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Abstract

The paper is concerned with the inverse problem for reconstructing a 3D penetrable ob-

ject in a shallow water waveguide from the far-field data of the scattered fields with many

acoustic point source incidences. An indicator sampling method is analyzed and presented

for fast imaging the size, shape and location of such a penetrable object. The method has

the advantages that a priori knowledge is avoided for the geometrical and material proper-

ties of the penetrable obstacle and the much complicated iterative techniques are avoided

during the inversion. Numerical examples are given of successful shape reconstructions for

several 3D penetrable obstacles having a variety of shapes. In particular, numerical results

show that the proposed method is able to produce a good reconstruction of the size, shape

and location of the penetrable target even for the case where the incident and observation

points are restricted to some limited apertures.

Mathematics subject classification: 35R25, 35P25, 76Q05, 65M30, 81U40.
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1. Introduction

The inverse domain problem of determining the shape of an unknown object from the knowl-

edge of some scattered far-field patterns has drawn considerable attention in recent years due

to its importance in many areas of science and technology. It is well-known that this inverse

problem is not only nonlinear, but also severely improperly posed in the sense of Hadamard

[1]. This means that the numerical solution of such an inverse problem is considerably difficult

due to the fact that small perturbations of the far-field pattern can induce large errors in the

determination of the shape of the obstacle. During the last two decades, various computational

schemes have been developed for solving the inverse domain problem, such as nonlinear opti-

mization or Newton-type iteration techniques [2], linear or indicator sampling methods [3-7],

but such efforts focused primarily on the numerical solution for the inverse domain problem in

a free space. More to the point, recent works on imaging penetrable objects in free-space, half-

space and waveguides, some potential methods such as MUSIC-type algorithms and topological

derivative based imaging inhomogeneities of small diameter look like very valuable [8-11], At the

same time, analysis of resolution and stability with respect to measurement as well as medium
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noise of the imaging algorithms were performed there. On the other hand, Multistatic imaging

of extended targets has been studied in [12].

As well known, the seas occupying more than two-thirds of the surface of the earth are places

where a great variety of natural and man-made objects (such as sea mounts, mineral deposits,

submarines, sunken vessels, leaky pipelines, submerged wreckage and navigational obstacles,

etc.) are located. Acoustic waves are considered as the best tool to identify these objects due

to its good propagation in water. Therefore, the inverse domain problem of identifying size,

shape and location of an unknown object immersed in a water-filled guide from the scattered

far-field information of known acoustic waves has received fairly considerable attention due to

its considerable archeological, history and geophysical interest.

Some earlier schemes for solving the inverse domain problem by an impenetrable object in a

shallow water waveguide are rather computer-intensive due to the fact that all of them are based

on both some nonlinearized iterative techniques and some approximations to the solution of as-

sociated direct problem during the inversion[13-15]. Another scheme in this area is the so-called

ICD method which is achieved by employing the intersecting canonical domain(ICD) approx-

imation procedure to invert the field in a numerically more efficient manner[16-18]. However,

the ICD method has a main disadvantage of being only applicable for the case of a cylindrically

axisymmetric object.

It should be emphasized that in these schemes mentioned above, the prior knowledge of

what kind of boundary condition on the unknown object is required. However, in practice, the

prior information is not available. In order to avoid such an inherent defect in the previously

mentioned schemes, a generated dual space indicator method[19-21] was introduced for imaging

an impenetrable obstacle having any shape in a shallow water waveguide, which is achieved by

the observation that the combination of the measured scattered field can approximate the

waveguide Green’s function very well when the source point of the waveguide Green’s function

is inside of the obstacle, but not so well when the source point is outside of the obstacle.

The paper is concerned with the inverse domain problem of the identification of a 3D pene-

trable object immersed in a shallow water waveguide with perfectly reflecting boundaries. This

concern is motivated by the fact that in practice, the scattering object often is a penetrable

inclusion, whose material properties differ from those in the surrounding fluid. To our knowl-

edge, no investigation has been reported for the acoustic imaging of a 3D penetrable obstacle

placed in a shallow water waveguide.

An indicator sampling method is introduced for solving the inverse penetrable obstacle

problem in a shallow water waveguide, which belongs to a further development of a new group

of fast acoustic imaging schemes for the inverse domain problem in a free space, good examples

of which are found in [5-7]. The main contributions of the indicator sampling method are that

its computational speed is rather fast, its implementation is computationally simple and it is no

need for a priori information about the scattering object. However, the numerical solution for

such an inverse domain problem in a shallow water waveguide does pose particularly challenging

difficulties due to the filtering out high-spatial-frequency components of the scattered wavefield

with range and the propagation of only finitely many modes[16].

The paper is organized as follows. In Section 2 the basis of the indicator sampling method is

analyzed and presented for fast imaging a 3D penetrable object in a shallow water waveguide.

In Section 3 the good efficiency of the proposed method is confirmed through a few numerical

examples for several 3D penetrable obstacles having a variety of shapes from synthetic far-field

data. The last section gives some conclusions and remarks.
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2. Indicator Sampling Method

Let R3
h = {(x, z)

∣

∣x = (x1, x2) ∈ R2, 0 ≤ z ≤ h} be the region occupied by a homogeneous

constant depth ocean with a pressure release surface and a rigid bottom, where h is the ocean

depth. Assume that the incident wave is normal mode wave with source point(d, z0), i.e., it

may be expressed as [21]

ui(x, z; d, z0) =

N
∑

n=1

φn(z)φn(z0)e
iknx·d. (2.1)

Where N = [(2kh+ 1)/2π] is the total number of the propagation modes, and [] denotes the

integer part of the term, φn(z) =
√

2/h sin γnz, n = 1, · · · , γn = (2n− 1)π/2h, kn =
√

k2 − γ2n,

k is the wavenumber, z0is a fixed number, 0 ≤ z0 ≤ h, d is a fixed vector, |d| = 1.

We should note that the incident wave (2.1) is the propagation far-field pattern of the

following Green’s function for |ξ| → +∞

G(z, z0, |x− ξ|) =
i

4

∞
∑

n=1

φn(z)φn(z0)H
(1)
0 (kn|x− ξ|). (2.2)

Therefore, the incident wave only consists of finitely propagation (i.e., nonevanescent ) modes.

Let D be a bound, simply connected domain in R3
h with a boundary ∂D in Hölder class C2,σ,

0 < σ ≤ 1, having unit outward normal ν. Denote the exterior domain of D by De = R3
h\D̄.

Assume that the acoustic constants of D differ from those of the surrounding medium inDe.

Then there have a scattered field us in the exterior domain De and a transmission field ui
in D when the incident wave (2.1) impinges on the penetrable object D. Denote the total

field in De by ue = ui + us, then the direct transmission problem, is to find two functions

ue ∈ C2(De) ∩C(D̄e) and ui ∈ C2(D) ∩ C(D̄) such that

∆ue + k2ue = 0 in De, (2.3)

∆ui + k2i ui = 0 in D, (2.4)

ue = ui on ∂D, (2.5)

∂ue
∂ν

= ρ
∂ui
∂ν

on ∂D, (2.6)

ue|z=0 = 0,
∂ue
∂z

|z=h = 0, (2.7)

where ki the wavenumber in D, ρ is the density ratio.

Note that the scattered wave us has the normal modal representation

us =

+∞
∑

n=1

φn(z)u
s
n(x) for |x| ≫ 1, (2.8)

where (y, ς) ∈ De is the nth normal propagation mode of us, and it is required to satisfy the

outgoing radiation condition

lim
r→+∞

r1/2
(∂usn
∂r

− iknu
s
n

)

= 0, n = 1, 2, · · · , r = |x| . (2.9)

To reformulate the inverse problem, we need the uniqueness result of the direct transmission

problems (2.3)-(2.7) and (2.9).
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Suppose that there were two solutions to the direct transmission problems (2.3)-(2.7) and

(2.9), call them ((u1e, u
1
i ) and (u2e, u

2
i ), and then let Ue = u1e − u2e and Ui = u1i − u2i . Clearly,

Ue satisfies (2.3) and (2.7) in De and the radiation condition (2.9), Ui satisfies (2.4) in D, and

(Ue, Ui) satisfies the interface conditions (2.5 and (2.6). We denote a column centered at origin

point with radius R by ΩR := De ∩ {(x, z) ∈ R3
h, |x| < R} and its surface by SR. We assume

that the radius R is sufficiently large so that D is completely contained in SR.

Applying the divergence theorem for Ue, Ui and using the transmission conditions we obtain

∫

SR

Ue
∂Ūe

∂ν
ds =

∫

∂D

Ue
∂Ūe

∂ν
ds+

∫

ΩR\D

(∇Ue · ∇Ūe + Ue∆Ūe)dx

=

∫

∂D

ρUi
∂Ūi

∂ν
ds+

∫

ΩR\D

(∇Ue · ∇Ūe − k2|Ue|
2)dx (2.10)

=

∫

D

ρ(∇Ui · ∇Ūi − k2i |Ui|
2)dx+

∫

ΩR\D

(∇Ue · ∇Ūe − k2|Ue|
2)dx.

We now consider the following cases:

(1) k and ki are real number. By taking the imaginary part of (2.10), we have

Im
(

∫

SR

Ue
∂Ūe

∂ν
ds
)

= 0. (2.11)

As Ue satisfies the radiation condition, we have

∫

SR

Ue
∂Ūe

∂ν
ds→ −k lim

R→∞

∫

SR

|Ue|
2ds = 0, (2.12)

whence from Rellich’s lemma it implies that Ue = 0 in De. Thus, Ue = 0 and ∂Ue/∂ν = 0 on

∂D.

(2) k and ki have positive imaginary parts. In this case, it is readily shown that Ue decays

exponentially at infinity. Hence, we have (2.10). When this is combined with (2.10), we take

the imaginary part of (2.10) and we deduced that

Im
(

∫

SR

Ue
∂Ūe

∂ν
ds
)

≤ 0. (2.13)

Rellich’s lemma then implies that Ue = 0 in De. Thus, Ue = 0 and ∂Ue/∂ν = 0 on ∂D.

Now the unique continuation principle implies that Ui = 0 in D. So we have proved the

following uniqueness result.

Theorem 2.1. Assume that either k and ki are real number and have positive imaginary parts.

Then the direct transmission problems (2.3)-(2.7) and (2.9) have at almost one solution.

Applying Green’s theorem for the exterior domainDe, we have

us(x, z; d, z0) =

∫

∂D

(

ue(ξ, ς ; d, z0)
∂G(z, ς, |x− ξ|)

∂υ(ξ, ς)
−G(z, ς, |x− ξ|)

∂ue(ξ, ς ; d, z0)

∂υ(ξ, ς)

)

ds(ξ, ς).

(2.14)

It can be obtained from the asymptotic behaviour of Hankel’s function and (2.14) that

us(x, z; d, z0) =
eiπ/4

4

N
∑

n=1

√

2

πknr
eiknru∞n (x̂, z; d, z0) +O

(

1

r3/2

)

(2.15)
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where

u∞n (x̂, z; d, z0)

= φn(z)

∫

∂D

(

ue(ξ, ς ; d, z0)
∂(e−iknx̂·ξφn(ς))

∂υ(ξ, ς)
− (e−iknx̂·ξφn(ζ))

∂ue(ξ, ς ; d, z0)

∂υ(ξ, ς)

)

ds(ξ, ς). (2.16)

Let the function u∞(x̂, z; d, z0) be defined as

u∞(x̂, z; d, z0) =
N
∑

n=1

u∞n (x̂, z; d, z0), (2.17)

where u∞(x̂, z; d, z0) is called the propagation far-field pattern of the scattered field us, and

u∞n (x̂, z; d, z0) the far-field pattern of the nth normal propagation mode of the scattered field

us, which are both defined on the unit cylinder surface Γ with height h, where Γ = ∂B × [0, h]

with the unit circle ∂B.

Let us denote the set of the observation points of the propagation far-field pattern by

Ω = {(x̂l, zm) ∈ Γ |l = 1, · · · , L1,m = 1, · · · ,M1 } and the set of the source points of the incident

field by Λ = {(dl, z0,m) ∈ Γ |l = 1, · · · , L2,m = 1, · · · ,M2 }. Then the inverse problem we are

interested in is, given the exterior wavenumber k, to imaging the support of the penetrable

object D from the knowledge of the propagation far-field data u∞(x̂, z; d, z0) for (d, z0) ∈ Ω

and (d, z0) ∈ Λ.

We now begin with the analysis for solving the inverse transmission problem described

above. To this end, let us introduce the following function

V (x̂, z; ξ, η) =

N
∑

n=1

φn(z)φn(η)e
−ikx̂·ξ. (2.18)

Then we can conclude from (2.16) - (2.17) that

u∞(x̂, z; d, z0) =

∫

∂D

(

ue(ξ, η)
∂V (x̂, z; ξ, η)

∂ν
− V (x̂, z; ξ, η)

∂ue(ξ, η)

∂ν

)

ds(ξ, η), (2.19)

where we have omitted the dependence of the total field ue on the incident source point (z, d0).

Now, from (2.19) we can obtain

L1
∑

l=1

M1
∑

m=1

glmu
∞(x̂l, zm; d, z0) =

∫

∂D

(

ue(ξ, η)
∂vg(ξ, η)

∂ν
− vg(ξ, η)

∂ue(ξ, η)

∂ν

)

ds(ξ, η), (2.20)

where glm, l = 1, · · · , L1,m = 1, · · · ,M1 are complex constants, and

vg(ξ, η) =

L1
∑

l=1

M1
∑

m=1

glmV (x̂l, zm;ξ, η), (2.21)

and note that vg is an entire solution of the Helmholtz equation in R3
h. Functions of the

form (2.21) are called the discrete waveguide Herglotz wavefunctions and the complex vector

g = (glm|l = 1, · · · , L1;m = 1, · · · ,M1)
T is called the discrete Herglotz kernel [22-23].

Let (y, ς) be a given point in D and assume that there exists a complex vector g such that

vg satisfies the interior transmission problem

∆v + k2v = 0 in D, (2.22)
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∆w + k2iw = 0 in D, (2.23)

w(x, z) − v(x, z) = G(x, z; y, ς) (x, z) ∈ ∂D, (2.24)

ρ
∂w

∂ν
(x, z)−

∂v

∂ν
(x, z) =

∂G

∂ν
(x, z; y, ς) (x, z) ∈ ∂D. (2.25)

Note that when k is not an interior transmission eigenvalue for D, the above interior trans-

mission problem is uniquely solvable and the solution continuously depends on the boundary

data.

Now assume that the interior transmission problem (2.22)-(2.25) has a solution (vg, w) such

that vg is a discrete waveguide Herglotz wavegunction with the discrete Herglotz kernel g. Then,

it follows from (2.5), (2.6), (2.20), (2.24) and (2.25) that

L1
∑

l=1

M1
∑

m=1

glmu
∞(x̂l, zm; d, z0) =

∫

∂D

(ui
∂vg
∂ν

− ρvg
∂ui
∂ν

)ds

=

∫

∂D

[(ρG
∂ui
∂ν

−ui
∂G

∂ν
) + ρ(ui

∂w

∂ν
− w

∂ui
∂ν

)]ds

=

∫

∂D

(G
∂ue
∂ν

− ue
∂G

∂ν
)ds

=

∫

∂D

[(G
∂ui

∂ν
− ui

∂G

∂ν
) + (G

∂us

∂ν
− us

∂G

∂ν
)]ds

=

∫

∂D

[G
∂ui

∂ν
− ui

∂G

∂ν
]ds

= ui(y, ς ; d, z0), (2.26)

where we use the following relations
∫

∂D

(

ui
∂w

∂ν
− w

∂ui
∂ν

)

ds = 0,

∫

∂D

(

us
∂G

∂ν
−G

∂

∂ν
us
)

ds = 0, (2.27)

which can be derived from the Green’ theorem.

Applying the far-field reciprocity relation, we have from (2.25) that

L1
∑

l=1

M1
∑

m=1

glmu
∞(x̂, z;−x̂l, zm) = ui(y, ς ;−x̂, z), (x̂, z) ∈ Γ. (2.28)

Eq. (2.28) is a one-parameter family of equations about the point (y, ς) ∈ R3
h. The basis of our

indicator sampling method for solving the inverse transmission problem described previously is

the analysis of the behavior of the solutions g for all possible positions of the point (y, ς). We

note that the previous analysis has shown that if there exists a solution (v, w) of the interior

transmission problem (2.22)-(2.25) such that v coincides with a discrete waveguide Herglotz

wavefunction vg having g as its discrete Heglotz kernel, then (2.28) has an exact solution. The

following theorem shows that if an exact solution to (2.28) does exist then it is unique.

Theorem 2.2. Let {(x̂l, zm)}l=L1,m=M1

l=1,m=1 be any finite set of distinct points in Γ. If k is not an

interior transmission eigenvalue for D, then the functions u∞(x̂, z;−x̂l, zm)are linearly inde-

pendent in L2(Γ) for l = 1, · · · , L1, m = 1, · · · ,M1.

Proof. It is sufficient to show that if

U∞(x̂, z) =

L1
∑

l=1

M1
∑

m=1

clmu
∞(x̂, z;−x̂l, zm) = 0, (x̂, z) ∈ Γ, (2.29)
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for some choice of constants clm, l = 1, · · · , L1, m = 1, · · · ,M1, then clm = 0, l = 1, · · · , L1,

m = 1, · · · ,M1. To this end, we introduce the following functions

U i(x, z) =

L1
∑

l=1

M1
∑

m=1

clmu
i(x, z;−x̂l, zm), (2.30)

Us(x, z) =

L1
∑

l=1

M1
∑

m=1

clmu
s(x, z;−x̂l, zm), (2.31)

Ui(x, z) =

L1
∑

l=1

M1
∑

m=1

clmui(x, z;−x̂l, zm). (2.32)

It is clear to see that the equations (2.30)-(2.32) are superpositions of the incident, scattered

and transmission fields respectively. We note that Us is a radiation solution of the Helmholtz

equation in De, and U
∞ is its propagation far-field pattern. Now, the Rellich’ lemma [24] yields

that Us = 0 in De, and hence Us = 0 on ∂D. Therefore, from (2.5) and (2.6), we can conclude

that the pair (U i, Ui) solves the homogeneous interior transmission problem. The fact that k

is not an interior transmission eigenvalue for D now follows that U i = 0 in D. We note that

U i is an entire solution of the Helmholtz equation in R3
h and is analytic in R3

h, and hence the

unique continuation yields that

L1
∑

l=1

M1
∑

m=1

clmu
i(x, z;−x̂l, zm) = 0 in R3

h. (2.33)

Then we have from (2.33) that

L1
∑

l=1

M1
∑

m=1

clmu
i(ξl, zm;−x̂, z) = 0 on Γ, (2.34)

where ξl = R0x̂l, R0 is a positive constant. We introduce a function U by

U(x, z) =

L1
∑

l=1

M1
∑

m=1

clmG(x, z; ξl, zm), (x, z) ∈ R3
n\{ξl, zm}l=L1,m=M1

l=1,m=1 . (2.35)

Note that U(x, z) is a radiation solution of the Helmholtz equation in R3
h and is analytic in

R3
h\{ξl, ηm}l=Ll,m=M1

l=1,m=1 . Now the asymptotic behavior of the Hankel function yields that the left

side of (2.34) is the propagation far-field pattern of the radiation solution U , and hence U = 0

in R3
h. As in the proof of Lemma 4.1 of [25], we can now conclude that clm = 0, l = 1, · · · , L1,

m = 1, · · · ,M1. �

We now turn to our main goal, that is to analyze the behavior of the solutions to the

equation (2.28) for various sampling points (y, ς) ∈ R3
h. Let us emphasize that a particular

challenging for achieving this goal is that an exact solution to (2.28) may not exist due to the

fact that there may not exist a solution (v, w) of the interior transmission problem (2.22)-(2.25)

such that v is a discrete waveguide Herglotz wavefunction. Therefore, we can only try to find

a complex vector g such that (2.28) is approximately satisfied within an arbitrary prescribed

error in the maximum norm. To this end, we have to introduce the following spaces:

X = span

{

N
∑

n=1

φn(z)φn(ηm)eiknx·ξ̂l : (ξ̂l, ηm) ∈ Γ, l,m = 1, 2, · · ·

}

, (2.36)



456 J. QIU, Z.B. ZHANG AND W.F. PAN

Y =
{

w ∈ H1(D̄),∆w + k2iw = 0,in D
}

, (2.37)

W =

{(

(h− w)|∂D,
∂

∂ν
(h− ρw)

)

: h ∈ X,w ∈ Y

}

. (2.38)

We then have the following theorem.

Theorem 2.3. Let {(ξ̂l, ηm)}l=∞,m=∞
l=1,m=1 be a sequence of distinct points that is dense in Γ. If

k is not an interior transmission eigenvalue for D, Then W is complete in H(∂D), where

H(∂D) = H1/2(∂D)×H−1/2(∂D).

Proof. Suppose that for any h ∈ X and w ∈ Y , there exist ϕ ∈ H1/2(∂D) and ψ ∈

H−1/2(∂D) such that
∫

∂D

[

(h− w)ϕ̄ +
∂

∂υ
(h− ρw)ψ̄

]

ds = 0. (2.39)

Then it suffices to show that ϕ = ψ = 0. To this end, we define v∞ by

v∞(ξ̂, η) =

N
∑

n=1

φn(η)

∫

∂D

[

ϕ̄φn(z)e
−iknx·ξ̂ + ψ̄

∂

∂ν
φn(z)e

−iknx·ξ̂

]

ds(x, z), (2.40)

and note that v∞ is an analytic function on Γ. We now have from (2.39) with w = 0 that

v∞(ξ̂l, ηm) = 0, l, m = 1, 2, · · · . (2.41)

By the unique continuation, the fact that the sequence {(ξ̂l, ηm)}l=∞,m=∞
l=1,m=1 is dense in Γ yields

that v∞(ξ̂, η) = 0 for all (ξ̂, η) ∈ Γ. Define a function v by

v(ξ, η) =

∫

∂D

[

ϕ̄G(ξ, η;x, z) + ψ̄
∂

∂ν
G(ξ, η;x, z)

]

ds(x, z), (ξ, η) ∈ R3
h\∂D. (2.42)

Then v is a radiation solution of the Helmholtz equation in R3
h\D̄ having the propagation far-

field pattern v∞(ξ̂, η) = 0 for all (ξ̂, η) ∈ Γ. By Rellich’s Lemma, we can conclude that v = 0

in R3
h\D̄, and hence v = 0 on ∂D. It follows from the continuity properties of the double and

single layer potentials that

v− = −ψ̄,
∂v−
∂ν

= ϕ̄ on ∂D, (2.43)

where the minus subscript denotes the limit as x tends to ∂D from D. We define γjn by

γjn = φn(z)Jj(ki,nrx)e
−ijθx , j = 0,±1, · · · , n = 1, · · · , (2.44)

where ki,n =
√

k2i − λ2n, and (rx, θx) is the polar coordinate of x. We note that γjn ∈ Y , and

hence we have from (2.39) with h = 0 that

∫

∂D

[

γjnϕ̄+ ρ
∂γjn
∂ν

ψ̄

]

ds = 0, j = 0, 1, · · · , n = 1, · · · . (2.45)

From the additional formula for Hankel functions

H
(1)
0 (ki,n|x− ξ|) =

+∞
∑

j=−∞

H
(1)
j (ki,nrξ)Jj(ki,nrx)e

ij(θξ−θx), rξ > rx, (2.46)
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where (rξ, θξ) is the polar coordinate of ξ, we have that the function u defined by

u(ξ, η) =

∫

∂D

[

ϕ̄Gi(ξ, η;x, z) + ρψ̄
∂

∂ν
Gi(ξ, η;x, z)

]

ds(x, z), (ξ, η) ∈ R3
h\∂D, (2.47)

is identically zero in R3
h\D̄, where

Gi(ξ, η;x, z) =
i

4

∞
∑

n=1

φn(z)φn(η)H
(1)
n (ki,n|x− ξ|). (2.48)

We have from the continuity properties of the double and single layer potentials that

u− = −ρψ̄,
∂u−
∂ν

= ϕ̄ on ∂D, (2.49)

and then it follows from (2.39) and (2.45) that

ρv− − u− = 0,
∂v−
∂ν

−
∂u−
∂ν

= 0 on ∂D. (2.50)

Therefore, the pair (ρv|D, u0|D) is the solution of the homogenous interior transmission

problem. Since k is not an interior transmission eigenvalue for D, we conclude that v = 0 in

D. It follows from (2.43) that ϕ = 0, ψ = 0, and hence W is complete in H(∂D). �

Theorem 2.3 means that when (y, ς) ∈ D, for every ε > 0 there exists a discrete waveguide

Herglotz wavefunction vgε(·; y, ς) ∈ X with a discrete Herglotz kernel gε and a function w ∈ Y

such that
∥

∥

∥
w(·; y, ς)− vgε(·; y, ς)−G(·; y, ς)

∥

∥

∥

L2(∂D)

+
∥

∥

∥

∂

∂ν

(

ρw(·; y, ς)− vgε(·; y, ς)−G(·; y, ς)
)∥

∥

∥

L2(∂D)
< ε. (2.51)

Now, we introduce the following functions

Us
g =

L1
∑

l=1

M1
∑

m=1

gεlm(y, ς)us(x, z;−x̂l, zm), (2.52)

Ug,i =

L1
∑

l=1

M ′

1
∑

m=1

gεlm(y, ς)ui(x, z;−x̂l, zm). (2.53)

Note that (Us
g , Ug,i) is the solution of the direct transmission problem (2.3)-(2.7) satisfying

the outgoing radiation condition (2.9) having the discrete waveguide Heglotz wavefunction

vgε(·; y, ς) with the discrete Herglotz kernel gε as the incident field, and the left-hand side of

(2.28) is the propagation far-field pattern of the radiation solution Us
g . Therefore, it follows

from (2.5) and (2.6) that

∥

∥

∥
[Us

g −G(·; y, ς)]− [Ug,i − w(·; y, ς)]
∥

∥

∥

L2(∂D)

+
∥

∥

∥

∂

∂ν

(

Us
g −G(·; y, ς)]− ρ[Ug,i − w(·; y, ς)

)∥

∥

∥

L2(∂D)
< ε. (2.54)

We note that the radiation Green’s function G(x, z; y, ς) has the propagation far-field pattern

ui(y, ς ;−x̂, z), and hence the fact that the propagation far-field pattern of the radiation solution
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of the direct transmission problem continuously depends on the boundary data yields that there

exists a positive constant C, independent of ε, such that

lim
(x̂,z)∈Γ

∣

∣

∣

∣

L1
∑

l=1

M1
∑

m=1

gεlm(y, ς)u∞(x̂, z;−x̂l, zm)− ui(y, ς ;−x̂, z)

∣

∣

∣

∣

≤ Cε. (2.55)

In the following, we consider the behaviour of gε when (y, ς)approaches the boundary ∂D from

interior of D. To this end, we choose a sequence of points defined by

xp = x∗ −
R1

p
ν(x∗) ∈ D, p = 1, 2, · · · , (2.56)

where x∗ ∈ ∂D and R1 > 0 is a sufficiently small number.

Let (vp, wp) be the solution of the interior transmission problem (2.22)-(2.25) corresponding

to the given point xp. Then, by the same arguments as in the case of anisotropic media in free

space [21], we can conclude that

lim
p→+∞

||vp||H1(D) = +∞. (2.57)

From (2.24), (2.25) and (2.51) it follows that
∥

∥

∥
(w − wp)− (vgε(·;xp)− vp)

∥

∥

∥

L2(∂D)

+
∥

∥

∥

∂

∂ν

(

ρ(w − wp)− (vgε(·;xp)− vp)
)
∥

∥

∥

L2(∂D)
< ε, (2.58)

which leads to the fact that the discrete waveguide Herglotz wavefunction vgε(·;xp) can ap-

proximate the solution vp of the interior transmission problem (2.22)-(2.25) corresponding to

the given point xp. Therefore, from (2.57) we obtain

lim
p→+∞

||vgε(·;xp)||L2(∂D) = +∞, (2.59)

and hence, from (2.21) it follows that

lim
p→+∞

|gε(xp)| = +∞, (2.60)

where

|gε(xp)| =

√

√

√

√

L1
∑

l=1

M1
∑

m=1

|glm(xp)|
2
. (2.61)

So far, we have analyzed the behavior of the approximation solutions to the equation (2.28) for

sampling points (y, ς) ∈ D̄. Now we turn our attention to the case where (y, ς) ∈ R3
h\D̄. To

this end, we introduce the following general transmission problem, i.e. to find two functions

u ∈ C2(De) ∩ C(D̄e) and w ∈ C2(D) ∩ C(D̄) such that

∆u+ k2u = 0, in De, (2.62)

∆w + k2iw = 0, in D, (2.63)

w − u = f, on ∂D, (2.64)

ρ
∂w

∂ν
−
∂u

∂ν
= h, on ∂D, (2.65)

u|z=0 = 0,
∂u

∂z
|z=h = 0, (2.66)
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where (f, h) ∈ H1(∂D), and the scattered field u is required to satisfy the outgoing radiation

condition (2.9).

The boundary operator B : H0(∂D) → L2(Γ)is now defined to be the linear operator

mapping the boundary data (f, h) onto the propagation far-field pattern u∞ of the radiation

solution u where

H0(∂D) =
{

(v|∂D,
∂v

∂ν
|∂D) : v ∈ H̄

}

, (2.67)

H̄ =
{

v ∈ H1(D) : ∆v + k2v = 0 in D
}

. (2.68)

Assume that k is not an interior transmission eigenvalue, proceeding as in Theorem 4.3 of [26],

we have that the operator B is injective and has dense range in L2(Γ). Now, the fact that

the left-hand side of (2.28) is the propagation far-field pattern of the transmission problem

(2.3)-(2.7) having the discrete waveguide Herglotz wavefunction vg as the incident field implies

that Eq. (2.24) can be rewritten as

B(Hg)(x̂, z) = ui(y, ς ;−x̂, z), (x̂, z) ∈ Γ, (2.69)

where

Hg =
(

vg,
∂vg
∂ν

)

. (2.70)

In spite of the fact that the right hand side of (2.68) dose not belong range of the operator

B when (y, ς) ∈ R3
h\D̄, the fact that the operator B has dense range in L2(Γ) allows us

to reconstruct a regularized solution (fα, hα) = (vα(·; y, ς)|∂D,
∂vα

∂ν (·; y, ς)|∂D) of the following

equation

B(f, h)(x̂, z) = ui(y, ς ;−x̂, z), (x̂, z) ∈ Γ, (2.71)

with the regularized parameter α > 0,such that for an arbitrary small but fixed δ > 0, we have

||B(fα, hα)(x̂, z)− ui(y, ς ; x̂, z)||L2(Γ) ≤ δ, (2.72)

lim
α→0

{||fα||H1/2(∂D) + ||hα||H−1/2(∂D)} = ∞. (2.73)

By the previous analysis, we have implied that fα can be approximated in the trace space by the

discrete waveguide Herglotz wavefunction vα,εg (·; y, ς) with a discrete Herglotz kernel gα,ε(y, ς)

and from the continuity of B we have

||B(Hgα,ε)−B(fα, hα)||L2(Γ) < ε, (2.74)

with ε arbitrary small. From (2.72) and (2.74), we have that

lim
(x̂,z)∈Γ

∣

∣

∣

∣

∣

L1
∑

l=1

M1
∑

m=1

gα,δlm u∞(−x̂, z;−x̂l, zm)− ui(y, ς ;−x̂, z)

∣

∣

∣

∣

∣

< ε+ δ, (2.75)

and from (2.73) and the fact that fα can be approximated by vα,εg (·; y, ς) in the trace space , it

follows that

lim
α→0

||Hgα,ε||H0(∂D) = ∞, lim
α→0

||vα,εg (·; y, ς)||H1(D) = ∞. (2.76)

Consequently,

lim
α→0

|gα,ε(y, ς)| = ∞. (2.77)

We summarize these results in the following theorem.
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Theorem 2.4. Assume that k is not an interior transmission eigenvalue for D. Let u∞ be the

propagation far-field pattern of the transmission problem (2.3)-(2.7). Then we have that

1. If (y, ς) ∈ D then for every ε > 0 there exists a complex vector gε(y, ς) such that

lim
(x̂,z)∈Γ

∣

∣

∣

∣

∣

L1
∑

l=1

M1
∑

m=1

gεlm(y, ς)u∞(−x̂, z;−x̂l, zm)− ui(y, ς ;−x̂, z)

∣

∣

∣

∣

∣

< ε, (2.78)

where gε(y, ς) =
{

gεlm(y, ς)|l = 1, · · · , L1,m = 1, · · · ,M1

}

, and

lim
(y,ς)→∂D

|gε(y, ς)| = ∞. (2.79)

2. If (y, ς) ∈ R3
h\D̄ then for every ε > 0 and δ > 0, there exists a complex vector gε,δ(y, ς)

such that

lim
(x̂,z)∈Γ

∣

∣

∣

∣

∣

L1
∑

l=1

M1
∑

m=1

gε,δlm (y, ς)u∞(−x̂, z;−x̂l, zm)− ui(y, ς ;−x̂, z)

∣

∣

∣

∣

∣

< ε+ δ, (2.80)

where gε,δ(y, ς) = {gε,δlm(y, ς)|l = 1, · · · , L1, m = 1, · · · ,M1}, and

lim
δ→0

|gε,δ(y, ς)| = ∞. (2.81)

The above theorem has a particular importance of being able to motivate an indicator

sampling method for solving the inverse domain problem for a 3D penetrable obstacle D from

a knowledge of the propagation far-field data u∞(x̂, z; d, z0) for (d, z0) ∈ Ω and (d, z0) ∈ Λ.

The basic idea of the indicator sampling method is that by using regularization methods to

solve the equation (2.28) for various sampling points (y, ς) on an appropriate grid containing

D, an approximation to g(y, ς) can be obtained and hence the knowledge of the size, shape

and location of the obstacle D can be retrieved by those points where |g(y, ς)|is not finite. We

suggest that readers refer to [5-7] for detail imaging procedures.

3. Numerical Results

In this section, we will present some results of numerical experiments to rapidly reconstruct

the support of a penetrable object immersed in a shallow water waveguide using the proposed

indicator sampling method in the previous section.

The data for the inverse problem are the synthetic far-field data u∞(x̂, z; d, z0) for (x̂, z) ∈ Ω

and (d, z0) ∈ Λ. These data were generated by approximately solving the direct transmission

problem by using a least-squares method. To accomplish this, we approximate the scattered

field us and the transmitted field ui by the finite sums of the forms respectively

us(x, z) =

S
∑

s=1

asG(x, z; ξs, ηs), (x, z) ∈ De, (ξs, ηs) ∈ D, (3.1)

ui(x, z) =
L
∑

l=1

blGi(x, z; ξl, ηl), (x, z) ∈ D, (ξl, ηl) ∈ De. (3.2)
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The above two representations contain the unknowns as, s = 1, · · · , S and bl, l = 1, · · · , L.

To determine these unknown coefficients, we need to perform a least-squares fit to the boundary

data on ∂D. To this end, we define the minimization problem

Q(a, b) = lim
a,b

||ui − (ui + us)
2

L2(∂D) +

∥

∥

∥

∥

∂

∂υ
(ρui − ui − us)

∥

∥

∥

∥

2

L2(∂D)

, (3.3)

where a = {as}
S
s=1, b = {bl}

L
l=1.

Then, the unknown coefficients as and bl in (3.1) and (3.2) can be found by solving the

minimization problem (3.3). Having computed an approximation of the complex vector a, by

means of the asymptotic form of the Hankel function, we can conclude that the scattered field

us has the propagation far-field pattern of the form

u∞(x̂, z, d, z0) =
S
∑

s=1

as

N
∑

n=1

φn(z)φn(ηs)e
−iknx̂·ξs .

Now, we define the following sets of incident and measured points

Ω1 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

6
, z =

jh

13
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 12

}

,

Ω2 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

11
, z =

jh

13
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 12

}

,

Ω3 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

22
, z =

jh

13
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 12

}

,

Ω4 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

6
, z =

h

4
+
jh

22
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 11

}

,

Ω5 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

12
, z =

h

4
+
jh

22
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 11

}

,

Ω6 =
{

(x̂, z)
∣

∣

∣
x̂ = (cos θ, sin θ), θ =

iπ

22
, z =

h

4
+
jh

22
, 0 ≤ i ≤ 11, 1 ≤ j ≤ 11

}

,

where Ω1, Ω2 and Ω3 denote the full, a half and a quarter of the unit cylinder surface with

height h, respectively. Ω4, Ω5 and Ω6 denote the full, a half and a quarter of the unit cylinder

surface with height 0.5h. We also define Λm = Ωm.

We consider the following six types of data in numerical tests:

Type I: The incident and received data of the full of the unit cylinder surface with height

h: Λ = Λ1, Ω = Ω1;

Type II: The incident and received data of the half of the unit cylinder surface with height

h: Λ = Λ2 , Ω = Ω2;

Type III: The incident and received data of the quarter of the unit cylinder surface with

height h: Λ = Λ3, Ω = Ω3;

Type IV: The incident and received data of the full of the unit cylinder surface with height

0.5h: Λ = Λ4, Ω = Ω4;

Type V: The incident and received data of the half of the unit cylinder surface with height

0.5h: Λ = Λ5, Ω = Ω5;
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Ellipsoid A Ellipsoid B Ellipsoid C

Ellipsoid D Ellipsoid E

Fig. 3.1. The schematic of the obstacles used in the numerical experiments.

Type VI: The incident and received data of the quarter of the unit cylinder surface with

height 0.5h: Λ = Λ6, Ω = Ω6.

We note that in each case above, the incident acoustic field illuminates the penetrable object

from 144 distinct points distributed over the incident domain Λ, and for each point of incidence,

the propagation far-field pattern of the scattering field is measured at 144 different observation

points distributed over the view domain Ω.

In the numerical computations, the sea depth has taken as h = 100(m), the sampling domain

has been taken as a 32× 32× 32 grid of the cube [−7m, 7m]3 centered at (0, 0, hz) in R
3
h. The

boundary ∂D of the obstacle we want to reconstruct is given by

∂D =

{

(x1, x2, z) :
x21
a2

+
x22
b2

+
(z − hz)

2

c2
= 1

}

.

Numerical experiments were carried out for the following obstacles, as shown in Fig. 3.1:

(1) Ellipsoid A: a = 5(m), b = 4(m), c = 3(m);

(2) Ellipsoid B: a = 5(m) b = 3(m), c = 3(m);
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Type I data Type II data Type III data

Type IV data Type V data Type VI data

Fig. 3.2. Reconstructions with 2% noise data for the ellipsoid A centered at (0, 0, h/2) based on the

type II data, type IV data and type VI data respectively from the left-hand side to the right-hand side.

In each case, the exterior wave number k = 1.5(m−1), the interior wave number ki = 2.0(m−1) and the

density ratio ρ = 2.0.

(3) Ellipsoid C: a = 3(m), b = 2(m),c = 5(m);

(4) Ellipsoid D: a = 3(m), b = 5(m), c = 5(m);

(5) Ellipsoid E: a = 3(m), b = 5(m), c = 3(m).

As a first example of numerical applications, we want to exploit the effects of the different

incident and measured apertures on the reconstructions, as shown in Fig. 3.2. The reconstruct-

ing results are illustrated by the case where the obstacle we want to identify is the ellipsoid A

centered at (0, 0, h/2) and the six types of incident and received data are considered. Moreover,

for these reconstructions, the wavenumber of the incident wave we use to impinge the unknown

object has been taken as k = 1.5(m−1), the synthetic far-field data for the inverse problem are

obtained by the case where ki = 2.0(m−1) and ρ = 2.0. However, let us emphasize that in

our inversion procedure, no a priori information is needed for the interior wavenumber ki and

density ratio ρ of the unknown object.



464 J. QIU, Z.B. ZHANG AND W.F. PAN

hz = 25(m) hz = 50(m) hz = 75(m)

hz = 25(m) hz = 50(m) hz = 75(m)

hz = 25(m) hz = 50(m) hz = 75(m)

Fig. 3.3. Multiple-scattering effects of the waveguide boundaries on the reconstructions. The top

row gives the reconstructions based on the type I data for the ellipsoid B; the middle row gives the

reconstructions based on the type III data for the ellipsoid C; the lower row gives the reconstructions

based on the type V data for the ellipsoid E. In each case the exterior wave number k = 1.5(m−1), the

interior wave number ki = 2.0(m−1) and the density ratio ρ = 2.0.

The results show that the proposed method has the ability to clearly identify the size, shape

and location of the penetrable object immersed in a shallow water in the case of the availability

of only aspect-limited far-field data with finitely many modes in the waveguide. However, the
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Fig. 3.4. The effects of the exterior wavenumber k, the interior wavenumber ki and the density ratio ρ

on the reconstructions for the ellipsoid D centered at (0, 0, h/2). The top row gives the reconstructions

based on the type II data with the interior wavenumber ki = 1.5(m−1), and the density ratio ρ = 1.5, the

exterior wavenumber k = 1.0, 2.0, 3.0(m−1) respectively from the left-hand side to the right-hand side;

the middle row gives the reconstructions based on the type IV data with the exterior wavenumber k =

2.0(m−1), and the density ratio ρ = 2.0, the interior wavenumber ki = 1.0, 2.0, 3.0(m−1) respectively

from the left-hand side to the right-hand side; the lower row gives the reconstructions based on the

type VI data with exterior wavenumberk = 3.0(m−1) and the interior wavenumber k = 1.5(m−1), the

density ratio ρ = 2.0, 3.0, 4.0 respectively from the left-hand side to the right-hand side.

results also indicate that the fidelity of the reconstruction with decreasing the incident and

received apertures will be diminished due to the fact that the consequent loss of information

leads to the more severely ill-conditioned nature of the far-field matrix in (2.24), and this in

turn limits the accuracy of determining the indicator sampling function g(y, ς).

In the following example, we consider the multiple-scattering effects of the waveguide bound-

aries on the reconstructions. As well known, the complexity of the acoustic propagation in a

shallow water is greatly increased due to the presence of both the sea surface and the sea floor.
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Fig. 3.5. Reconstructions with 2% noise data for the ellipsoid A centered at (0, 0, h/2) based on the

type II data, type IV data and type VI data respectively from the left-hand side to the right-hand side.

In each case, the exterior wave number k = 1.5(m−1), the interior wave number ki = 2.0(m−1) and the

density ratio ρ = 2.0.

In general, the multiple-scattering effects will be strong when the scattering obstacle or the

incident source is near to the sea surface or the sea floor [27-28]. Let us emphasize that the

present method has just taken into account such waveguiding and multiple- scattering effects.

Therefore, in practice, it is interesting in considering the ability of the proposed method to

handle such multiple-scattering effects.

Both the far-field data and the scattering obstacles used in this study are outlined below:

(1) the type I data and an ellipsoid B; (2) the type III data and an ellipsoid C; (3) the type

V data and an ellipsoid E. For each obstacle, its reconstruction is carried out for the cases

where the obstacle’s centre is located at (0, 0, h/4),(0, 0, h/2) and (0, 0, 3h/4) respectively. The

reconstructions for these cases are shown in Fig. 3.3. The results show that the reconstruction

based the present method is comparatively sensitive to the multiple-scattering effects generated

by the waveguide boundaries. Furthermore, the results also show that such multiple-scattering

effects seem to have some negative influence on the reconstruction.

Our next example shows the effects of the exterior wavenumber k, the interior wavenumber

ki and the density ratio ρ on the reconstruction. To this end, three different cases are considered:

(1) for a fixed interior wavenumber ki and a fixed density ratio ρ, varying the values of the

exterior wavenumber k; (2) for a fixed exterior wavenumber k and a fixed density ratio ρ,

varying the values of the interior wavenumber ki; (3) for a fixed exterior wavenumber k and a

fixed interior wavenumber ki, varying the values of the density ratio ρ. For these results, as

shown in Fig. 3.4, where the ellipsoid D centered at (0, 0, 1/h) has been taken as examples, and

the three types of incident and received data are considered, which are type II data, type IV

data and type VI data respectively. The results show that the method works well for various

values of these parameters over a reasonably wide range.

In the final set of numerical experiments, we wish to test the ability of the present method

to deal with noise data. To this end, the distributed random numbers in [−δ, δ] are added

to the real and imaginary parts of the synthetic far-field data u∞(x̂, z; d, z0) for each incident

source point (d, z0) ∈ Λ. We carried out the numerical experiments for the ellipsoid A centered

at (0, 0, h/2) and the three types of incident and received data which are type II data, type

IV data and type VI data respectively. The results are presented in Fig. 3.5, where the noise

level for the reconstructions is 2%. The results show that the reconstruction is sensitive to the

noise in the propagation far-field data, but the proposed method has the ability of handling the
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moderate amounts of noise.

4. Conclusions

To date, the numerical solution of the inverse domain problem in a shallow water waveguide

has been demonstrated only in the case that the scattering object is impenetrable. The present

paper has proposed an indicator sampling method for fast imaging a penetrable object in

a shallow water waveguide. Moreover, it has been demonstrated that the proposed method

is feasible to obtain an acceptable visualization of the penetrable object in a shallow water

waveguide.

The indicator sampling method has the following interesting features in practice:

1. The imaging speed is fast since the reconstruction for a 3D object from the given propa-

gation far-field data can be achieved in a few minutes. Moreover, the method can be very

conveniently parallelized and its imaging effectiveness can be considerably increased.

2. The implementation is computationally simple since it only requires the determination of

an indicator function from a linear system where the indicator function has been shown

to have much larger values for points inside the scatterer than for those lying outside the

obstacle.

3. No a priori information on the penetrable obstacle is required since it is not necessary to

a priori know any geometrical and material properties of the penetrable obstacle.

4. The illumination and observation apertures for the unknown obstacle may be quite limited

since the proposed method can succeed in producing a reasonably visualization of the

unknown object even when the incidence and observation apertures are as small as the

quarter of the unit cylinder surface with the half of the ocean depth.

5. The moderate amounts of noise can be handled in the reconstructions based on the pro-

posed method. Note that it is important for many practical applications.

However, the present method has also some disadvantages. The main one is that it only

provides a reconstruction of the support of the unknown obstacle and it is not possible to infer

information about the fine structure of the boundary for an unknown obstacle. Nevertheless,

for many practical applications, it is sufficient to acquire the support of the unknown object

duo to the fact that such a support has included the abundant geometrical knowledge about

the unknown object such as the number of components of the unknown object and their rough

sizes, orientations and locations.

We here emphasis that our imaginary resolution performance of imaging the support of the

unknown penetrable object depends on the choice of regularity parameter as if linear sampling

or indicator function method did [4,5,21,26]. Although there has simple method for solving

regularity parameter, it is very difficulty to implement it [29]. It can be seen that our method

doesn’t make it function better in ocean waveguide than in free space. On the other hand, the

imaging stability doesn’t depend on the measurement noise. That is we can obtain its better

imaging whether the noise is added under the correct choice of regularity parameter. In [13],

authors extend the optimization approach to image geometric details of an electromagnetic

target that are finer than the equivalent ellipse. The cost functional measures the discrep-

ancy between the computed and measured high-order frequency dependent polarization tensors
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rather than between the generalized polarization tensors. It is shown that in the case of a high

signal-to-noise ration, reconstructing fine shape information is possible. We suggest readers to

refer to the paper. Moreover, it is our further work regarding this issue.
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