)
with
<£‘—'AU:“'A:F> | r
™ () = 2 :m( <h,kA;> )yb( <zzﬁszﬂ‘>, b+1) " (2.2)

We may show that (2.1) oan also be obtained by using the idea of Kergin’s interpo-
lation (of. § 1.8 of [1]). |

Suppose that f(z): &> C is an ana.lytm funotion. Then we have the Cauchy-
Szego formula, |

__R- (ﬂ—-i) f (&) | o
rE@ =P |l d(®,  lel <R (2.8)
where S(R) is the spherical surface of radius R with center at the origin of €°, and
dv(£) is the area element of S (R). Cauchy-Szego’s kernel function

__Be(n—1)! 1
KO- ®=G o
may be considered as a composite funotion
K(3) = £t —K2, B>

P Ll
Asgume that the points 4;(§=0, 1, +--, m) are all inside the sphere S(R). Now apply
the generalized Newton interpolation formula._ to K (3) with &;=R*"—{4;, £>(j=0,
1, «-+, m) as interpolation knots, we get

gy o Beln—1)1 & Cx
B T B T N/ ==

(t— f'“)/h +k Y(j, &)
o( )2( ~1)! (j) s .
- R-(;w-;i_)!. é g"’ ((*““?/h* )lp((t—tﬂ)/h* k1) "5,

where A*={—5A, £>. Substituting the quantities t=R*— {2z, &>, ;,=R?—{4,, &> into
the above expression and integrating over S(R), we obtain

Sulf; D=, . SulE @ £)iDf ©d(®)

S, B=DI T
33 Gl G, 4 b, D),

where



168 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 2

S 7 - —f
66, 4y, b, =TI TP Yy (e D g @4, ).

Thus an application of Cauohy—Szego’s integral formula to the above integral gives
< c <"”"H'A: A>/<h’:A> — A
Su(f; =3 Sanf(a) (L ) g (St L

% $hy, Ay
This is actually equivalent to (2.1),

, k1)

§ 3. Rational Interpolation on an Arbitrary Set of Directed Lines

Given p directed lines Ly, -+, L, in €* with m,+1 knots on L, (1<r<p), namely
Af? = A4 GR7, =0, 1, +-», m,; r=1, 2, «e, p, (3.1)
where the direction of L, is determined by 2" == (A", -+, A) €C*. We shall assume
that all the directions A" (r=1, «-., p) are different, and moreover, all the knots A"
(0<j<<m,, 1<<r<p) are distinet from each other. It can be shown that there exists a
kind of multivariate rational interpolation fﬂrmulas with .all the points given by
(8.1) as interpolation knots.

For each fixed 7, {4} are 1ym.g on a directed line segment so that one may
employ (1.7) to construot a rational interpolation formula Si (f; z) on that directed
line 1,

In accordance with Lagrange’s interpolation process, one may introduce the
following

w(2) = H H{z At Ay, A=(L 1, %, DEC,

w (r, j) = II H’(A‘”-A“”, 45,
: =1 z=40
where I] [[’ means omitting the factor with u =4, s=4 in the above product. Then i}
is easily observed that the polynomials defined by

w(2)
Be(e) = 2 G— Ay, e (r, §)

satisly the conditions
B (47)y=1, 0<j<m,,
Br (AF)) =01 Q?é‘r,

Consequently we may state the following
Theorem 2. A formula of the form

EX(f;2)= E Br(2)8:, (f; 2) (3.2)
satisfies the interpolation conditions =
SP (f; A7) = F (45, (3.8)

where r=1, 2, ---, p; =0, 1, -, my; m=p+my+--+my,

Of course this theorem can easily be justified by means of Theorem 1.

Remark 4. Though the formula (8.2) is much more complicated than the
ordinary Lagrange interpolation formula in higher dimensions, it may be useful for
the cages where the interpolated funotions have some poles (singularities) distributed
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L

on some lines, planes or hyperplanes in C"

Remerk §. For the case where the domain of interpolation ZCC" is a simply

conneoted one, we may choose a set of various directed lines {L,} pieroing through &
and take sufficiently many knots of the form (8.1) on these directed line segments
inside 2 so that the formula (8.2) may be used as an interpolation formula for
interpolating f(z) defined on 2,
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