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Abstract

The paper introduces a new class of numerical schemes for the approximate solutions of

stochastic pantograph equations. As an effective technique to implement implicit stochas-

tic methods, strong predictor-corrector methods (PCMs) are designed to handle scenario

simulation of solutions of stochastic pantograph equations. It is proved that the PCMs are

strong convergent with order 1
2
. Linear MS-stability of stochastic pantograph equations

and the PCMs are researched in the paper. Sufficient conditions of MS-unstability of s-

tochastic pantograph equations and MS-stability of the PCMs are obtained, respectively.

Numerical experiments demonstrate these theoretical results.
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1. Introduction

In 1971, Ockendon and Tayler [15] used the equation ˙x(t) = ax(t) + bx(pt) to model the

collection of current by pantograph of an electric locomotive. This is the origin of the ‘panto-

graph’ in ‘pantograph differential equations’. From then on, pantograph differential equations

arise widely in dynamical systems, probability, quantum mechanics, electrodynamics and so

on. A wealth of literature exists on analytical solution as well as numerical solution. The early

related results can be found in [5,8,10], and the referents therein. More recently results can be

found in [2, 4, 9, 12,13].

Stochastic pantograph equation can be viewed as a generalization of the deterministic pan-

tograph differential equation which takes into account of random factors. It possesses a wide

range of applications. Up to now, only few results of stochastic pantograph equation have

been presented. In 2000, Baker and Buckwar [1] obtained the necessary analytical theory for

existence and uniqueness of strong approximations of a continuous extension of the θ-Euler

methods and established 1/2 mean-square convergence of approximations. In 2007, Fan, Liu

and Cao [7] discussed the existence and uniqueness of solutions and convergence of semi-implicit

euler methods for stochastic pantograph equation. Some criteria for linear asymptotically mean

square stability was given in [6]. In 2009, Xiao and Zhang [17] proved θ-methods of nonlinear

stochastic pantograph equation are MS-stabile under appropriate conditions. In 2011, Xiao
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and Zhang [19]constructed numerical methods with variable step size to solve stochastic panto-

graph equation, the convergence and linear MS-stability were discussed. In 2013, Xiao,Zhang

and Qin [18] discusses the MS-stability of the milstein method for stochastic pantograph equa-

tions.

For deterministic ordinary differential equations, the numerical stability of explicit methods

are generally worse than implicit methods and the disadvantage of implicit methods is that an

algebraic equation needs to be solved at each time step. It has been well known that PCMs

can improve numerical stability comparing with standard explicit methods and don’t require

to solve an algebraic equations. For SDEs, the PCMs have the same properties. Weak PCMs

for SDEs were discussed in [16] and [11]. In [3], a family of strong predictor-corrector Euler

methods is designed to simulate the solution of SDEs. In [14], Niu and Zhang established a class

of PCMs for SDEs and proved that the PCMs maintain almost sure and moment exponential

stability for sufficiently small timesteps.As far as we know, it doesn’t exist any literature about

PCMs for SDEs with delay (SDDEs).

In this article, we deal with stochastic pantograph equation{
dx(t) = f(x(t), x(pt))dt+ g(x(t), x(pt))dw(t), t0 < t, p ∈ (0, 1);

x(t) = ξ(t), pt0 ≤ t ≤ t0.
(1.1)

The work is organized as follows: Section 2 analyzes mean-square bound and stability of stochas-

tic pantograph differential equations and establishes a family of predictor-corrector methods

(PCMs (θ, η)) to simulate approximation of the stochastic pantograph differential equations.

In Section 3, the convergence is discussed. It proved that the PCMs (θ, η) is mean square nu-

merical convergent with order 1/2. In Section 4, some linear numerical MS-stability criteria of

PCMs (θ, η) are obtained. If stochastic pantograph differential equations are MS-stable, then

the numerical solutions of PCMs (θ, η) are MS-stable under appropriate conditions. Section 5

gives some numerical experiments to illustrate the obtained theoretical results.

2. Predictor-corrector Methods for Stochastic Pantograph

Differential Equations

Let (Ω,A, P ) be a complete probability space with a filtration (At)t≥t0 , which is right-

continuous and satisfies that each At (t ≥ t0) contains all P -null sets in A, and w is an

d-dimensional Brownian motion defined on the probability space, | · | is the trace norm, Et(·) =
E(·|At).

We integrate(1.1) and obtain{
x(t) = x(t0) +

∫ t

t0
f(x(s), x(ps))ds+

∫ t

t0
g(x(s), x(ps))dw(s), t0 ≤ t ≤ T,

x(t) = ξ(t), pt0 ≤ t ≤ t0,
(2.1)

where x(t) is a Rd-value random process, p ∈ (0, 1) denotes a given constant, the second integral

is Itô type, f : Rd ×Rd → Rd and g : Rd ×Rd → Rd are two given Borel-measurable functions,

ξ(t) is a C([pt0, t0], R
d)-value initial segment with E∥ξ(t)∥ < ∞, let ∥ξ∥ = suppt0≤t≤t0 |ξ(t)|.

Throughout this paper, we assume the Eq. (2.1) has an uniqueness solution x(t) ∈ M2(R+, R
d)

and satisfies the following conditions:

(C1) (global Lipschitz condition )

|f(x, u)− f(y, v, )|2 ∨ |g(x, u)− g(y, v)|2 ≤ β1(|x− y|2 + |u− v|2); (2.2)
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(C2) (linear growth condition)

|f(x, u)|2 ≤ β2(|x|2 + |u|2); |g(x, u)|2 ≤ β3(|x|2 + |u|2). (2.3)

For convenience of discussion, let β = max{β2, β3}, then, following lemma is obtained.

Lemma 2.1. The solution of (2.1) which satisfy C1 and C2 has the property

E

(
sup

pt0≤t≤T
|x(t)|2

)
≤ c1, (2.4)

moreover, for any pt0 ≤ s < t ≤ T ,

E|x(t)− x(s)|2 ≤ c2(t− s), (2.5)

here, c1, c2 are nonnegative constants which don’t depend on s and t.

Proof. For t0 ≤ t ≤ T , according to inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2, Hölder

inequality and Burkhölder-Davis-Gundy inequality, it follows that

E(supt0≤r≤t |x(r)|2)
≤ 3E|x(t0)|2 + 3(T − t0)

∫ t

t0
E|f(x(r), x(pr))|2dr + 12

∫ t

t0
E|g(x(r), x(pr))|2dr.

By linear growth condition C2, we have

E(supt0≤r≤t |x(r)|2)

≤ 3E|x(t0)|2 + 3β(T − t0 + 4)(
∫ t

t0
E|x(r)|2dr +

∫ t

t0
E|x(pr)|2dr)

≤ 3E|x(t0)|2 + 3β(T − t0 + 4)(1 + 1
p )

∫ t

pt0
E|x(r)|2dr

≤ 3E|x(t0)|2 + 3β(T − t0 + 4)(1 + 1
p )

∫ t

pt0
E(suppt0≤r≤t |x(r)|2)dr.

So,

E(suppt0≤r≤t |x(r)|2)

≤ E(suppt0≤r≤t0 |ξ(r)|
2) + E(supt0≤r≤t |x(r)|2)

≤ 4E(suppt0≤r≤t0 |ξ(r)|
2) + 3β(T − t0 + 4)(1 + 1

p )
∫ t

pt0
E(suppt0≤r≤t |x(r)|2)dr.

(2.4) is obtained from Gronwall’s inequality.

Using Hölder’s inequality, it follows that

E|x(t)− x(s)|2

= E|
∫ t

s
f(x(r), x(pr))dr +

∫ t

s
g(x(r), x(pr))dw(r)|2

≤ 2(t− s)
∫ t

s
E|f(x(r), x(pr))|2dr + 2

∫ t

s
E|g(x(r), x(pr))|2dr

≤ 2(T − pt0 + 1)β
∫ t

s
E[|x(r)|2 + |x(pr)|2]dr.

(2.6)

Combining (2.6) with (2.4), (2.5) holds. This completes the proof. �

We consider stochastic predictor-corrector methods with predictor process

x̄n+1 = xn + f(xn, x̂n)h+ g(xn, x̂n) △ wn, (2.7)
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and corrector process

xn+1 = xn + h[θf(x̄n+1, ˆ̄xn+1) + (1− θ)f(xn, x̂n)]

+[ηg(x̄n+1, ˆ̄xn+1) + (1− η)g(xn, x̂n)] △ wn, (2.8)

where, tn = t0 + nh, xn, x̂n and ˆ̄xn+1 are approximations to x(tn), x(ptn) and x(ptn+1),

respectively. xn = ξ(tn) when n ≤ 0 and △ wn = w(tn+1)−w(tn). When ptn > t0, there exists

an integer vn(0 ≤ vn < n) and δn ∈ [0, 1) such that ptn = t0 + vnh+ δnh. Let

x̂n =

{
δnxvn+1 + (1− δn)xvn , ptn > t0, n = 0, 1, · · · ,
ξ(ptn), ptn ≤ t0,

(2.9)

ˆ̄xn+1 =

{
xvn+1

, ptn+1 > t0, n = 0, 1, · · · ,
ξ(ptn+1), ptn+1 ≤ t0.

(2.10)

We denote the methods (2.7)-(2.10) as PCMs(θ, η).

3. Convergence Analysis

Lemma 3.1. ([7]) EM-methods for stochastic pantograph equations is convergent with order 1
2 .

Theorem 3.1. If f,g satisfy C1 and C2, then PCMs(θ, η) converge with order 1
2 .

Proof. It follows from Lemma3.1 that

Et0 |xn+1 − x(tn+1)|2 ≤ 2Et0 |xn+1 − x̄n+1|2 + 2Et0 |x̄n+1 − x(tn+1)|2
= 2Et0 |xn+1 − x̄n+1|2 +O(h).

(3.1)

By condition C1, we have

Et0 |xn+1 − x̄n+1|2

≤ 2h2θ2Et0 |f(x̄n+1, ˆ̄xn+1)− f(xn, x̂n)|2 + 2η2hEt0 |g(x̄n+1, ˆ̄xn+1)− g(xn, x̂n)|2

≤ 2β1h(hθ
2 + η2)[Et0 |x̄n+1 − xn|2 + Et0 |ˆ̄xn+1 − x̂n|2]. (3.2)

Combining linear growth condition C2 with (2.4) yields

Et0 |x̄n+1 − xn|2

≤ 2βh(1 + h)[Et0 |xn|2 + Et0 |x̂n|2]
≤ 2βh(1 + h)[2Et0 |xn − x(tn)|2 + 2Et0 |x(tn)|2 + 2Et0 |x̂n − x(ptn)|2 + 2Et0 |x(ptn)|2]
≤ 4βh(1 + h)[Et0 |xn − x(tn)|2 + Et0 |x̂n − x(ptn)|2] +O(h). (3.3)

By Lemma 2.1, we have

Et0 |ˆ̄xn+1 − x̂n|2 ≤ 3Et0 |ˆ̄xn+1 − x(ptn+1)|2 + 3Et0 |x(ptn)− x̂n|2 +O(h). (3.4)

Here,

Et0 |x(ptn)− x̂n|2

≤ 4δ2nEt0 |xvn+1 − x(tvn+1)|2 + 4(1− δn)
2Et0 |xvn − x(tvn)|2

+4δ2nEt0 |x(tvn+1)− x(ptn)|2 + 4(1− δn)
2Et0 |x(tvn)− x(ptn)|2

≤ 4Et0 |xvn+1 − x(tvn+1)|2 + 4Et0 |xvn − x(tvn)|2 +O(h), (3.5)
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and

Et0 |ˆ̄xn+1 − x(ptn+1)|2

≤ 2Et0 |xvn+1 − x(tvn+1)|2 + 2Et0 |x(tvn+1)− x(tvn+1 + δn+1h)|2

≤ 2Et0 |xvn+1 − x(tvn+1)|2 +O(h). (3.6)

Substituting (3.1) with (3.2)-(3.6) and an induction lead to

Et0 |xn+1 − x(tn+1)|2 = O(h).

This completes the proof. �

4. Linear Stability of PCMs(θ, η)

For convenience, writing PCMs(θ, η) as
xn+1 = xn + hFn

θ +Gn
η △ wn,

Fn
θ = θf(x̄n+1, ˆ̄xn+1) + (1− θ)f(xn, x̂n),

Gn
η = ηg(x̄n+1, ˆ̄xn+1) + (1− η)g(xn, x̂n).

(4.1)

Considering linear scalar pantograph differential equation{
dx(t) = [ax(t) + bx(pt)]dt+ [ρx(t) + σx(pt)]dw(t), t ≥ 0,

x(0) = ξ,
(4.2)

where a, b, ρ, σ ∈ R, p ∈ (0, 1) and ξ ̸= 0 with probability 1.

Theorem 4.1. (1) The solution of (4.2) is MS-stable whenever

2a+ 2|b+ ρσ|+ ρ2 + σ2 < 0. (4.3)

(2) The solution of (4.2) is MS-unstable whenever{
2a+ ρ2 > 0,

2aσ2 − b2 − 2bρσ ≥ 0.
(4.4)

Proof. (1) cf. [6]; (2) By Itô formula, it yields

d|x(t)|2= [2x(t)(ax(t) + bx(pt)) + |ρx(t) + σx(pt)|2]dt
+2x(t)(ρx(t) + σx(pt))dw(t)

= [(2a+ ρ2)|x(t)|2 + 2(b+ ρσ)x(t)x(pt) + σ2|x(pt)|2]dt
+[2ρ|x(t)|2 + 2σx(t)x(pt)]dw(t).

(4.5)

Taking expectations after both sides integral from 0 to t, we have

E|x(t)|2 = E|ξ|2 + E
∫ t

0
[(2a+ ρ2)|x(s)|2 + 2(b+ ρσ)x(s)x(ps) + σ2|x(ps)|2]ds. (4.6)

Assuming 2a+ ρ2 > 0 follows that

E|x(t)|2 = E|ξ|2 + E
∫ t

0

(√
2a+ ρ2|x(s)|+ b+ρσ√

2a+ρ2
|x(ps)|

)2

ds

+
(
σ2 − (b+ρσ)2

2a+ρ2

)
E
∫ t

0
|x(ps)|2ds.

(4.7)
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So, when 2a+ ρ2 > 0 and 2aσ2 − b2 − 2bρσ ≥ 0, it follows that

E|x(t)|2 ≥ E|ξ|2. (4.8)

This means the Eq. (4.2) is MS-unstable. This completes the proof. �

Theorem 4.2. PCMs (θ, η) with stepsize h for linear stochastic pantograph Eq. (4.2) is MS-

stable, if

R(ā, b̄, ρ̄, σ̄, θ, η)

= ā+ ā2 + 3−θ
2 |b̄|+ (2− θ)b̄2 + ρ̄+ (2− η)σ̄ + (3− 3θ

2 + 2θ|b̄|)|āb̄|
+(3− 3η

2 + 2η|b̄|)
√
ρ̄σ̄ + (θā2 + ηρ̄)(|1 + ā|+ 3

2 b̄)
2

+(θā2 + 3ηρ̄)(
√
ρ̄+ 3

2

√
σ̄)2 + (θ|āb̄|+ η

√
ρ̄σ̄)(2|1 + ā|+ |σ̄|) < 0,

(4.9)

where ā = ah, b̄ = bh, ρ̄ = ρ2h, σ̄ = σ2h.

Proof. Applying the methods(4.1) to (4.2), it follows that

E|xn+1|2 = E|xn + hFn
θ +Gn

η △ wn|2
≤ E|xn|2 + 2(h2E|Fn

θ |2 + E|Gn
η △ wn|2 + hExnF

n
θ + ExnG

n
η △ wn).

(4.10)

By E △ wn = E △ w3
n = 0, E △ w2

n = h,E △ w4
n = 3h2, we have

ExnF
n
θ

= Exn[θ(ax̄n+1 + bˆ̄xn+1) + (1− θ)(axn + bx̂n)]

≤ (a+ hθa2 + θh|ab|+|b|
2 )Ex2

n + θh|ab|+(1−θ)|b|
2 Ex̂2

n + θ|b|
2 E ˆ̄x2

n+1,

(4.11)

ExnG
n
η △ wn

= Exn[η(ρx̄n+1 + σ ˆ̄xn+1) + (1− η)(ρxn + σx̂n)] △ wn

= ηρ2hEx2
n + ηρσhExnx̂n

≤ (ηρ2h+ ηh|ρσ|
2 )Ex2

n + ηh|ρσ|
2 Ex̂2

n,

(4.12)

E|Fn
θ |2

≤ θE|(ax̄n+1 + bˆ̄xn+1)|2 + (1− θ)E|(axn + bx̂n)|2
= {θa2[(1 + ha)2 + ρ2h+ |1 + ha||hb|+ |ρσ|h] + θ|ab||1 + ah|

+(1− θ)(a2 + |ab|)}Ex2
n + {θa2(h2b2 + σ2h+ |1 + ha||hb|+ |ρσ|h) + θ|a|b2h

+(1− θ)(b2 + |ab|)}Ex̂2
n + θ{b2 + |ab||1 + ah|+ |a|b2h}E ˆ̄x2

n+1,

(4.13)

E|Gn
η △ wn|2

≤ ηE|(ρx̄n+1 + σ ˆ̄xn+1) △ wn|2 + (1− η)E|(ρxn + σx̂n) △ wn|2
≤ {ηρ2h[(1 + ha)2 + 3ρ2h+ |1 + ha||hb|+ 3|ρσ|h] + η|ρσ|h|1 + ah|

+(1− η)(ρ2h+ |ρσ|h}Ex2
n

+{ηρ2h(h2b2 + 3σ2h+ |1 + ha||hb|+ 3|ρσ|h) + η|bρσ|h2 + (1− η)(σ2h+ |ρσ|h)}Ex̂2
n

+η{σ2h+ |ρσh||1 + ah|+ |bρσ|h2}E ˆ̄x2
n+1.

(4.14)

Combining (4.10) with (4.11)-(4.14), yields

E|xn+1|2
≤ E|xn|2 + 2R1(ā, b̄, ρ̄, σ̄, θ, η)Ex2

n + 2R2(ā, b̄, ρ̄, σ̄, θ, η)Ex̂2
n + 2R3(ā, b̄, ρ̄, σ̄, θ, η)E ˆ̄x2

n+1,
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where

R1 = ā+ θā2 + θ|āb̄|+|b̄|
2 + θ[ā2(1 + ā)2 + ā2ρ̄] + θā2(|1 + ā||b̄|+

√
ρ̄σ̄)

+θ|āb̄||1 + ā|+ (1− θ)ā2 + (1− θ)|āb̄|+ ηρ̄+ η
√
ρ̄σ̄
2

+η[ρ̄(1 + ā)2 + 3ρ̄2] + ηρ̄(|1 + ā||b̄|+ 3
√
ρ̄σ̄) + η

√
ρ̄σ̄|1 + ā|+ (1− η)ρ̄+ (1− η)

√
ρ̄σ̄

= ā+ ā2 + ρ̄+ (1− θ
2 )|āb̄|+

1
2 |b̄|+ (θā2 + ηρ̄)[(1 + ā)2 + |1 + ā||b̄|] + (θā2 + 3ηρ̄)[ρ̄+

√
ρ̄σ̄]

+(θ|āb̄|+ η
√
ρ̄σ̄)|1 + ā|+ (1− η

2 )
√
ρ̄σ̄,

R2 = θ|āb̄|
2 + (1−θ)|b̄|

2 + θā2(b̄2 + σ̄) + θā2(|1 + ā||b̄|+
√
ρ̄σ̄)

+θ|ā|b̄2 + (1− θ)b̄2 + (1− θ)|āb̄|+ η
√
ρ̄σ̄
2

+ηρ̄(b̄2 + 3σ̄) + ηρ̄(|1 + ā||b̄|+ 3
√
ρ̄σ̄) + η|b̄|

√
ρ̄σ̄ + (1− η)σ̄ + (1− η)

√
ρ̄σ̄

= (1− θ
2 )|āb̄|+ (θā2 + ηρ̄)[b̄2 + |1 + ā||b̄|] + θ|ā|b̄2 + (θā2 + 3ηρ̄)[σ̄ +

√
ρ̄σ̄]

+(1− θ)( |b̄|2 + b̄2) + η|b̄|
√
ρ̄σ̄ + (1− η

2 )
√
ρ̄σ̄ + (1− η)σ̄,

R3 = θ( |b̄|2 + b̄2) + (θ|āb̄|+ η
√
ρ̄σ̄)(|1 + ā|+ |b̄|) + ησ̄.

By (2.9) and (2.10), considering δn ∈ [0, 1), it holds

E|xn+1|2 ≤ E|xn|2 + 2
(
R1E|xn|2 +R2(E|xvn+1|2 + E|xvn |2) +R3E|xvn+1 |2

)
.

We have

R1 + 2R2 +R3 ≤ R.

Thus,

E|xn+1|2 ≤
(
1 + 2R(ā, b̄, ρ̄, σ̄, θ, η)

)
max{E|xn|2, E|xvn+1|2, E|xvn |2, E|xvn+1 |2}.

It means that the method is MS-stable when R < 0. �

Theorem 4.3. If

a+
3− θ

2
|b|+ (3 +

η

2
)|ρσ|+ (1 + η)ρ2 + (2− η)σ2 < 0,

then there exists an h0(a, b, ρ, σ, θ, η) ∈ (0, 1) such that PCMs(θ, η) with stepsize h ∈ (0, h0] for

Eq. (4.2) are MS-stable.

Proof. Without loss of generality, assume that h < 1. A combining of (4.10)-(4.14) leads to

E|xn+1|2 ≤
{
1 + [a+

3− θ

2
|b|+ (3− η

2
)|ρσ|+ (1 + η)ρ2 + (2− η)σ2]h

+H(a, b, ρ, σ, θ, η)h2

}
max{E|xn|2, E|xvn+1|2, E|xvn |2, E|xvn+1

|2},

where

H(a, b, ρ, σ, θ, η)

= (1 + θ)a2 + (2− θ)b2 + (3 + 1
2θ + 2θ|b|)|ab|+ (θa2 + ηρ2)

(
2|a|+ a2 + 3|b||1 + a|+ b2

)
+(θa2 + 3ηρ2)(ρ2 + 3|ρσ|+ σ2) + 2η|b|√ρσ + (θ|ab|+ η|ρσ|)(2|a|+ |b|).

(4.15)
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So, take

h0 = min

{
−[a+ 3−θ

2 |b|+ (3 + η
2 )|ρσ|+ (1 + η)ρ2 + (2− η)σ2]

H(a, b, ρ, σ, θ, η)
, 1

}
. (4.16)

Then when stepsize h ∈ (0, h0], the methods PCMs (θ, η) are MS-stable. �

Remark 4.1. The stepsize restriction of stability is obtained by repeated use of inequality

2ab ≤ a2+b2, so PCMs (θ, η) have better stability region than which is determined by inequality

R < 0. From Section 5, one can see that the numerical approximations of PCMs with stepsize

h > h0 which make R > 0 may still remain MS-stable. How to obtain an exact critical stepsize

h̃0 such that the method is stable for h ∈ (0, h̃0] and unstable for h ∈ (h̃0,+∞)? This is an

interesting topic. So far, we have not found any research which has obtained sufficient and

necessary bounds for numerical methods for SDDEs. We will focus on it in the future work.

5. Numerical Illustration

In the section, we give some numerical examples to illustrate the obtained theoretical results.

Consider the following stochastic pantograph equations:

Example 5.1. Consider the linear stochastic pantograph equation{
dx(t) =

(
ax(t) + bx( t2 )

)
dt+

(
ρx(t) + σx( t2 )

)
dw(t),

x(0) = 2.
(5.1)

According to (4.3), the equations with (a, b, ρ, σ) = (−4, 1, 0.1, 1) and (a, b, ρ, σ) = (−4, 0.1, 0, 1)

are stable and the stability coefficient are −4.79 and −6.8, respectively. According to (4.4), the

equations with (a, b, ρ, σ) = (1, 1, 0.1, 1) and (a, b, ρ, σ) = (1, 0.1, 0, 1) are unstable.

Example 5.2. Nonlinear stochastic pantograph equation{
dx(t) = −1

4x(t)
(
1 + cos2x( t2 )

)
dt+ 1

5x(t)x(
t
2 )dw(t), t > 0,

x(0) = 2.
(5.2)

For numerical illustrating the convergency, we use the approximation formula

error =

√
1

104
Σ100

i=1Σ
100
j=1|x(ωi,j , T )− x

(i,j)
N |2.

Table 5.1: Errors of PCMs (θ, η) for (5.1) with (a, b, ρ, σ) = (−4, 1, 0.1, 1).

(θ, η) h = 2−5 h = 2−6 h = 2−7 h = 2−8 h = 2−9

(0, 0) 0.0094 0.0062 0.0041 0.0030 0.0021

(0, 1/2) 0.0093 0.0062 0.0042 0.0030 0.0022

(0, 1) 0.0107 0.0072 0.0050 0.0035 0.0025

(1/2, 0) 0.0089 0.0060 0.0041 0.0030 0.0021

(1/2, 1/2) 0.0087 0.0060 0.0041 0.0030 0.0022

(1/2, 1) 0.0100 0.0070 0.0049 0.0035 0.0025

(1, 0) 0.0093 0.0061 0.0041 0.0030 0.0021

(1, 1/2) 0.0091 0.0061 0.0042 0.0031 0.0022

(1, 1) 0.0103 0.0070 0.0049 0.0036 0.0025
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Table 5.2: Errors of PCMs (θ, η) for (5.2).

(θ, η) h = 2−5 h = 2−6 h = 2−7 h = 2−8 h = 2−9

(0, 0) 0.4045e-003 0.3597e-003 0.2138e-003 0.1692e-003 0.0887e-003

(0, 1/2) 0.7689e-003 0.4027e-003 0.3478e-003 0.2585e-003 0.1837e-003

(0, 1) 0.1833e-003 0.1182e-003 0.0760e-003 0.0526e-003 0.0383e-003

(1/2, 0) 0.1179e-003 0.0496e-003 0.0502e-003 0.0390e-003 0.0341e-003

(1/2, 1/2) 0.6500e-003 0.4192e-003 0.3643e-003 0.2713e-003 0.1784e-003

(1/2, 1) 0.3748e-003 0.2604e-003 0.1698e-003 0.1569 -003 0.0888e-003

(1, 0) 0.7215e-003 0.4184e-003 0.4017e-003 0.2093e-003 0.1588e-003

(1, 1/2) 0.1426e-003 0.0763e-003 0.0591e-003 0.0480e-003 0.0274e-003

(1, 1) 0.3807e-003 0.2659e-003 0.1711e-003 0.1574e-003 0.0889e-003

Table 5.3: Stability bound of (5.1).

(a, b, ρ, σ) = (−4, 1, 0.1, 1)

(θ, η) h0 R

(0, 0) 0.0063 1.3010e-018

(0, 1/2) 0.0219 -0.0023

(0, 1) 0.0372 -0.0080

(1/2, 0) 0.0014 -5.6370e-004

(1/2, 1/2) 0.0029 -0.0027

(1/2, 1) 0.0044 -0.0065

(1, 0) 0.0012 -7.6429e-004

(1, 1/2) 0.0019 -0.0024

(1, 1) 0.0027 -0.0048

(a, b, ρ, σ) = (−4, 0.1, 0, 1)

(θ, η) h0 R

(0, 0) 0.1074 -0.0566

(0, 1/2) 0.1365 -0.0722

(0, 1) 0.1655 -0.83267

(1/2, 0) 0.0083 -0.0410

(1/2, 1/2) 0.0106 -0.0232

(1/2, 1) 0.0128 -0.0340

(1, 0) 0.0044 -0.0080

(1, 1/2) 0.0056 -0.0128

(1, 1) 0.0067 -0.0187
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Fig. 5.1. Strong error plots

Considering the explicit analytical solutions of (5.1) and (5.2) are difficult to obtain, we take

numerical solution with very small stepsize h = 2−13 as the exact solution. Applying the PCMs

(θ, η) with stepsizes 2qh (q = 4, 5, 6, 7, 8) to linear stochastic pantograph Eq. (5.1) and nonlinear

stochastic pantograph Eq. (5.2) on interval [0,10], respectively, we can obtain errors (see Table

5.1 and 5.2). Two double-logarithmic graphs are constructed in Fig. 5.1, the slope of dashed



10 F.Y. XIAO AND P. WANG

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

E
|x

n|
θ=0,η=1,h=2−2

(θ, η) = (0, 1), h = 2−2

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

t

E
|x

n|

θ=0,η=1,h=2−4

(θ, η) = (0, 1), h = 2−4

0 20 40 60 80 100
0

500

1000

1500

2000

2500

t

E
|x

n|

θ=1,η=1/2,h=2−2

(θ, η) = (1, 1/2), h = 2−2

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

t

E
|x

n|

θ=1,η=1/2,h=2−4

(θ, η) = (1, 1/2), h = 2−4

Fig. 5.2. the numerical solutions of (5.1) with (a, b, ρ, σ) = (−4, 1, 0.1, 1).
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Fig. 5.3. the numerical solutions of (5.1).

line is 1/2. We see that the slopes of the curves appear to match well, suggesting that the

convergent order of the PCMs (θ, η) for (5.1) and (5.2) is 1/2.

For numerical illustrating the stability, we use the approximation formula

E(|xn|) ≈
1

104
Σ104

i=1|xn(ωi)|.

In Table 5.3, stability bounds of PCMs (θ, η) for (5.1) are given. We see that taking appropriate

parameters θ and η in PCMs (θ, η)can improve the stability of Euler-Maruyama method, where
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h0 and R are obtained by (4.16) and (4.9), respectively. According to Remark 4.4, the stablity

regions of PCMs (θ, η) are larger than the data in Table 5.3. This can be demonstrated in Fig.

5.2. In Fig. 5.3, we can see that for unstable equations, the numerical solutions are unstable,

too.
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