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Abstract

The interior low-frequency electromagnetic dipole excitation of a dielectric sphere is uti-

lized as a simplified but realistic model in various biomedical applications. Motivated by

these considerations, in this paper, we investigate analytically a near-field inverse scatter-

ing problem for the electromagnetic interior dipole excitation of a dielectric sphere. First,

we obtain, under the low-frequency assumption, a closed-form approximation of the series

of the secondary electric field at the dipole’s location. Then, we utilize this derived approx-

imation in the development of a simple inverse medium scattering algorithm determining

the sphere’s dielectric permittivity. Finally, we present numerical results for a human head

model, which demonstrate the accurate determination of the complex permittivity by the

developed algorithm.

Mathematics subject classification: 34L25, 78A46, 78A40, 41A60, 33C05.

Key words: Near-field inverse problems, Low-frequency region, Dipoles, Hypergeometric

functions.

1. Introduction

The exact field solutions of direct scattering problems by canonical shapes are often ex-

pressed by complicated series of the corresponding eigenfunctions [1,2]. For example, for spher-

ical scatterers the fields are expressed by series of products of spherical Bessel and Hankel func-

tions. In inverse scattering these series are difficult to manipulate in order to obtain algorithms

which extract a specific set of the problem’s parameters. However, under the low-frequency

assumption k0a ≪ 1 (k0 the free-space wavenumber and a a characteristic dimension of the

scatterer) [3]- [6], the field solutions are greatly simplified so that the low-frequency realm offers

a better environment for inverse scattering, since the corresponding field quantities are much

more workable.

In this paper, we investigate analytically a near-field inverse scattering problem concerning

the low-frequency interior dipole excitation of a dielectric sphere. The low-frequency assumption

permits us to obtain an analytical expression, via hypergeometric functions, of the secondary

electric field at the dipole’s location by exact summation of the series representing it. This

problem is motivated by potential applications considered in the low-frequency region and

mentioned below.

Applications of low-frequency internal source excitation of a homogeneous sphere in elec-

troencephalography (EEG) have been pointed out in [7]. In particular, the interior excitation

of a spherical human head by a low-frequency point-dipole constitutes a suitable EEG model
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(e.g., according to [8], k0a ≃ 1.3× 10−7 for f = 60 Hz and head’s radius a = 10 cm). Besides,

magnetic resonance imaging low-frequency applications are discussed in [9] for a spherical head

with k0a ≃ 2 × 10−6. A brain electrical impedance tomography low-frequency model with

k0a ≃ 1.9 × 10−4 is investigated in [10]. Other applications stem from antennas implanted in-

side the head for hyperthermia or biotelemetry [11, 12]. For extensive reviews on using dipoles

inside spheres for brain imaging applications see [13] and [14].

Far-field inverse scattering algorithms in the low-frequency region were established in [15]

for acoustic scattering by a homogeneous sphere, due to an exterior point-source incident field,

by utilizing essentially the distance of the source from the scatterer. Besides, for the point-

source or point-dipole excitation of a layered sphere the exact Green’s function, the far-field

low-frequency approximations, and related far-field inverse scattering algorithms were given

in [16] for acoustic and in [17] for electromagnetic waves. Far-field inverse problems, using

low-frequency plane waves impinging on a soft sphere, were analyzed in [18]. The identification

of small dielectric inhomogeneities from scattering amplitude measurements was investigated

in [19]- [22].

The inverse problems, investigated in [15]- [19], are based on far-field measurements. The

benefits of using the near-field quantity of the scattered field at the dipole point, in the devel-

opment of inverse scattering algorithms for a perfectly conducting sphere excited by an exterior

dipole have been pointed in [23]. Other implementations of near-field inverse problems are

treated in [24] and [25, p. 133]. On the other hand, in [26] near-field inverse problems are ana-

lyzed concerning the determination of static point-sources and point-dipoles as well as acoustic

point-sources located inside a homogeneous sphere. The inversion algorithms established in [26]

use the moments obtained by integrating the product of the total field on the sphere’s surface

with spherical harmonic functions. Moreover, currents inside three-shell spherical models are

determined by electro-magneto-encephalography measurements in [27].

This paper is organized as follows. In Section 2, we present the mathematical formulation

of the interior dipole excitation problem of a dielectric sphere. In Section 3, we first summarize

basic results concerning the exact Green’s function of this excitation problem, and then derive

the exact expression of the near-field quantity of interest, which is the secondary electric field at

the dipole’s location. Then, under the low-frequency assumption k0a ≪ 1 (the sphere’s radius,

a, being much smaller than the wavelength of the primary field), we express analytically, via

hypergeometric functions, the secondary electric field at the dipole’s point by exact summation

of its series. This result is utilized in Section 4 for the development of a simple inverse medium

scattering algorithm for the determination of the sphere’s complex permittivity. The developed

algorithm utilizes the single measurement of the secondary electric field at the dipole point,

which is located in the interior of the sphere, in order to formulate a non-linear equation

the solution of which is the sphere’s dielectric permittivity. Finally, in Section 5, we present

numerical results concerning: (i) the convergence of the low-frequency to the exact electric field

at the dipole’s location, and (ii) the determination of the complex permittivity by the developed

algorithm; the complex permittivity’s value under determination is selected according to a

widely used human head model [28].

2. Mathematical Formulation

Consider a spherical scatterer of radius a. The interior V1 of the scatterer is homoge-

neous and is characterized by complex dielectric permittivity ǫ1 and magnetic permeability
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µ1. The sphere’s exterior V0 is a homogeneous medium with physical constants ǫ0 and µ0 and

wavenumber k0 = ω(ǫ0µ0)
1/2, where ω is the angular frequency. The scatterer is excited by a

time-harmonic [exp(−iωt) time dependence] primary spherical electromagnetic wave, generated

by an internal magnetic dipole located at r1 of V1 (i.e. r1 < a) with dipole moment ŷ. The

respective primary electric field is given by:

Epr(r) = ∇×
(

h0(k1|r− r1|)
ik1h0(k1r1)

ŷ

)

, r ∈ R
3 \ {r1}, (2.1)

where r1 = |r1|, while h0(x) = exp(ix)/(ix) denotes the zeroth-order spherical Hankel function

of the first kind, and k1 = ω(ǫ1µ1)
1/2 the wavenumber of V1.

The total electric field in V0 is denoted by E0. By applying Sommerfeld’s method (see

e.g. [29], Section 6.32 and [30], Section 9.28; also known as the scattering superposition method

in the terminology of [31]), the total electric field E1 in V1 is defined as the superposition of

the primary and the secondary field:

E1(r) = Epr(r) +Esec(r), r ∈ V1 \ {r1}. (2.2)

The corresponding boundary value problem consists in determining the fields E0 ∈ (C2(V0)

∩C1(V0))
3 and Esec ∈

(

C2(V1) ∩ C1(V1)
)3

satisfying the vector Helmholtz equations:

∇2E0(r) + k20 E
0(r) = 0, r ∈ V0

∇2Esec(r) + k21 E
sec(r) = 0, r ∈ V1







, (2.3)

as well as the transmission boundary conditions on the scatterer’s surface r = a:

r̂×E0(r) − r̂×Esec(r) = r̂×Epr(r)

µr r̂×∇×E0(r) − r̂×∇×Esec(r) = r̂×∇×Epr(r)

r̂ · E0(r)− ǫr r̂ · Esec(r) = ǫr r̂ ·Epr(r)



















, r = a, (2.4)

where ǫr = ǫ1/ǫ0 and µr = µ1/µ0 are the relative dielectric permittivity and magnetic perme-

ability of V1 respectively.

Besides, the total field E0 in the unbounded domain V0 must satisfy the Silver-Müller

radiation condition [25]:

lim
r→∞

[

r̂×∇×E0(r) + ik0rE
0(r)

]

= 0, (2.5)

uniformly for all directions r̂ ∈ S2 = {x ∈ R
3, ||x|| = 1}.

3. Direct Scattering Problem

The direct scattering problem concerns the determination of the electric fields E0 and Esec,

satisfying (2.3)-(2.5), for known scatterer’s geometry, material parameters and primary field

given by (2.1).
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3.1. Exact solution

The exact solution of the direct scattering problem is determined by applying the analytic

algorithm described in [17]. In particular, the primary and secondary electric fields are rep-

resented by series of the spherical vector wave functions, and the unknown coefficients in the

secondary field’s expansions are determined by imposing the transmission boundary conditions

(2.4) on the scatterer’s surface.

We select the spherical coordinate system (r, θ, φ) with the origin O at the centre of the

spherical scatterer and assume the magnetic dipole is located at r = r1, θ = 0. The primary

spherical electric field is expressed as [17]:

Epr(r) =
i

ĥ0(k1r1)























∞
∑

n=1

2n+ 1

n(n+ 1)

(

̂n(k1r1)N
3
e1n(r, k1)− ̂′n(k1r1)M

3
o1n(r, k1)

)

, r > r1,

∞
∑

n=1

2n+ 1

n(n+ 1)

(

ĥn(k1r1)N
1
e1n(r, k1)− ĥ′

n(k1r1)M
1
o1n(r, k1)

)

, r < r1,

(3.1)

where M1
o1n, N

1
e1n, M

3
o1n, and N3

e1n are the spherical vector wave functions (see [32], (13.3.68)-

(13.3.70)), while ̂n(z) = zn(z) and ĥn(z) = zhn(z) are the Ricatti-Bessel functions, with n
and hn being the nth order spherical Bessel and Hankel functions of the first kind; the prime

denotes derivation with respect to the entire argument k1r1.

The secondary electric fields in V0 and V1 are given by:

Esec(r) =
i

ĥ0(k1r1)

∞
∑

n=1

2n+ 1

n(n+ 1)

(

αnĥn(k1r1)N
1
e1n(r, k1)

− βnĥ
′

n(k1r1)M
1
o1n(r, k1)

)

, 0 < r < a, (3.2)

E0(r) =
i

ĥ0(k1r1)

∞
∑

n=1

2n+ 1

n(n+ 1)

(

γnĥn(k1r1)N
3
e1n(r, k1)

− δnĥ
′

n(k1r1)M
3
o1n(r, k1)

)

, r > a. (3.3)

The unknown coefficients αn, βn, γn, and δn are determined by imposing the boundary condi-

tions (2.4) as:

αn =
pn
wn

n(k1r1)

hn(k1r1)
, βn =

qn
vn

̂′n(k1r1)

ĥ′

n(k1r1)
, (3.4)

γn =
1

wn

n(k1r1)

hn(k1r1)
, δn =

1

vn

̂′n(k1r1)

ĥ′

n(k1r1)
, (3.5)

where

wn = −ik1a
√
ǫrµr

(

n(k1a)ĥ
′

n(k0a)− ǫ−1
r ̂′n(k1a)hn(k0a)

)

, (3.6)

pn = −ik1a
√
ǫrµr

(

ǫ−1
r ĥ′

n(k1a)hn(k0a)− hn(k1a)ĥ
′

n(k0a)
)

, (3.7)

vn = −ik1a
(

µrn(k1a)ĥ
′

n(k0a)− ̂′n(k1a)hn(k0a)
)

, (3.8)

qn = −ik1a
(

ĥ′

n(k1a)hn(k0a)− µrhn(k1a)ĥ
′

n(k0a)
)

. (3.9)
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In particular, for ǫr = µr = 1 (no interface at r = a), we can verify that E0(r) = Epr(r)

and Esec(r) = 0, as expected.

We will utilize the secondary electric field at the dipole’s location in order to establish the

inverse medium scattering algorithm detailed below. Since the dipole is located at θ = 0, the

spherical vector wave functions are reduced to:

N1
e1n(r1, k1) =

1

2
n(n+ 1)

̂′n(k1r1)

k1r1
x̂ , M1

o1n(r1, k1) =
1

2
n(n+ 1)n(k1r1)x̂, (3.10)

and hence this secondary electric field is expressed by means of (3.2) as:

Esec(r1) = x̂
i

2k1r1h0(k1r1)

∞
∑

n=1

(2n+ 1)

(

αnhn(k1r1)̂
′

n(k1r1)− βnĥ
′

n(k1r1)n(k1r1)

)

. (3.11)

3.2. Near-field low-frequency approximations

The exact Eq. (3.11) represents the electric field at the dipole’s location by a series of terms

involving products of spherical Bessel and Hankel functions. In inverse scattering this series

expression is difficult to manipulate in order to extract the required problem’s parameters.

However, the low-frequency assumption simplifies the field expressions and makes them more

workable for inverse scattering purposes. For these reasons in the sequel we impose the low-

frequency assumption k0a ≪ 1, that is we assume that the sphere’s radius, a, is much smaller

than the wavelength of the primary field. More precisely, we suppose that k0a, k1a, k0r1,

and k1r1 are all small (the waves are long compared to all geometrical lengths [33]), whereas

the relative material parameters k1/k0, ǫr, and µr need not be small. As discussed in the

Introduction, the low-frequency assumption is motivated and justified by several representative

applications (see [7–9, 13] ).

In order to find the low-frequency approximation of the secondary electric field at the dipole’s

location (3.11), we need the following asymptotic expansions, as k1r1 → 0:

̂′n(k1r1)hn(k1r1) ∼ − i(n+ 1)

(2n+ 1)k1r1
, n(k1r1)ĥ

′

n(k1r1) ∼
i n

(2n+ 1)k1r1
, (3.12)

as well as the asymptotic approximations of the coefficients αn and βn of (3.4), as all k0a, k1a,

k0r1, and k1r1 → 0:

αn ∼ (1− ǫr)
n

nǫr + n+ 1
τ2n+1 , βn ∼ (µr − 1)

n+ 1

nµr + n+ 1
τ2n+1, (3.13)

where

τ ≡ r1/a < 1 . (3.14)

By combining (3.11)-(3.14), we obtain the following low-frequency approximation of the sec-

ondary electric field at the dipole’s location:

Esec(r1) ∼ x̂
i exp(−ik1r1)

2k1r1
[(1− ǫr)E(ǫr, τ)− (1− µr)M(µr, τ)] , (3.15)

where

E(ǫr, τ) =
∞
∑

n=1

n(n+ 1)

nǫr + n+ 1
τ2n+1 , M(µr, τ) =

∞
∑

n=1

n(n+ 1)

nµr + n+ 1
τ2n+1. (3.16)
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Eq. (3.15) indicates that the influence of the relative permittivity ǫr and the relative per-

meability µr on the secondary electric field is separated and described exclusively by the series

E(ǫr, τ) and M(µr, τ), respectively. Moreover, we see that the leading-order term of Esec(r1) in

Eq. (3.15) is O( 1
k1r1

), as k1r1 → 0. Also, every term in the infinite series E(ǫr, τ) and M(µr, τ)

contributes to this leading-order term.

4. Inverse Medium Scattering Problem

The general description of an inverse medium scattering problem consists in evaluating the

electromagnetic material parameters from the measurements of the scattered electromagnetic

field due to known illuminations (see [25] and [34–36] and the related references cited).

In the present setting, the inverse medium scattering problem under consideration concerns

the determination of the sphere’s complex dielectric permittivity ǫr for known sphere’s radius

a and dipole’s location r1. The biomedical applications, discussed in the Introduction above,

suggest that it is physically relevant to consider that µr = 1; the case of µr 6= 1 may be handled

by similar procedures, nevertheless involving more complicated computations.

First, we manipulate appropriately the low-frequency expression (3.15) of the secondary

electric field at the dipole’s location in order for it to be cast into a suitable form for the

establishment of an inverse medium scattering algorithm determining the sphere’s permittivity.

In particular, Eq. (3.15) implies that:

|Esec(r1)| ∼
1

k0r1

|1− ǫr|
2|√ǫr|

|E(ǫr, τ)| . (4.1)

By means of the Gauss hypergeometric function ( [37], (15.2.1) and (15.5.1)):

F (a, b; c; z) ≡ 2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

s=0

Γ(a+ s)Γ(b + s)

Γ(c+ s)s!
zs ,

where Γ denotes the gamma function, the series E(ǫr, τ) is written successively as follows:

E(ǫr, τ) =
∞
∑

n=1

n(n+ 1)

nǫr + n+ 1
τ2n+1 =

τ2

2
γ
∂

∂τ

(

∞
∑

n=0

n+ 1

n+ γ
τ2n

)

=
τ2

2

∂F (γ, 2; γ + 1; τ2)

∂τ
=

2γτ3

γ + 1
F (γ + 1, 3; γ + 2; τ2), (4.2)

where

γ =
1

1 + ǫr
. (4.3)

Finally by combining Eqs. (4.1) and (4.2) we get:

|Esec(r1)| ∼
1

k0r1
τ3
∣

∣

∣

∣

2γ − 1

γ + 1

∣

∣

∣

∣

∣

∣

∣

∣

√

γ

1− γ

∣

∣

∣

∣

|F (γ + 1, 3; γ + 2; τ2)|. (4.4)

Now, we formulate the following inverse medium scattering algorithm: (i) measure the

modulus m of the low-frequency expansion of the secondary electric field at the dipole’s location

for known sphere’s radius a and dipole’s location r1; (ii) determine the parameter γ (and hence
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the relative dielectric permittivity ǫr of the sphere by (4.3)) as the solution of the following

non-linear equation, resulting directly from (4.4):

∣

∣

∣

∣

2γ − 1

γ + 1

∣

∣

∣

∣

∣

∣

∣

∣

√

γ

1− γ

∣

∣

∣

∣

|F (γ + 1, 3; γ + 2; r21/a
2)| = mk0a

a2

r21
. (4.5)

5. Numerical Results and Discussion

In this section, first, we investigate by numerical simulations the convergence of the low-

frequency to the exact electric field at the dipole’s location; the exact field is computed by

means of (3.11), while the low-frequency one by (3.15). Then, we present results concerning

the numerical determination of ǫr by means of (4.5).

Figs. 5.1 and 5.2 depict both the exact and low-frequency electric field modulus |Esec(r1)|
as well as the relative error between the respective exact and low-frequency values, as functions

of k0a for r1 = a/2 with ǫr = 2 for Fig. 5.1 and ǫr = 6 for Fig. 5.2. The convergence of the low-

frequency to the exact field exhibits significant accuracy for a relatively wide range of k0a. This

fact is particularly important for the numerical implementation of the inverse medium scattering

algorithm of section 4, which is essentially based on the low-frequency field’s expansion (3.15).

More precisely, as is expected, for k0a ≪ 1 the achieved convergence is excellent. Besides, good

convergence is achieved also for certain k0a lying outside the low-frequency regime. Hence,

the derived low-frequency results of section 4.2 remain valid (to an appropriate approximation)

for relatively small values of k0a, which do not necessarily satisfy k0a ≪ 1. In particular, the

values of k0a for which the relative error between the exact and low-frequency fields is smaller

than a certain threshold are indicated by the statements of Figs. 5.1b and 5.2b. For example,

a relative error of 10% is obtained for k0a = 0.58 when ǫr = 2 and for k0a = 0.3 when ǫr = 6.
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Fig. 5.1. (a) Exact and low-frequency electric field modulus |Esec(r1)|, and (b) relative error between

the exact and the low-frequency values of |Esec(r1)|, both as functions of k0a for ǫr = 2 and r1 = a/2.

Furthermore, Table 5.1 depicts the numerical results from the determination of ǫr by means

of (4.5) for the case of the true value of ǫr being that corresponding to the complex permittivity

of the IEEE head model [28]. The magnetic dipole is located at r1 = a/2. The non-linear

Eq. (4.5) is solved by means of the complex Müller’s method. The latter is an iterative method

based on the secant method, uses three points and constructs the parabola through these

points in order to obtain the next approximation. Müller’s method has gained a reputation as

an efficient and fairly reliable method for finding a zero of a function defined on the complex
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Fig. 5.2. The same with Fig. 5.1 but for ǫr = 6.

Table 5.1: Numerical determination of ǫr as solution of the non-linear Eq. (4.5); the true value ǫr =

43.50 − 34.75 i corresponds to the complex permittivity of the IEEE head model [28].

k0a 0.05 0.01 0.001

True ǫr 43.50 − 34.75 i 43.50 − 34.75 i 43.50 − 34.75 i

Reconstructed ǫr 44.87 − 45.72 i 43.94 − 36.72 i 43.54 − 34.94 i

Relative Error ℜ[ǫr] 100% 3% 1% 0.1%

Relative Error ℑ[ǫr] 100% 30% 5% 0.5%

plane. In particular, the approximating sequence of this method may be complex even if

the non-linear equation to be solved as well as the starting values are real. The method is

implemented here as described in details in Section 5.9 of [38]. For the computations of Table

5.1 the initial vector, required by Müller’s method, is [33.6− 15.7 i, 25.7− 8.6 i, 20.4− 5.3 i]T.

Notice that the values of the initial vector are not chosen close to the value of the permittivity

under determination.

Evidently, the approximation’s accuracy in the determination of ǫr increases with decreasing

k0a; this is due to the fact that, as is shown in Figs. 5.1 and 5.2, the error in the approximation

of the exact by the low-frequency electric field modulus |Esec(r1)| decreases with decreasing

k0a. We emphasize that in the low-frequency regime, where the inverse scattering algorithm is

established, the obtained accuracy for the approximation of ǫr is indeed significant; for example

for k0a = 0.001 the relative errors in the determination of both the real and imaginary parts

of ǫr are smaller than 1%. The significant error observed for k0a = 0.05 is due to the fact that

the accuracy in the approximation (4.4) decreases for increasing k0a, namely as we move away

from the low-frequency regime.

Aspects of the numerical determination of the complex permittivity ǫr for varying values of

the problem’s parameters involved are worthwhile to be investigated further as future work.

6. Conclusions

We investigated the inverse scattering problem of the interior dipole excitation of a homo-

geneous dielectric sphere. The exact Green’s function of this problem was approximated in the
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low-frequency region. The electric field at the interior dipole’s location was expressed analyti-

cally by exact summation of the relevant series representing it. Then, we established a simple

inverse medium scattering algorithm by utilizing the single measurement of the modulus of the

secondary electric field at the dipole’s location. More precisely, the unknown dielectric permit-

tivity of the sphere was determined as the solution of a suitable non-linear equation. Numerical

results were presented demonstrating the accurate determination of the complex permittivity

by the developed algorithm for permittivity’s value corresponding to a widely used human head

model.

Appropriate modifications of the techniques of this paper may be applied to investigate in

a similar way the excitation problem of a dielectric sphere by an exterior dipole. In this case

the measurement data could be simpler to obtain.
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