
Journal of Computational Mathematics

Vol.31, No.5, 2013, 470–487.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1304-m4288

TWO-GRID CHARACTERISTIC FINITE VOLUME METHODS
FOR NONLINEAR PARABOLIC PROBLEMS*

Tong Zhang

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China

Email: tzhang@hpu.edu.cn

Abstract

In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic

problem are considered. In our algorithms, the diffusion term is discretized by the finite

volume method, while the temporal differentiation and advection terms are treated by the

characteristic scheme. Under some conditions about the coefficients and exact solution,

optimal error estimates for the numerical solution are obtained. Furthermore, the two-

grid characteristic finite volume methods involve solving a nonlinear equation on coarse

mesh with mesh size H , a large linear problem for the Oseen two-grid characteristic finite

volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the

Newton two-grid characteristic finite volume method on a fine mesh with mesh size h =

O(| log h|1/2H3). These methods we studied provide the same convergence rate as that of

the characteristic finite volume method, which involves solving one large nonlinear problem

on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the

efficiency of the proposed methods.
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1. Introduction

Many processes in science and engineering are described by the parabolic equations, for

instance, the processes of fluid dynamics, hydrology and environmental protection [20, 25].

There have been extensive works devoted to linear parabolic problems see, e.g., the monographs

[30]. For nonlinear cases, we mention only [9, 26] and the references therein.

In this paper, we consider the following nonlinear parabolic problem in R
2:







ut +∇ · (a(u)∇u) + b(u)∇u = f(u), in Ω× (0, T ],

u(x, t) = 0, on ∂Ω× (0, T ],

u(·, 0) = u0, on Ω× {0},

(1.1)

where Ω is a bounded convex polygonal domain with a sufficiently smooth boundary ∂Ω, ∇ =

(∂/∂x1, ∂/∂x2)
T , and b(u) = (b1(u), b2(u))

T is a vector function. We define a bounded set on

R
2 as

G = {u : |u| ≤ K0}, (1.2)

where K0 is a positive constant.

Supposing the coefficients of problem (1.1) satisfy the following conditions:
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(C1) : a(u) and f(u) are Lipschitz continuous with respect to u, i.e.

|g(u)− g(v)| ≤ L|u− v|, for ∀ u, v ∈ G, (1.3a)

where L is a Lipschitz constant related to K0, g(u) can take a(u) or f(u).

(C2) : a(u) is a bounded smooth function with positive upper and lower bounds,

0 < a∗ ≤ a(u) ≤ a∗, for ∀ u ∈ G. (1.3b)

(C3) : f(u) is a given real-valued function on Ω and there is a constant M such that

|f ′(u)|+ |f ′′(u)| ≤M, for ∀ u ∈ G, (1.3c)

where f ′(u) = df(u)
du . Under the conditions above, problem (1.1) admits a unique solution in a

certain Sobolev space (see [30]).

Finite volume method (FVM) as one of numerical discretization techniques has been widely

employed to solve the fluid dynamics problems in recent years (see [12, 23] and the references

therein). It is developed as an attempt to use finite element ideas in the finite difference setting.

The basic idea is to approximate the discrete fluxes of a partial differential equation using the

finite element procedure based on volumes or control volumes, so FVM is also called box scheme,

general difference method et al. (see [1,3,19]). Finite volume method has many advantages that

belong to finite difference method or finite element method, such as, it is easy to set up and

implement, conserve mass locally and it also can treat the complicated geometry and general

boundary conditions flexibility. However, the analysis of FVM lags far behind that of finite

element and finite difference methods, we can refer to the literature [10, 11, 31] for more recent

developments about the finite volume method.

The modified method of characteristic (MMOC) was first proposed by Douglas and Russell

for the convection-diffusion equations in [8]. After then, a lot of works have been reported

about this method. For instance, Russell considered the nonlinear coupled systems in [27], Süli

studied the Navier-Stokes equations in [29]. The MMOC is based on the approximation of the

material derivative term, that is, the time derivative term plus the convection term, and this

scheme works well for convection dominant problem (see [35] and the reference therein).

On the other hand, two-grid method is an efficient numerical scheme for partial differential

equations based on two spaces with different mesh sizes. This kind of discretization technique

for linear and nonlinear elliptic PDEs was first introduced by Xu in [32, 33]. After then, two-

grid method has been studied by many researchers, for example, Dawson et al. considered the

nonlinear parabolic equations by using the finite element or finite difference methods in [6, 7],

respectively. Marion and Xu [24] applied it to the evolution equations. For the Navier-Stokes

equations, we can refer to [15–18, 22]. Recently, Bi and Ginting in [2] combined the two-grid

method and the finite volume method for linear and nonlinear elliptic problems.

In this paper, we devote ourselves to the study of two-grid characteristic finite volume

method (CFVM) for nonlinear parabolic problem. By introducing an elliptic projection, optimal

error estimates of numerical solution are established. Another important novel ingredient of

this work is the convergence analysis of the approximate solution in two-grid schemes. We prove

that the initial approximation unH of the nonlinear problem is determined on the coarse mesh.

Then the fine mesh approximation unoh or unnh is obtained by solving a large linear problem

for the Oseen two-grid CFVM on a fine mesh with mesh size h = O(H2) or a large linear

problem for the Newton two-grid CFVM on a fine mesh with mesh size h = O(| log h|1/2H3),

respectively.
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For the usual characteristic finite volume approximation unh, which involves solving one large

nonlinear parabolic problem on a fine mesh with mesh size h, we provide the following error

estimate:

‖u− unh‖1 ≤ C(∆t+ h). (1.4)

Here and below, the letter C denotes a positive constant, independent of mesh parameter h

and time step ∆t, and it may stand for different values at its different places. After that, we

obtain that the Oseen two-grid characteristic finite volume solution unoh is of the following error

estimate:

‖u− unoh ‖1 ≤ C(∆t + h+H2). (1.5)

Finally, we show that the Newton two-grid characteristic finite volume solution unnh is of the

following error estimate:

‖u− unnh ‖1 ≤ C(∆t+ h+ | log h|1/2H3). (1.6)

Hence, if we choose H such that h = O(H2) for the Oseen two-grid characteristic finite

volume approximation or h = O(| log h|1/2H3) for the Newton two-grid characteristic finite

volume approximation, then the methods we studied are of the same convergence order as that

of the usual CFVM. However, It turns out that our approach is simpler than the CFVM.

2. Preliminaries

In this section, we describe some notations and results which will be frequently used in this

article. Standard notations are used for the Sobolev spaces W s,p(Ω) with the norm ‖ · ‖s,p,Ω
and the semi-norms | · |s,p,Ω. Denote W s,2(Ω) by Hs(Ω) and skip the index p = 2 for simplicity.

For all T > 0 and integer number n ≥ 0, define

Hn(0, T ;W s,p(Ω)) =
{

v ∈W s,p(Ω);
∑

0≤i≤n

∫ T

0

(
di

dti
‖v‖s,p,Ω)

2dt <∞
}

,

and the corresponding norm of Hn(0, T ;W s,p(Ω)) is denoted by

‖v‖Hn(0,T ;W s,p(Ω)) =
∑

0≤i≤n

(

∫ T

0

(
di

dti
‖v‖s,p,Ω)

2
)

1
2

.

Especially, when n = 0, we denote the norm as

‖v‖L2(0,T ;W s,p(Ω)) =
(

∫ T

0

‖v‖2s,p,Ωdt
)

1
2

.

Let

L∞(0, T ;W s,p(Ω)) =
{

v ∈W s,p(Ω); ess sup
0≤t≤T

‖v‖s,p,Ω <∞
}

,

with the corresponding norm

‖v‖L∞(0,T ;W s,p(Ω)) = ess sup
0≤t≤T

‖v‖s,p,Ω.
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Let Th (h > 0) denote a regular partition of the closure Ω of the domain Ω into a finite

number of triangulations K, hk=diam(K), h = maxK∈Th
hK . All elements of Th will be

numbered so that Th = {Ki}i∈I , where I ⊂ Z+ = {0, 1, 2, . . .} such that Ω = ∪Ki∈Th
Ki, Nh

denotes the set of all nodes Th.

Based on the partition Th, we introduce the corresponding dual partition T ∗
h . Here, we

choose the circum-center Q of a element K ∈ Th, and the midpoints M on the edges of K, then

connect Q to M by straight line. For an arbitrary vertex xi ∈ K, let Vi be the polygonal which

is called control volume. Then, we have Ω = ∪xi∈Nh
Vi, the dual mesh T ∗

h is the set of these

control volumes. We call the control volume mesh T ∗
h is regular, i.e., there exists a positive

constant C such that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀ Vi ∈ T ∗
h .

Introduce a Lagrange interpolation operator Ih from H2(Ω) into H1
0 (Ω), such that

‖u− Ihu‖i ≤ Ch2−i‖u‖2, i = 0, 1, ∀ u ∈ H2(Ω). (2.1)

Let trial function space Uh ⊂ H1
0 (Ω) with basis functions {φi(x)} be a linear space based on

Th and the test function space Vh ⊂ L2(Ω) be a piecewise constant space on the dual partition

T ∗
h , whose characteristic functions {φ∗i (x)} are defined by

φ∗i (x) =

{

1, x ∈ Vi,

0, otherwise.

Let I∗h denote an interpolation operator from H1
0 (Ω) to Vh satisfying

I∗hv =
∑

xi∈Nh

v(xi)φ
∗
i (x).

Set

ψ(x, t) =
√

1 + |b(u)|2, with |b(u)|2 = b1(u)
2 + b2(u)

2.

If we denote the characteristic direction corresponding to the hyperbolic part of (1.1), ut +

b(u)∇u, by τ , then

∂

∂τ
=

1

ψ(x, t)

∂

∂t
+

1

ψ(x, t)
b(u) · ∇.

With this definition, we write (1.1) in the following equivalent form







ψ(x, t)∂u∂τ +∇ · (a(u)∇u) = f(u), in Ω× (0, T ],

u(x, t) = 0, on ∂Ω× (0, T ],

u(·, 0) = u0, in Ω.

(2.2)

The weak form of characteristic finite volume method for problem (2.2) reads as

(

ψ(x, t)
∂u

∂τ
, I∗hv

)

+ a(u, u, I∗hv) = (f(u), I∗hv), ∀ v ∈ H1
0 (Ω), (2.3)

where a(·, ·, I∗h·) is defined by

a(w, u, I∗hv) =

∫

∂Ω

(a(w)∇u) · nI∗hvds, ∀ w, u, v ∈ H1
0 (Ω).
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Here, n is the outside normal of the boundary ∂Ω. Furthermore, we assume that, for ∀(x, t) ∈

Ω× (0, T ], the solution u of problem (1.1) satisfies the following regularities:

(C4) : u, ut ∈ L2(0, T ;H3(Ω)),
∂2u

∂t2
∈ L2(0, T ;L2(Ω)), u ∈ L∞(0, T ;W 1,∞(Ω)).

Now, we consider a time step ∆t = T/N and approximate the solution at tn = n∆t, n =

1, ..., N . The characteristic derivative can be approximated in the following way at t = tn

(

ψ(x, t)
∂u

∂τ

)n

≈ ψ(x, t)
u(x, tn)− u(x, tn−1)
√

(x− x)2 +∆t2
=
un − un−1

∆t
.

Namely, a backtracking algorithm is used to approximate the characteristic derivative. x =

x − u(x, tn)∆t is the foot (at time level t = tn−1) of the characteristic corresponding to x at

the head (at time level t = tn).

For any vh ∈ Vh, the modified method of characteristic finite volume for problem (1.1) at

t = tn reads as: Find unh ∈ Uh with time step ∆t, such that

(
unh − un−1

h

∆t
, vh) + a(unh, u

n
h, vh) = (f(unh), vh), ∀ vh ∈ Vh, (2.4)

where unh = uh(tn), and

a(uh, uh, vh) =
∑

xi∈Nh

∫

∂Vi

(a(uh)∇uh) · nvhds

=
∑

xi∈Nh

vh(xi)

∫

∂Vi

(a(uh)∇uh) · nds.

Define the discrete norm

|||uh|||
2
0 = (uh, I

∗
huh), ∀ uh ∈ Uh,

which is equivalent to the standard L2-norm (see [23]), namely, there exist two positive constants

C∗, C
∗ such that

C∗||uh||0 ≤ |||uh|||0 ≤ C∗||uh||0, ∀ uh ∈ Uh. (2.5)

To proceed the theoretical analysis for (2.4), the following discrete Gronwall lemma is

needed.

Lemma 2.1 ([28]). Let C0 and ak, bk, ck, dk, for integers k ≥ 0, be non-negative numbers such

that

an +∆t
n
∑

k=0

bk ≤ ∆t
n−1
∑

k=0

dkak +∆t
n−1
∑

k=0

ck + C0, ∀ n ≥ 1.

Then

an +∆t

n
∑

k=0

bk ≤
(

∆t

n−1
∑

k=0

ck + C0

)

exp
(

∆t

n−1
∑

k=0

dk

)

, ∀ n ≥ 1.

The following lemmas will play key roles in the convergence of analysis.
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Lemma 2.2 ([5]). For all uh, vh ∈ Uh, there exists a positive constant C, such that

(uh, I
∗
hvh) = (vh, I

∗
huh), (uh, I

∗
hvh) ≤ C||uh||0||vh||0.

Lemma 2.3 ([13,14]). Supposing that the partition Th is regular, T ∗
h is the corresponding dual

partition. For all wh, uh, vh ∈ Uh, there exist two positive constants α and C such that

α||uh||
2
1 ≤ a(wh, uh, I

∗
huh), a(wh, uh, I

∗
hvh) ≤ C||uh||1||vh||1,

|a(wh, uh, I
∗
hvh)− a(wh, vh, I

∗
huh)| ≤ Ch||uh||1||vh||1.

Lemma 2.4 ([13]). Introducing an elliptic operator Ph : C(Ω) → Uh, which defined by

a(u, Phu− u, vh) = 0, ∀vh ∈ Vh, 0 < t ≤ T.

Then there exists a positive constant C such that

‖∇Phu‖∞ ≤ C, ‖u− Phu‖1 ≤ Ch‖u‖2, ‖u− Phu‖0 ≤ Ch2‖u‖3,

‖(u− Phu)t‖1 ≤ Ch
(

‖u‖2 + ‖ut‖2
)

, ‖(u− Phu)t‖0 ≤ Ch2(‖u‖3 + ‖ut‖3).

Theorem 2.5 ([34]). Under the assumptions of Lemma 2.3, if u ∈ H2(Ω) and w ∈W 1,∞(Ω),

then, there exists a positive constant C such that

|a(u− uh, w, I
∗
hvh)| ≤ C

(

h2||u||2 + ||u− uh||0
)

||w||1,∞||vh||1, ∀ uh, vh ∈ Uh.

We end this section by introducing the following lemma, which can be found in [35].

Lemma 2.6. It holds that

(u, u)− (u, u) ≤ C∆t(u, u), ∀ u ∈ H1
0 (Ω),

where u = u(x− u(x, t)∆t).

3. Error Estimates

This section is devoted to derive the error estimates of numerical solution in the characteristic

finite volume scheme (2.4). As usual, we write the error e = un − unh as a sum of two terms

un − unh = (un − Phu
n) + (Phu

n − unh) = ηn + ξn,

where un = u(tn) and Ph is defined by Lemma 2.4. Firstly, we present the error estimate in

L2-norm for problem (2.4).

Theorem 3.1. Under the conditions (C1)-(C4) and assume that u0h = Phu0, the numerical

solution unh of problem (2.4) satisfies the following error estimate:

max
1≤n≤N

||u− unh||0 ≤ C(h2 +∆t). (3.1)

Proof. Denoting ∂tξ
n = ξn−ξn−1

∆t , subtracting (2.4) from (2.3), choosing v = ξn in (2.3) and

taking vh = I∗hξ
n in (2.4), we have

(∂tξ
n, I∗hξ

n) + a(unh, ξ
n, I∗hξ

n) (3.2)

= −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗hξ

n
)

−
(ηn − ηn−1

∆t
, I∗hξ

n
)

−
(ηn−1 − ηn−1

∆t
, I∗hξ

n
)

−a(un − unh, Phu
n, I∗hξ

n)−
(ξn−1 − ξ

n−1

∆t
, I∗hξ

n
)

+ (f(un)− f(unh), I
∗
hξ

n).
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Using the definition of ||| · |||0 and Lemma 2.2, we obtain that

(∂tξ
n, I∗hξ

n) =
1

∆t

(

ξn − ξn−1, I∗hξ
n
)

=
1

2∆t

(

ξn − ξn−1, I∗h

[

(ξn + ξn−1) + (ξn − ξn−1)
]

)

≥
1

2∆t

[

(ξn, I∗hξ
n)− (ξn−1, I∗hξ

n−1)
]

≥
1

2∆t
(|||ξn|||20 − |||ξn−1|||20). (3.3)

Combining (3.2) with (3.3), multiplying 2∆t and summing (3.2) for n from 1 to l (1 ≤ l ≤ N),

and using (2.5) and Lemma 2.3, we have

||ξl||20 + 2α

l
∑

n=1

||ξn||21∆t

≤ −2

l
∑

n=1

(ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗hξ

n)∆t− 2

l
∑

n=1

(ηn − ηn−1

∆t
, I∗hξ

n
)

∆t

−2
l
∑

n=1

(ηn−1 − ηn−1

∆t
, I∗hξ

n
)

∆t− 2
l
∑

n=1

a(un − unh, Phu
n, I∗hξ

n)∆t

−2
l
∑

n=1

(ξn−1 − ξ
n−1

∆t
, I∗hξ

n
)

∆t+ 2
l
∑

n=1

(

f(un)− f(unh), I
∗
hξ

n
)

∆t

:=
6
∑

i=1

Ei. (3.4)

Now, we estimate the right-hand terms of (3.4) one by one. For E1, with the results provided

in [27], we have

|E1| ≤ 2

l
∑

n=1

‖ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
‖0‖I

∗
hξ

n‖0∆t

≤ C1∆t
2

∫ T

0

‖
∂2u

∂τ2
‖20ds+ C2

l
∑

n=1

‖ξn‖20∆t. (3.5)

By a trick used in [8], Cauchy inequality and Lemma 2.4, we have

|E2| =

∣

∣

∣

∣

∣

2

l
∑

n=1

(ηn − ηn−1

∆t
, I∗hξ

n
)

∆t

∣

∣

∣

∣

∣

≤ 2

l
∑

n=1

‖ξn‖0‖η
n − ηn−1‖0

≤ 2

l
∑

n=1

‖ξn‖0 ·
∥

∥

∥

∫ tn

tn−1

∂η

∂t

∥

∥

∥

0
ds = 2

l
∑

n=1

‖ξn‖0 ·
∥

∥

∥

∫ tn

tn−1

(u− Phu)t

∥

∥

∥

0
ds

≤ C1

l
∑

n=1

‖ξn‖0∆t
1/2
(

∫ tn

tn−1

‖(u− Phu)t‖
2
0ds
)

1
2

≤ C1

l
∑

n=1

‖ξn‖0∆t+ C2

∫ T

0

‖(u− Phu)t‖
2
0ds

≤ C1

l
∑

n=1

‖ξn‖0∆t+ C2h
4

∫ T

0

(

‖ut‖
2
3 + ‖u‖23

)

ds. (3.6)
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With a similar treatment for E2, we can obtain

|E3| =

∣

∣

∣

∣

∣

2

l
∑

n=1

(ηn−1 − ηn−1

∆t
, I∗hξ

n
)

∆t

∣

∣

∣

∣

∣

≤ C

l
∑

n=1

‖ξn‖1‖η
n−1 − ηn−1‖H−1(Ω)

≤ C

l
∑

n=1

‖ξn‖1‖η
n−1‖0∆t ≤

α

4

l
∑

n=1

‖ξn‖21∆t+ C1

l
∑

n=1

‖un−1 − Phu
n−1‖20∆t

≤
α

4

l
∑

n=1

‖ξn‖21∆t+ C1h
4

∫ T

0

(

‖ut‖
2
3 + ‖u‖23

)

ds. (3.7)

Using the conditions of (C1)-(C2), the triangular inequality, Lemma 2.4 and Theorem 2.5, we

have

|E4| =

∣

∣

∣

∣

∣

2

l
∑

n=1

a(un − unh, Phu
n, I∗hξ

n)∆t

∣

∣

∣

∣

∣

≤
l
∑

n=1

C(h2||un||2 + ||un − unh||0)||Phu
n||1,∞||ξn||1∆t

≤ C1

l
∑

n=1

h2(‖un‖3 + ‖unt ‖3)||u
n||1,∞||ξn||1∆t+ C2

l
∑

n=1

||ξn||0||u
n||1,∞||ξn||1∆t

≤ C1h
4

∫ T

0

(‖ut‖
2
3 + ‖u‖23)ds+

α

4

l
∑

n=1

||ξn||21∆t+ C2

l
∑

n=1

||ξn||20∆t. (3.8)

Similarly, we can obtain

|E5| =

∣

∣

∣

∣

∣

2

l
∑

n=1

(ξn−1 − ξ
n−1

∆t
, I∗hξ

n
)

∆t

∣

∣

∣

∣

∣

≤ C

l
∑

n=1

‖ξn‖1‖ξ
n−1 − ξ

n−1
‖H−1(Ω)

≤ C

l
∑

n=1

‖ξn‖1‖ξ
n−1‖0∆t ≤

α

4

l
∑

n=1

‖ξn‖21∆t+ C1

l
∑

n=1

‖ξn−1‖20∆t. (3.9)

For E6, Using the condition (C1) and Lemma 2.4 yields

|E6| =

∣

∣

∣

∣

∣

2

l
∑

n=1

(f(un)− f(unh), I
∗
hξ

n)∆t

∣

∣

∣

∣

∣

≤ C1

l
∑

n=1

(

||ξn||20 + ||ηn||20

)

∆t+ C2

l
∑

n=1

||ξn||20∆t

≤ C1h
4

∫ T

0

(

‖ut‖
2
3 + ‖u‖23

)

ds+ C2

l
∑

n=1

||ξn||20∆t. (3.10)

Combining the estimates for E1 to E6 with (3.4), we arrive at

||ξl||20 + 2α

l
∑

n=1

||ξn||21∆t

≤ C1h
4

∫ T

0

(

‖ut‖
2
3 + ‖u‖23

)

ds+ C2∆t
2

∫ T

0

∥

∥

∥

∂2u

∂τ2

∥

∥

∥

2

0
ds

+C3

l
∑

n=1

||ξn−1||20∆t+ α

l
∑

n=1

||ξn||21∆t. (3.11)
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Putting the last term into the left side of (3.11) and applying Lemma 2.1 give

||ξl||20 + α
l
∑

n=1

||ξn||21∆t ≤ C1h
4

∫ T

0

(

‖ut‖
2
3 + ‖u‖23

)

ds+ C2∆t
2

∫ T

0

∥

∥

∥

∂2u

∂τ2

∥

∥

∥

2

0
ds.

This together with the triangular inequality and Lemma 2.4, the desired result (3.1) is

obtained. �

Remark 3.1. From Theorem 3.1, we can see that the CFVM is of only first order in ∆t. To

balance the spatial and temporal errors, one should choose ∆t = O(h2), which is a restriction

to the CFVM. Hence, in the proof of the following theorems, we will demonstrate ∆t = O(h2)

is reasonable.

Remark 3.2. As noted in (3.11), the term ‖∂2u
∂τ2 ‖0 appears in the error estimates in Theorem

3.1, instead of the term ‖∂2u
∂t2 ‖0. The former is much smaller than the later for an advection-

dominated problem. Therefore, the boundness of ‖∂2u
∂τ2 ‖0 can be controlled by ‖∂2u

∂t2 ‖0 under

the some assumptions about the exact solution u.

Next, we present theH1-norm error estimate for problem (1.1) in characteristic finite volume

scheme (2.4).

Theorem 3.2. Assume that the conditions of Theorem 3.1 are valid. If u0h = Phu0, and

∆t = O(h2), then the solution unh of problem (2.4) satisfies

max
1≤n≤N

||u− unh||1 ≤ C(h+∆t). (3.12)

Proof. We obtain the following error equation by choosing v = ∂tξ
n in (2.3) and vh = I∗h∂tξ

n

in (2.4), respectively

(ξn − ξn−1

∆t
, I∗h∂tξ

n
)

+ a(unh, ξ
n, I∗h∂tξ

n)

= −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗h∂tξ

n
)

−
(ηn − ηn−1

∆t
, I∗h∂tξ

n
)

−
(ηn−1 − ηn−1

∆t
, I∗h∂tξ

n
)

− a(un − unh, Phu
n, I∗h∂tξ

n)

−
(ξn−1 − ξ

n−1

∆t
, I∗h∂tξ

n
)

+
(

f(un)− f(unh), I
∗
h∂tξ

n
)

. (3.13)

It follows from Lemma 2.3 and the inequality a(a− b) ≥ 1
2 (a

2 − b2) that

a(unh, ξ
n, I∗h∂tξ

n) ≥
1

2∆t

[

a(unh, ξ
n, I∗hξ

n)− a(unh, ξ
n−1, I∗hξ

n−1)
]

−
1

2

[

a(unh, ∂tξ
n, I∗hξ

n)− a(unh, ξ
n, I∗h∂tξ

n)
]

. (3.14)

Combining (3.13) with (3.14), testing (3.13) against ∆t and summing over n from 1 to l (1 ≤
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l ≤ N), and using (2.5) and Lemma 2.3, we have

l
∑

n=1

||∂tξ
n||20∆t+

α

2
||ξl||21

≤ −
l
∑

n=1

(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗h∂tξ

n
)

∆t−
l
∑

n=1

(ηn − ηn−1

∆t
, I∗h∂tξ

n
)

∆t

−
l
∑

n=1

(ηn−1 − ηn−1

∆t
, I∗h∂tξ

n
)

∆t−
l
∑

n=1

a(un − unh, Phu
n, I∗h∂tξ

n)∆t

+
1

2

l
∑

n=1

[

a(unh, ∂tξ
n, I∗hξ

n)− a(unh, ξ
n, I∗h∂tξ

n)
]

∆t

−
l
∑

n=1

(ξn−1 − ξ
n−1

∆t
, I∗h∂tξ

n
)

∆t+

l
∑

n=1

(

f(un)− f(unh), I
∗
h∂tξ

n
)

∆t

:=

7
∑

i=1

Fi. (3.15)

Now, we are in the position to estimate F1 to F6. First,

|F1| ≤ C

l
∑

n=1

∥

∥

∥ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t

∥

∥

∥

0
‖I∗h∂tξ

n‖0∆t

≤ C∆t2
∫ T

0

∥

∥

∥

∂2u

∂τ2

∥

∥

∥

2

0
ds+

1

8

l
∑

n=1

‖∂tξ
n‖20∆t. (3.16)

For F2 and F3, by Lemma 2.4 and the techniques used in [8], we have

|F2|+ |F3|

=

∣

∣

∣

∣

∣

l
∑

n=1

(ηn − ηn−1

∆t
, I∗h∂tξ

n
)

∆t

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

l
∑

n=1

(ηn−1 − ηn−1

∆t
, I∗h∂tξ

n
)

∆t

∣

∣

∣

∣

∣

≤ C1

l
∑

n=1

‖∂tξ
n‖0‖η

n − ηn−1‖0 + C2

l
∑

n=1

‖∂tξ
n‖0‖∇η

n−1‖0∆t

≤ C1

l
∑

n=1

‖∂tξ
n‖0 ·

∥

∥

∥

∫ tn

tn−1

∂η

∂t

∥

∥

∥

0
ds+ C2

l
∑

n=1

‖∂tξ
n‖0‖∇(un−1 − Phu

n−1)‖0∆t

≤ C1

l
∑

n=1

‖∂tξ
n‖0 ·

∥

∥

∥

∫ tn

tn−1

(u− Phu)t

∥

∥

∥

0
ds+ C2

l
∑

n=1

h‖∂tξ
n‖0‖u‖2∆t

≤ C1

l
∑

n=1

‖∂tξ
n‖0∆t

1/2
(

∫ tn

tn−1

‖(u− Phu)t‖
2
0ds
)

1
2

+ C2

l
∑

n=1

h‖u‖2‖∂tξ
n‖0∆t

≤
1

4

l
∑

n=1

‖∂tξ
n‖20∆t+ C1h

4

∫ T

0

(‖ut‖
2
3 + ‖u‖23)ds+ C2(T )‖u‖

2
2h

2. (3.17)
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It follows from Lemmas 2.3 and 2.4, Theorem 2.5, and Cauchy inequalities that

|F4| ≤ C
l
∑

n=1

(h2||un||2 + ||un − unh||0)||Phu
n||1,∞||∂tξ

n||1∆t

≤ C(h2||un||2 + h2 +∆t)

l
∑

n=1

||Phu
n||1,∞||∂tξ

n||1∆t

≤ C(h2 +∆t)

l
∑

n=1

||Phu
n||1,∞h

−1||∂tξ
n||0∆t

≤ C(h+ h−1∆t)2
l
∑

n=1

||Phu
n||21,∞∆t+

1

8

l
∑

n=1

||∂tξ
n||20∆t. (3.18)

Similarly, we have

|F5| ≤
Ch

2

l
∑

n=1

||ξn||1||∂tξ
n||1∆t ≤ C

l
∑

n=1

||ξn||21∆t+
1

8

l
∑

n=1

||∂tξ
n||20∆t. (3.19)

For F6, applying Theorem 3.1 yields

|F6| ≤
l
∑

n=1

∥

∥

∥

ξn−1 − ξ
n−1

∆t

∥

∥

∥

0
‖I∗h∂tξ

n‖0∆t ≤ C

l
∑

n=1

||∇ξn−1||0||∂tξ
n||0∆t

≤ C

l
∑

n=1

||ξn−1||21∆t+
1

8

l
∑

n=1

||∂tξ
n||20∆t. (3.20)

For F7, it follows from the Theorem 3.1, condition (C1) and Young inequality that

|F7| ≤ C

l
∑

n=1

||un − unh||
2
0∆t+

1

8

l
∑

n=1

||∂tξ
n||20∆t

≤ C(T )(h4 +∆t2) +
1

8

l
∑

n=1

||∂tξ
n||20∆t. (3.21)

Combining (3.16)-(3.21) with (3.15), one gets

l
∑

n=1

||∂tξ
n||20∆t+

α

2
||ξl||21

≤ C1h
4

∫ T

0

(

||ut||
2
3 + ‖u‖23

)

dt+ C2h
2

∫ T

0

||u||22dt+ C3∆t
2

∫ T

0

‖∂ττu‖
2
0dt

+C4

l
∑

n=1

||ξn−1||21∆t+ C5

l
∑

n=1

(

h2 + h−2∆t2
)

∆t+
1

2

l
∑

n=1

||∂tξ
n||20∆t. (3.22)

Under the restriction ∆t = O(h2), putting the last term into the left side of (3.22), and applying

Lemma 2.1, we arrive at

l
∑

n=1

||∂tξ
n||20∆t+ ||ξl||21 ≤ C(h2 +∆t2).

The desired estimate follows from the triangular inequality and Lemma 2.4. �
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4. Two-Grid Characteristic Finite Volume Approximations

From now on, H and h ≪ H will be two real positive parameters tending to 0. Recall a

coarse mesh triangulation of TH(Ω) of Ω is given in Section 2. A fine mesh triangulation Th(Ω)

is generated by a mesh refinement process to TH(Ω). The space UH ⊂ Uh is based on the

triangulations TH(Ω) and Th(Ω), respectively. With above spaces, we consider the following

two-grid characteristic finite volume methods.

4.1. Oseen two-grid characteristic finite volume approximation

Algorithm 4.1.

Step I. Solve the nonlinear parabolic problem on a coarse mesh, i.e. find unoH ∈ UH (n =

1, 2, . . .) on coarse grid TH , such that for all vH ∈ VH
{

(
uno
H −un−1o

H

∆t , vH) + a(unoH , unoH , vH) = (f(unoH ), vH),

u0oH = PHu0.
(4.1)

Step II. Solve a linear problem on the fine grid Th, ∀ vh ∈ Vh, find u
no
h ∈ Uh (n = 1, 2, . . .),

such that
{

(
uno
h −un−1o

h

∆t , vh) + a(unoH , unoh , vh) = (f(unoH ) + f ′(unoH )(unoh − unoH ), vh),

u0oh = Phu0.
(4.2)

Now, we consider the convergence of unoh to u. From (2.3) and (4.2), we obtain the following

error equation for any vh ∈ Vh
(ξno − ξn−1o

∆t
, vh

)

+ a(unoH , ξno, vh)

= −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, vh

)

−
(ηn − ηn−1

∆t
, vh

)

−
(ηn−1 − ηn−1

∆t
, vh

)

− a(un − unoH , Phu
n, vh)−

(ξn−1o − ξ
n−1o

∆t
, vh

)

+(f(un)− f(unoH )− f ′(unoH )(unoh − unoH ), vh). (4.3)

Theorem 4.1. Assume that the conditions (C1)-(C4) are valid and unoh is the solution of the

Oseen two-grid characteristic finite volume scheme (4.2). If u0h = Phu0, and ∆t = O(h2), then

max
1≤n≤N

||u− unoh ||1 ≤ C
(

h+H2 +∆t
)

. (4.4)

Proof. Denoting ∂tξ
no = ξno−ξn−1o

∆t and choosing vh = I∗h∂tξ
no in (4.3), we get

(∂tξ
no, I∗h∂tξ

no) + a(unoH , ξno, I∗h∂tξ
no)

= −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗h∂tξ

n
)

− a(un − unoH , Phu
n, I∗h∂tξ

no)

−(∂tη
n, I∗h∂tξ

no)−
(ηn−1 − ηn−1

∆t
, I∗h∂tξ

no
)

−
(ξn−1o − ξ

n−1o

∆t
, I∗h∂tξ

no
)

+(f(un)− f(unoH )− f ′(unoH )(unoh − unoH ), I∗h∂tξ
no). (4.5)
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Using the same techniques as used in obtaining (3.14) and (4.5) gives

(∂tξ
no, I∗h∂tξ

no) +
1

2∆t

(

a(unoH , ξno, I∗hξ
no)− a(unoH , ξn−1o, I∗hξ

n−1o)
)

≤ −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, I∗h∂tξ

no
)

− a(un − unoH , Phu
n, I∗h∂tξ

no)

−(∂tη
n, I∗h∂tξ

no)−
(ηn−1 − ηn−1

∆t
, I∗h∂tξ

no
)

−
(ξn−1o − ξ

n−1o

∆t
, I∗h∂tξ

no
)

+
1

2

(

a(unoH , ∂tξ
no, I∗hξ

no)− a(unoH , ξno, I∗h∂tξ
no)
)

+
(

f(un)− f(unoH )− f ′(unoH )(unoh − unoH ), I∗h∂tξ
no
)

:=
7
∑

i=1

Gi. (4.6)

Multiply (4.6) by ∆t and summing it for n from 1 to l, 1 ≤ l ≤ N . For G1 and G3-G6, under the

condition (C2), by Lemmas 2.3 and 2.4, Theorem 2.5 and Cauchy inequality, we can estimate

them as in Theorem 3.2. For G2, under the restriction ∆t = O(h2), we can have

|G2| ≤
l
∑

n=1

C
(

H2||un||2 + ||un − unoH ||0
)

||Phu
n||1,∞||∂tξ

no||1∆t

≤
l
∑

n=1

C
(

H2||un||2 + ||un − unoH ||0
)

||Phu
n||1,∞||∂tξ

no||0h
−1∆t

≤ C(H2 +∆t)

l
∑

n=1

||∇Phu
n||0,∞||∂tξ

no||0h
−1∆t

≤ C(H2 +∆t)2 +
1

8

l
∑

n=1

||∂tξ
no||20h

−2∆t2

≤ C(H4 +∆t2) +
1

8

l
∑

n=1

||∂tξ
no||20∆t. (4.7)

For G7, using the condition (C3), the proof provided in [4] and Lemma 2.3 gives

(

f(un)− f(unoH )− f ′(unoH )(unoh − unoH ), I∗h∂tξ
no
)

∆t

≤ C
(

||ξno||20 + ||ηn||20

)

∆t+ C(H2 +∆t)2∆t+
1

8
||∂tξ

no||20∆t. (4.8)

It follows from the above estimates and inequality (4.6) that

l
∑

n=1

||∂tξ
no||20∆t+ α||ξlo||21

≤ C1h
2

∫ T

0

(

||ut||
2
3 + ||u||23 + ||un||22

)

dt+ C2∆t
2

∫ tl

0

∥

∥

∥

∂2u

∂τ2

∥

∥

∥

2

0
dt

+C3

l
∑

n=1

||ξn−1o||21∆t+
1

2

l
∑

n=1

||∂tξ
no||20∆t+ C4

l
∑

n=1

(

H4 +∆t2
)

∆t. (4.9)
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By Lemma 2.1, we have

||ξlo||1 ≤ C(h+H2 +∆t), (4.10)

where C is a constant dependent on ||u||L2(0,T ;H3(Ω)), ||ut||L2(0,T ;H3(Ω)), but independent of h

and ∆t.The proof is complete by combining the triangular inequality with Lemma 2.4. �

4.2. Newton two-grid characteristic finite volume approximation

Algorithm 4.2.

Step I: Solve the nonlinear parabolic problem on a coarse mesh, i.e., fine unnH ∈ UH by (4.1).

Step II: Solve the general linear parabolic problem on a fine mesh, i.e., apply one Newton

step to find unnh ∈ Uh such that for all vh ∈ Vh











(
unn
h −un−1n

h

∆t , vh) + a(unnH , unnh , vh) + a(unnh , unnH , vh)

= (f(unnH ) + f ′(unnH )(unnh − unnH ), vh) + a(unnH , unnH , vh),

u0nh = Phu0,

(4.11)

Now, we consider the convergence of the Newton two-grid characteristic finite volume scheme

(4.11). To do this, setting ξnn = Phu
n − unnh . Then, from (2.3) and (4.11), we obtain the

following error equation for any vh ∈ Vh
(ξnn − ξn−1n

∆t
, vh

)

+ a(unnh , ξnn, vh)

= −
(

ψ(x, tn)
∂un

∂τ
−
un − un−1

∆t
, vh

)

−
(ηn − ηn−1

∆t
, vh

)

−
(ηn−1 − ηn−1

∆t
, vh

)

−
(ξn−1n − ξ

n−1n

∆t
, vh

)

− a(unnh − unnH , unnh − unnH , vh)− a(un − unnh , un, vh)

+(f(un)− f(unnH )− f ′(unnH )(unnh − unnH ), vh). (4.12)

Theorem 4.2. Assume that the conditions (C1)-(C4) are valid and unnh be the solution of

Newton two-grid characteristic finite volume algorithm (4.11). If u0h = Phu0, and ∆t = O(h2),

then

max
1≤n≤N

||u− unnh ||1 ≤ C
(

h+ | log h|1/2H3 +∆t
)

.

Proof. Choosing vh = I∗h∂tξ
nn in (4.12) and using the trick as adopted in Theorem 3.2, we

have

(∂tξ
nn, I∗h∂tξ

nn) +
1

2∆t

(

a(unnH , ξnn, I∗hξ
nn)− a(unnH , ξn−1n, I∗hξ

n−1n)
)

≤ −
(

ψ(x, tn)
∂un

∂τ
−
un−un−1

∆t
, I∗h∂tξ

nn
)

−
(ηn−1−ηn−1

∆t
, I∗h∂tξ

nn
)

−
(ξn−1n−ξ

n−1n

∆t
, I∗h∂tξ

nn
)

−(∂tη
n, I∗h∂tξ

nn)− a(un − unnh , Phu
n, I∗h∂tξ

nn)− a(unnh − unnH , unnh − unnH , I∗h∂tξ
nn)

+
1

2

[

a(unnH , ∂tξ
nn, I∗hξ

nn)− a(unnH , ξnn, I∗h∂tξ
nn)
]

+(f(un)− f(unnH )− f ′(unnH )(unnh − unnH ), I∗h∂tξ
nn)

=

8
∑

i=1

Di. (4.13)
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Multiplying (4.13) by ∆t and summing it for n from 1 to l, (1 ≤ l ≤ N). For D1-D4 and

D7-D8, under the condition of (C2), by Lemmas 2.3 and 2.4 and Cauchy inequality, we can

estimate them, using the same techniques as used in the proof of Theorem 3.2. For D5, we have

|D5| ≤
l
∑

n=1

C
(

h2||un||2 + ||un − unnh ||0
)

||Phu
n||1,∞||∂tξ

nn||1∆t

≤
l
∑

n=1

C
(

h2||un||2 + ||un − unnh ||0
)

||∇Phu
n||0,∞||∂tξ

nn||0h
−1∆t

≤ C(h4 +∆t2) +
1

8

l
∑

n=1

||∂tξ
nn||20∆t. (4.14)

For D6, it follows from the triangular inequality and Theorem 2.5 that

|a(unnh − unnH , unnh − unnH , I∗h∂tξ
nn)|

≤ |a(unnh − un, unnh − unnH , I∗h∂tξ
nn)|+ |a(un − unnH , unnh − unnH , I∗h∂tξ

nn)|

≤
l
∑

n=1

C1

(

h2||un||2 + ||un − unnh ||0
)

||unnh − unnH ||1,∞||∂tξ
nn||1∆t

+

l
∑

n=1

C2

(

H2||un||2 + ||un − unnH ||0
)

||unnh − unnH ||1,∞||∂tξ
nn||1∆t

≤
l
∑

n=1

C1

(

h2||un||2 + ||un − unnh ||0
)

| logh|1/2||unnh − unnH ||1||∂tξ
nn||0h

−1∆t

+

l
∑

n=1

C2

(

H2||un||2 + ||un − unnH ||0
)

| log h|1/2||unh − unnH ||1||∂tξ
nn||0h

−1∆t

≤
l
∑

n=1

C1

(

h2 +∆t
)

| log h|1/2
(

h+H +∆t
)

||∂tξ
nn||0h

−1∆t

+
l
∑

n=1

C2

(

H2 +∆t
)

| log h|1/2
(

h+H +∆t
)

||∂tξ
nn||0h

−1∆t

≤ C
(

h4H2 +H6
)

| log h|+
1

8

l
∑

n=1

||∂tξ
nn||20∆t. (4.15)

Combining (4.13) with above estimates and applying Lemma 2.1 and triangular inequality, we

obtain the desired results. �

5. Numerical Experiments

In order to gain insights on the established theoretical results in Sections 3 and 4, we present

some numerical experiments in this section. Our main interest is to verify the performances of

the Oseen and Newton two-grid characteristic finite volume algorithm (4.2) and (4.11). In all

experiments, Ω = [0, 1] × [0, 1], T = 0.1, ∆t = h2. The mesh consists of triangular elements.

In order to show the prominent features of the two-grid characteristic finite volume method, we

compare our schemes (4.2) and (4.11) with the CFVM (2.4) for the nonlinear problem (1.1). In
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each time iterative interval [tm−1, tm], the stopping criterion





(N+1)2
∑

i=1

(umh,i − um−1
h,i )2





1
2

≤ 10−4

is employed, where N is the number of nodes in each orientation, m is the step of the iterative

and initial value u0h = uh(0). u
no
h and unnh be the numerical solution which obtained by using

the Oseen and Newton two-grid CFVM methods, respectively. The experimental rates of con-

vergence with respect to the mesh size h are calculated by the formula log(Ei/Ei+1)
log(hi/hi+1)

, where Ei

and Ei+1 are the relative errors corresponding to the mesh of sizes hi and hi+1, respectively.

We choose the coefficients of problem (1.1) are a(u) = u, b1(u) = b2(u) = u. The initial-

boundary values and f(u) are determined by the exact solution u = e−tx(1 − x)y(1 − y). The

CPU time and relative errors are listed in Tables 5.1-5.3 for the CFVM and two-level CFVM

methods with some h and H . It is need to explain that the coarse mesh sizes in Newton two-grid

CFVM method, from Theorem 4.2, we should choose H = 3

√

h| logh|−
1
2 , in order to put the

suitable nodes N , we take the numbers of mesh points as a integer of N = [ 1H ].

Table 5.1: Characteristic finite volume method for nonlinear parabolic equations.

1

h

‖u−un
h‖0

‖u‖0

||u−un
h ||1

‖u‖1
uL2 rate uH1 rate CPU(s)

9 0.0331786 0.413652 / / 0.857

16 0.0112041 0.238276 1.8868 0.9587 7.469

25 0.0049335 0.157435 1.8379 0.9286 43.984

36 0.0024609 0.110440 1.9074 0.9723 195.329

49 0.0013811 0.0813872 1.8736 0.9901 699.141

Table 5.2: Oseen two-level characteristic finite volume method for nonlinear parabolic equations.

1

h
1

H

‖u−uno
h ‖0

‖u‖0

||u−uno
h ||1

‖u‖1
uL2 rate uH1 rate CPU(s)

9 3 0.0321762 0.429481 / / 0.469

16 4 0.0116502 0.252669 1.7657 0.9220 3.656

25 5 0.0051738 0.170766 1.8188 0.8779 20.510

36 6 0.0026148 0.123599 1.8714 0.8865 88.313

49 7 0.0014607 0.092588 1.8886 0.9370 295.438

Table 5.3: Newton two-level characteristic finite volume method for nonlinear parabolic equations.

1

h
1

H

‖u−unn
h ‖0

‖u‖0

||u−unn
h ||1

‖u‖1
uL2 rate uH1 rate CPU(s)

9 2 0.0233606 0.385462 / / 0.406

16 3 0.0084201 0.236872 1.7735 0.8463 3.375

25 4 0.0037730 0.162319 1.7988 0.8469 19.438

36 5 0.0019677 0.119149 1.7853 0.8479 84.079

49 6 0.0011379 0.090306 1.7765 0.8990 292.859

From Tables 5.1-5.3, we can see that the numerical results coincide with the theoretical

analysis, and both the Oseen and Newton two-level characteristic finite volume methods spend

less time than CFVM, that is to say, our algorithms are effective for saving a large amount of

computational time and still keeping good precise.
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6. Conclusions

In this paper, we consider the two-grid characteristic finite volume methods for the non-

linear parabolic problem. The L2 and H1-norm error estimates for the modified method of

characteristic finite volume are derived under some assumptions. Furthermore, for two-grid

algorithms, by using Taylor expression and the known solution unH , which obtained in coarse

mesh, the nonlinear system transforms into a linear system, which is much easier to be solved

than the origin problem, some numerical results are provided to confirm the effectiveness of our

methods.
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