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1. .Intmduction

The finite element method for one-dimensional singular boundary wvalue pro-
blems have been studied by several anthors (for instance, see[4], [10], [8], [11]).
The finite element method for a two—-dimensional singular boundary value problem is
proposed in[12]. Recently[9], [16], [1], [16]and [3]have given the relevant theore-
tical studies. In [9], the error of order O (A*) has been proved for the Lagrange
elements of degree % provided that the solution of the boundary value problem is in
C**1 (). [16] has proved the convergence of the linear finite eloment method
provided only that the solution of the boundary value problem belongs to a weighted
Sobolev space. For problem(1.1)in the present paper, [1]has proved that the error is
of order O(h)for a variant linear element including a logarithmic ferm. For the
ordinary linear element, [16]and[3]have also obtained the error of order O(A). In
this paper we extend the result of [156]and[8]to the elements of high degree.

We consider the following medel problem:

' 1

0. Iu=-(L 2 {rki gt )+ 5 (8 5=
Iy, u=0,

where £2 is a bounded open domain with »>0 in (r, 2)-plane, I'y=0\T,, 1=
o8N {(r, 2}, r=0},

In order to formulate the weak from of problem (1.1) we introducs some
weighted Sobolev spaces. The similar spaces have been studied in[2], [B], [18] and

(1.1)

i

[14]. ‘
2. Weighted Sobolev Spaces V7
Define V°(2) = {», v is measurable in Q, |v]yug <o},
Vi) = {‘UEVD(Q): ||‘U[ vpy <00f, m=1, 2, e,
where . 0| ooy = (J‘ﬂ virdrdz )m:

| 2] vy = (mzﬂ | 2° [ Focy) ™3,
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- m—1 jma"ﬂ 2 1/4
[olroey =( 3 [olba+ 3 | Tl )T, me3, 8, .
ldl<m j=1 or! \|vea

Sometimes we use V°, VT instead of 7°(Q), VI (Q).

Using the arguments similar to those in [13], [14] and [P] we can prove the
following propositions.

Proposition 2.1. The spaces V° V7 are Banach spaces.

Proposition 2.2. If Q has a locally Lipschitz boundary then O~ (2)is dense in
VT8,

Now we may as usual define the trace on the boundary of £2 for the elements of
VT(Q). Then we may introdvce the following spaces corresponding to problem (1.1),

Vie(@)={v€Vi(Q),v=0o0n I},

From now on we assume that 2 has a locally Lipschitz boundary, that f € V°(Q),
and that B;, B are bounded, measurable in © and there exisis a positive constant S,

such that 8,28, Ba=A..
Lemma 2.3. (Ref.[6]) There exists a constant O>0 such that

[ () +(22) Jraraz=Clottu, voEVLo@).

The proof of the following lemma is similar to that of theorem 2.2 111[5 1.
Lemma24. IfoCV7P m=2, then
o'y
ort
It is easy to prove that V2(Q)<C®(Q2). (Ref.[15]).

=0 on Iy,  j§=1, 2 «, m—1,

3. The Weak Form of the Problem and the Discrete Problem

Define the bilinear form B;(u, v)and the linear functional F (v)as follows:

B (u, fv)=J B ng gi - Ba g:: gz )frdfrdz, Yu, vEV3i(8),

F(v) =[nfwwz, Vo€ V().

The weak form of problem (1.1)is
Problem(3.1). Find «€ V1 ,(2)such that

Bi(u, v) =F(v), Vo€ Vi,(Q),

By lemma 2.8 we know that Bj (¢, v) is coercive on Vi, (Q) x¥1i, (D). So we
may easily prove the following theorem using the Lax—Milgram theorem.

Theorem 8.1. Problem(8.1)has a unique solution.

From now on we assume that Q is a polygon.

Let T= {0, +-+, C,}be a normal friangulation of Q(Ref.[6]). Denote by % and
8: respectively the size of the maximal edge and the minimal inmer angle of ;. Let
fo=max hi, #=min ;. Define the finite element spaces V" of degree m as follows:

= {9, € 0°(£D), v, is a linear function on O, 4=1, +--, n; v,=0 on Iy},

V”" *= {0, € O™ 1(2), v, is a polynomial of degree m on C;,
.:,=1: eve, 3 ¥p=0o0n I3}, m= 2, 3, s,



No. 2 THE ERROR BOUND OF THE FINITE ELEMENT METHOD 145

The discrete problem corresponding problem (8.1) and the finite element spaces

of degree m is
Problem(3.1"). Find 4, € V* such that

Bi(tn, ) =F(v2), Vo EVPH,

Bimilarly to theorem 3.1 we have
Theorem 3.2. Problem (3.1 has a untque solution.

4. The Error Bound of the Finjte Element Solutions

Assume for the tria,ngula,tiﬂné T, that
§>6,>0, @, independent of A. (4.1)
Given any iriangle C€7',. Denote still by 4 its maximal edge. Given mo= (m+1)

(m+2)/2 nodes P, (B=1, «- myp)as usual. Denote by ¢, the bagis functions for

Lagrange interpolation corresponding the nodes Py, k=1, ---, my,
Lemma 4.1. (Ref. [71)  Thers exists a constant O, such that

&%y | <Ok~ if || <m, (4.2)

By simple calculation we obtain the following lemma.
Lemma 4.2. Assume that oy and a, are non—negative integers with ay+as<<m, that
(75, 2))are the coordinates of the nodes P,. Then

2 :(r, 2) (ry= )z~ a) =0,

The following lemma ig an extension of a result in[8] (see also[165]),
Lemma 4.3. Suppose that vEVTH(0), m=1, and v is the Lagrange interpola-
tton of degree m for v on C corresponding to the nodes Py, k=1, «--, mgy. Then

” g 'IJI ” %4 QM&"-‘H‘FI—i I L I| Tty 2": 01 1- (4 ! 3)

{C'}

where M independent of C, v, V? (C)=V°(0), and

Proaof. It is sufficient to prove the conclusion for v €0=(0), Given any point
P €. Using the Taylor’s formula with integral remainder we have

v(P;) ~0(P) =d(P) ++--1 qi! d}”m(P)-l—-%ﬁ (L= &) mdp+o (M) dt,

j=1; e M. (44)

where - dy= (ry= 1) 2+ (5 —2) -2,

*

G=d;odj™, n=2, 8, ...,
M‘j:Pjﬁ'f‘P(l_t)‘
It follows from the properties of the basis functions, lemma 4.2 and (4 .4)that

0(P) = 2(P) = 31 ,(P) [0(P)) —0(P)]

= 'ﬂ—i'r ;J: (1 —2)"p,(P)d}+u(M,) dt, (4.5)
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Differentiating (4.5)we obtain

ovr _ov _ 1 J _a\m| OP; gmi1_
or oér m! % (1 t)[ard

23, a-ompar [ 22— Ja

Integrating by parts the integrals in the second sum, noting lemma 4.2 and thaf

. aaq_ Jw(M,)d#

7y [d, v(M)]=di"v(M,),

ov; dv _ 1 j __4\m 3‘?3:* m+41
we have e e > (1—1%) ditie(M;)dt,

Then it follows from lemma 4.1 that

oV ov #7 -1 r — gxm [ gm+1
g o <Mk 20(1 H™ [di+le (M) |df

and it is easy to see that

|1 G2 rarae < 3 ([ a-pmlag+oat)|de ) rdrds

. 1 a
=131 3 (| -y s@—ymes|dproaa,) |dt ) rdrda

< MIA-3 ;J: (1 — ) #m+1/8 gy L AP+ (M) |2 dr de

sp-9 " o

~M 3, " ar
m+1

+ -2 | (M)

where M, M} aﬁd M are some constants. Qarry out variable transformation in the
lagt integrals in(4.6)as follows:

E=ri{+r(l—1%), n=zit+z(1-—1).
Then M;= (£, n), and the triangle O reduces to a similar triangle O,, with the
gimilarity transformation center P;. Obviously O,,,—C. Hence the right side of (4.6)

becomes

Wg}j (L—i =g "

w3 A=  @-rp |[(n-0L §+<zj—n>§5]““’w(ﬂa dgdn

" ediede, (4.6)

(=) F+ =) 2] ooy |28 acay

< M3Hm EI (bt)"’"fdtf | &% | d¢ dn

QHHM“m+1

lﬂll—m+1
=M Jﬁ'ml v IV?“{GJ i

Tt is proved that

<mip [ 3 |ovw|%dgdn

3@; ov 4
or or

Tfﬁ”dﬁﬁgﬂfﬂﬁmlﬂlﬁwwwh

!
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Similarly we have

3‘1‘; o
o2 o

|
pld
rdr dz<< M3 | v Fpigy,

L

and gtarting with (4.5) -‘we derive

T . < AT*he2m+23| . |
L\w; v | *rdrdzs<< Mk ["-‘iﬂw{m_

Now (4.3) has been proved.

According to this Jemma it is easy to prove the main result of this paper by using

a well-known argument.

Theorem 4.4. Assume that w and w, are respectively the solution of problem

(3.1)and (3.1),uc V1 (Q), Then

[1]
(2]
[3]
(4]
L5]
L6

[T]
L8]

L8]
1107
(11]
(12]
(13]
f14]
[15]

(16]

oo~ tp| = O ().
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