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THE GENERALIZED PATCH TEST FOR
ZIENKIEWICZ'S TRIANGLES'®

Sm1 ZuoNa-cr (& # &)
(China University of Sciencs and Technology, Hefet, China)

" Abstract

It is proved that Zienkiewicz’s triangles for plate bending problems pass Stommel’s gensralized
patch test——a necessary and sufficient condition for convergence of nonconforming finite elements——
for mesh () generated by three sets of parallel lines, but do not pass it when ‘“union jack™ mesh (b)
or when another mesh (¢) is used. In the latter two cascs the approximations are divergent.

1. Introduction

Tt is well known that Zienkiewicz's triangles™ for plate bending problems are
nonconforming,  £ince the gradients of the shape functions are discontinuous at
interelomentt boundaries. Concerning the convergence of this element, numerical
experiments in [1, 2] bave shown that mesh (&) of Figure 1, generated by three sets
of parallel lines (called for brevity ihe condifion of parallel lines), guarantees
convergence, whereas mesh (b) of Figure 9 composed of “union jack” figures does
not give convergence. In order to explain why Zienkiowioz’s friangles were
convergent in one configuration but not in others, Irons-Razzaque oreated the
patoh test™® and showed that Zienkiewicz’s triangles pass the test under the condition
of parallel lines, bui do not pass it for the union jack configuration.

Later on, Lascaux and Lesaint™’ gave & mathematical proof of the convergence
of Zienkiewicz’s iriangles under the condition of parallel lines and derived
corresponding error estimates for the plate problem. More recenily, Stummel ¥
pointed out that the patoch test of Irons is neither necessary nor sufficient for
convergencs of nonconforming cloments, and proposed a generalized patoh test
instead, which does indeed give both mnecessary and sufficient conditions for
convergenoce. Stummel proved in [6] that various nonconforming elements pass this
generalized patch test; however, Zienkiewicz's iriangles were not analysed in that
paper. - § - g B s - .
- Binoo passing the patoh test i8 1o longer necessary for convergence, it is not
proved yeéil “whether mesh (b) and mesh (o) of Figure 8, that do not pass Irons patch
test, diverge or not. Concerning mesh (o), the authors in [1] state: “the CONVErgenice
s most unlikely, and this case has not been investigated numerically”.

We shall prove in his paper that: R -
(1) Zienkiewicz’s iriangles pass the generalized patoh test under the condition6f” -
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parallel lines; '
(ii) mesh (b) and mesh (ﬁ) do not pass the generalized patch test and, thuﬂ do

not converge.

According 10 Stummel’s theory®?, the Va.lldﬂy of tha generalized pa.tch test,
together with the approximability condition and strong- continuity oondition at
interelement boundaries (the lafter two condltmns are gsatisfied by Zienkiewioz's
triangles for arbitrary decompositions) , provide the preaonditmns for the validity of
a generalized Rellich compaciness theorem. As a consequenoce thereof, very general
stability and convergence theorems are valid about approximations of general
coercive elliptic variational equations and eigenvalue problems with variable, not
necemmly smooth coefficients. '

2. Zlenk:lewmz 8 Trlangles under the Conditlon of Parallel Lines

We conmder a trmngulatlon Ay of a given po]yhedral domain GCR? with finite
elements K. ILet A(K)=diameter of K, h—ma.x{ h(K)}, p(K) = the greatest

HEe9y

diameter of the oircles inscribed in K. We sssume thet the triangulation 3 is
:me:gizlla:r“:I that is, there exists a constant o mdependent of h S'ﬂﬁh that

M) <op(K), K€, ' @

when the greatest diameger A approaches zero. = -
Given a friangle K with vertices pi= (%, %), 1-5@%3 Wwe 1et M denote the area
coordinates relative to the vertices p;, A\ the area of K, and. . - - .

g:l."_'mﬂﬂ =g — ¥g, gﬂ"ﬁai‘*%_ﬁl, Ea=+=fﬂig=ﬁ‘f1—:’vg, s . &2)
T yﬁa —=Ya—Ys, N2a=Ys1—Ys— Y1, M= Y= Y1— Ya,

Zienkiewioz's trmnglea are thus defined as follows (ﬂee [9, p. 1871):

(i) Nodal parameters are the function values and the values of the gradients at

the vertices of KX (In case of Dirichlet bounda.ry oondltwnﬂ noda.l parameters are

zero at the vertices on the boundary.);
- (i) The space Z(K) of the shape funerbmns wis a spaoe of polynortua.ls of third

degree having the fo]lawmg form:
- w(p) =ad+GhatasAst-a ?F?ua-i--—- 2.13.92.3 +aﬁ (3.23.1-1-— 3.1&9;\.3)

+as(xm+—- mgx@)w-.r(z.ﬂﬁ mm)

+aa(?«*11+ Mahaha )+ ( MAat 3 zima) . ®

 The un:ique polynomal in Z(K), deternnned by itg nodal par&meterﬂ deﬂorlbed
a.bove is - ST B e .

w@)'=2t¢ao(pa +¢w(p)+pﬁvfﬁ)] SRR

where . L e s el | ',,r S
=13 (B—20) + 2hehahe, e ()

‘F’c—-fm(?-«‘lm-l-r— Mhahs &H(mmr msxs) L ®
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'.*ﬂ'i;'I='-'?1':+‘1(?\-;23‘--!4.2'1-1'-'3"-1}5"»"555.'&3~ *ﬁi+ﬂ(lf3441+%11lﬂﬁ-3) - i (7)
with Msg =g, §i+r—'§k, hig=", +j=k (mod 3). |

1% is also shown in [8] that the space .?(K') 1nnludes the consgtant eurva.ture states,
i. e.

- «ﬁ’sC?(K)Cﬁ’s, | |
WhBI‘B 2, denot-es the space of 2]l polynomials of at most r—th degree.

Now let ¥, be the finite element spaces of funections defined on &, whose
restrictions to each element K are the polynomials w in #(K). For a fourth order
problem, the validity of the generalized patoh test for the spaces V', oconsists in
showing -that for. every bounded - sequenﬁa wn &V and for A0, tha following
relations - .

4 gl 7,06, w) =3 el ds0, =12, ®)
(i) T, )= zj o Z‘;’: N,ds>0, 1, k=1, 2 (9)

hold for all test funotmnﬂ l,b cor (G[) Wic O’""(R“) in oase Of D1r1cshlet boundary
conditions), where N, are the componenis of the unit, ve«otor in the outward normal
direction on the bounda.ry of the element K,

Theorem, 1. - Unider the condition of parallel lines the finite el&menﬁ spaces V;. PASS
the generabized patch test.

Proof. - (i) By definition of ¥, funotions wy € V' are continuous together with
their partial derivatives of first order at the vertices of the iriangles. Since &
polynomial of third degree in one variable on an interval ¥ is uniquely determined
by its function values and first derivatives at the endpoints of F, it follows
immediately that the ¢, are continmous on &, so that T,;(yy, w) represents a
telescoping sum in which the terms cancel pairwise. Therefore (8) follows.

(ii) In proving (9), we use a similar technique &s in [4]. Consider now the
case r=1, k=2. (The OiihE:I' ‘oases can be dealt with in an analogous way.) For

brewty, we omit tha suffix 4 in w, and Wmte -g-g——w,, o =y, Ny=N,, N;=N,,

3.‘1?2
80 that

T0(f, w) ;—-;:j* o, N ds, " (10)

Because of the uond.ltlon of parallel

lines, the edges of all tmﬂ.ngleﬂ of A

are parallel to three directionsa=pips,

b=1pyps, 0=0sp1, Hence Tu(l,b '.w)

can be writlen in tha form

Tu—T'-l-Tb-I-T" (11) :

where T° denotes ‘the “sam -6f $he |

integrals over all edges parallel to ~.

a, with T and 7 défined gimilarly,
Now, let us ponsider 7°. Let K4

"A?M and K= Anipypibotwo =~
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o, -]

adjacent triangles with common edge p; pi. The case thﬂ.t pg apﬂ:@G will be dlsoumed
below. Then the integrals over psp; axe |
T dst{ i N2dew Nlj pd—udds,  (12)

Pt

where ', w® denote, respeohvely, the restrmtlons of w to Ky and K,, with N} N,
the oomponents of the unit outward normal vectors on peps Telative 10 K, and X,.
Since w!-—w? is a polynomial of &eﬁond degree in one variable on psp; vanishing as
the endpoints, we have - . |

Wt —w? 4( - )—(w‘ w,,) (_pm) o<ty (13)
where pgy denotes the midpoint of pspy, ls is the leﬁgth of pg py, and ¢ i8 an absoissa
along psp1. Therefore, .

75, = dyss (=) () [ Wi )s (1 — o) a9)
— b ) = (et s(pip)). . (15)
 Recalling now the deﬁmhon of win (3), one can ven Ey that |
g’i { i) .=_ w(m) e ﬁaw.(pi)-————fm(z:a)%— nawf(ﬁ) -—-'*‘?s*ﬂf(f’a):
(pai) ———(w(pl?+w(ps)+W(pa))+“ (- 3&) Wy (pi)+-—-(§= —&1)Ws(pa)
+—8- (861—€s) ws () +§("h—3ﬂa) Wy (1) +'-§(m — 1) Wy Ps)
. +%—(3m-w=)wf(zﬂa), -
0 (3 w3 st ) + o o),

with 'bhe result thai

Wy ( Pa1) = 2A (51 7T +&a e +§a 3}%)(2”3 ' j{(%:'i‘fﬂ)w(ﬁh)
+Ea0(s) + Béat£)0 (o) + [ £t T (Ea—£0) [Eawa(m) +5 Go—E)Eaw(22)
[ et E G 8) e () + [ e bit =) art 5 s Jy( )

X =) oty () + [ — 5 kit 5 (Sm—na)&-—mfs]wr@s)} (16)
Uﬂing the condition of pa.rallel lines, we obfain a s:lmjlar equa.hty for the tna.ngle Ky

wﬂ(m“—-—{ BatE)u(p) — BxtE (1) —Eaw(2)
+[ st qgi—ga)]gaw.(pw[fﬁm(& &) Jeweo”

o S (fs 'fi) 'fn‘!ﬂ-(P&) = [—'—' ﬂa§1+— (3"?1—‘119) fn—ﬂa&]ﬁ’r(ﬁ)
[*rra£1+—-(m—3m)£=+— )+ L (oo ) 0. @
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____._._..——_———_—"' e B e — 'R T L o F T P—— T vt =i e ]

Henae,

(i) () = {2 - () (o) - -w(z:u)+—w31<w,cp1>—w,<pa>)

+-—-— (12— 28) (We (P0) —We(P2)) +— y/z1 (wy( P1) — (s

i T W13 —Ys) (wu(zsu) wy(pa))} 8L { (wia—was) + (Wia—Was) }, (18)-
where | |
wyy=w( D) —= (Pf) = '—E* (w,(p,,) + W:(P;)) -yi(‘w.-.r (Pt) +a0y(9)). (19)
By substituting (19) mto (14) we get | '3
| T;.m'=M 31{ (‘wm-"wm) + (wu— wﬂﬂ) }: - (20)
where - -
o (PR 1 WO an)

Bquation (20) gshows ‘thdat the ‘integrals over pgpy consist of two parts, one
relating fo terms on p:1P, and p,p; parallel to a———that 18 W2 —Was and the other
relating 0 terms on p.ps and p;p; parallel to b-———that i8 ws4—was., The cOmMMON
multiple My, depends on the diagonal psp; of the parallelogram pypapPapa,

For pspicag K 16.%" % WO have, for the case of Dirichlet boundar}r conditions,

o | T}’:.pi = Mg (‘wﬂ_waa) | - (22)
Otherw:ﬂe sinoe _|,b.€ 0#(9‘) , We _ﬁonelude |
- . s = ﬁlﬂ: 0- | (23)

Thus, if we obtain 7' by adding the integrals over a.]l edges parallel to ¢, we
derive the fullowmg decomposmon

- ‘= DG () + 2 Ga(s), (24)

a2 fa

where @4 (s), Ga(s) are the- 'ﬁermﬂ assooiated with all the edges parallel to @ and b,
respectively. For example, '

G4(pipa) = (-Mﬂi"-yﬂ)wﬂ: . _— (25)

| G p1ps) = (Mgs— M) W14, (26)
On the other hand, Ta.ylnf expansion yieldﬂ

.....

All the third derlvatwea aT® ﬁonska.nt since w i3 a polynomla.l of third degree on K
with M,EK S0 tha.'h T

S T T I

L |ugl<O#oles - en
Using the mverae prﬁ;perty we ge‘n' .5
A o || <Osk|w|sx A L ]

where all O; Al deng)'te generm constants independent of h
Furhhermore it may be seen that

o U ("’ﬂ_\bﬂ)s(l—ﬂ)ds <Cs|¥|1xiuEes (29) :
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2T s T o T P .

U (Per—Pas) s (1 — s)dsi 'di'l'li.x.ux.: _ | - (30)
and, by the mumptmn of a regular trmngulatmn it fﬂ]lows that '

Comb1mng inequalities (29) (80) and (31) we get

|Gi(£’1?a) <Ceh |y 1-E:u£.|wlﬂ,ﬂ'u
IGE(M‘) ga?hllp 1-E|UE||WIE Kys

and. so

T <O lplalwles,  wlia=Slwlis (32)
The other two terms 7° and 7™ can be treated in tha séme :ﬁa.y Thuﬂ we have |
| TPaa(, 0) | <Oohl |1 wlan, wEV, (33)

for all test funotions Yy €CF (GF) (tﬁEO‘“(R“") 111 Gase of Dlrmhlat boundary conditions).
This means that the test is satisfied.

Under the condition of parallel lines, we ha.ve shewn that Zienkiewicz’s triangles
pass. the ganeral]zed patoh test. |

3

Th&orem 2. Mesh, (b) and mesh (c) do not pass t}w gmmhrzad pwtch {est.

We shall show’, that for meshes (b) and (o), there exist sequences of trial
funotions 4w, €V, respectively, and a test function €O (@ WPEOs (R in
caso of Dirichlet boundary conditions) such that the test (9) does not hold HEHGB
Zienkiewioz's triangles for mesh: (b) and mesh (ﬁ) aTe d.wergent

Proof. (i) Mesh (b).

Given & unit square G'= (0, 1)x (0, 1), we oonmder & triangulation of @ by
right mosﬂeles trm.ngles K Wl’lih mesh pattern (b) (Flg 2) The mesh gizes are

- 1 .
b=
in both z and y direciions. Then ohoose in G the ﬁxed 9ubdoma.1n

PR N RIS R

ﬂ2

? .
T 3
Py 3
ST I
$u ‘Mesh (b} e 5 n ot
L " e S -y b .“"' ke -.:'_: ki priw v ‘ I
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N i | Flg 3

Thera are N 1-=29"“ (for n?E) squa.res of slde—length 2k, in G4 having the mesh

pattern K of Figure 2 with midpoints p;. The eight mesh points on the outer
boundaries of the Ky are denoted by p, 2<4<9.

Now let us define & special sequence of frial funcmons wEV, a8 follows: for
P€E Ky, 1ot w(py) =1, w(hs) =, (p) =9, |

w(p) =0l (p) =] (pi) 0, zgﬁ'ﬁ, (34)
and for pEG\Gy, let w(p) =w.:(p) = wy(p) 0, |
- We further deﬁne a fest function Y € OF (G) ﬁuﬁh that

e CY=1 onGy. . | (35)
In oase of Dirichlet boundary conditions, we, in addition, choose |
_ y=0 on R""\G
B};r VlI"li'U.B of the speoml choices of and 1, | |
o s . 242
_ 3 [ o2 S8 Nods= =3, lolbn,= OV, OBz (36)
By applymg the inverse praperby, we have |
Jlam < S tolas, = 0003, [wls,r,< 32 [0l m <522,
and so R Ilwﬂn,k.%%-(l'l'o(hn)).

Henoe - . . . ._ y
ow 1 1
T.uw: w) Ej ¢—N ds-——S—Ni-_—Tg--,;{,
: _' - “Wﬂﬂ,ﬁ; (1'+‘O_(hn)):

_r*"”-;aoﬁ(ia-och.)) o%0, . @D

3 “1_

*This shows 'bhat for the bounded Sequence’ W 6 ]7',, deﬁned hy (34) , and for the

test funotion deﬁned *h}* {35) ‘the bilinéar: form 741 does not tend $0° zero a8 h——w
Zienkiowioz’s triangled for missh (b) fall'to pass the gehoralized patch test. A
(i) Mesh (o).

We refer the reader to Figure 8 for the triangulation of &= (0, 1) X (0, 1) a-nd |
its subdomain * |
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G1=‘[1‘, 2]%[1‘, 2],

as well ag 'bhelsqu&reﬂ KH! in Gi. There ars N1=22“** of Ky in .G;;_ with meﬂh 'POHTLS
p, &3 its center and the 5,(2<<4<9) located on the boundaries of the K y.

Let w &V, be defined as follows: b o -

w(p1) =we(P1) =0, 2,(ps)=1, -
w(p) =we(p) =wy(p) =0, 2<i<9, pEKu, (38)

and _ 5(p) —a(P) =0, (p) =0, PEG\Gu.
The test function y is defined as in (35). .

After some algebraioc manipulations, it is found that

e

2w e B EPo PRy -y
'K§:~' ‘Lxl'b' D N’ds 3'hﬂ: ﬂ@lflo,x.f“cﬁoh., O% 56‘0 " : (39)
Using the inverse property we have | e - ,
@2 <O:(1+0C),"
| - .
[olan<SLA+0(),
Tall 9| >0,1+0(h), Osk0. (40)

Therefore Zienkiew{nz’s triangles for mesh (o) fail to pass the, generalized patoh test
also - | -

I+ is worth remarking that the sequence w defined by (34) gives T'rx(¥, w) =0,
¢, k=1 2, for mesh (o) and, therefore, can not be used for the proof in this case.

The author i most grateful to Prof. F. Stummel for suggesting this
investigation and helpiul discussions. -
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