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Abstract. In this paper we consider the numerical solutions of the fractional diffusion
equation on the unbounded spatial domain. With the application of Laplace transfor-
mation, we obtain one-way equations which absorb the wave touching on the artificial
boundaries. By using Padé expansion to approximate the frequency in Laplace space
and introducing auxiliary variables to reduce the order of the derivatives with respect
to time t, we achieve a system of ODEs within the artificial boundaries. This system
of ODEs, called high-order local absorbing boundary conditions (LABCs), reformulate
the fractional diffusion problem on the unbounded domain to an initial-boundary-
value (IBV) problem on a bounded computational domain. A fully discrete implicit
difference scheme is constructed for the reduced problem. The stability and conver-
gence rate are established for a finite difference scheme. Finally, numerical experiments
are given to demonstrate the efficiency and accuracy of our approach.
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1 Introduction

In the past two decades, anomalous diffusion phenomena have been observed in a wide
range of complex systems ranging from financial markets, movement of active particles
in biological systems, to the diffusion in porous medium [1, 2]. The anomalous subdif-
fusion process, also referred as non-Gaussian phenomena, can be described by the time
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fractional diffusion equation arose in various important physics phenomena, such as or-
dinary diffusion, dispersive anomalous diffusion [3,4], Pinkin’s viscoelasticity [5], porous
materials in fractals percolation clusters [6], biological systems [7], random and disorder
media [8]. In this paper we consider the numerical solutions of the fractional subdiffusion
equation on unbounded domain:

C
0 Dα

t u(x,t)=καuxx(x,t)+ f (x,t), x∈R, 0< t≤T, (1.1)

u(x,0)=u0(x), x∈R, (1.2)

u→0, when |x|→∞, (1.3)

where κα is the positive diffusion coefficient, the initial value u0 and the source f (x,t) are
the given compactly supported functions, and the Caputo fractional derivative C

0 Dα
t with

order α is defined by

C
0 Dα

t u(x,t)=
1

Γ(1−α)

∫ t

0

us(x,s)

(t−s)α
ds, 0<α<1. (1.4)

Recently, much attention has been received on how to solve the fractional diffu-
sion equations in both analytical and numerical viewpoints. The analytical solution of
the fractional diffusion equation is generally found by the integral transforms, such as
Laplace transform, Fourier transform and Mellin transform. In the literatures, Schneider
and Wyss [9] consider a n-dimensional time fractional diffusion in the form of integro-
differential equation. Gorenflo et al. [10] present a mapping between solutions of frac-
tional diffusion-wave equation in form of a linear integral operator. Mainardi et al. [11]
gave the fundamental solution to the fractional diffusion-wave equation in one dimen-
sional spatial domain. Barkai [12] discussed an integral transformation which maps a
Gaussian type of diffusion onto a fractional diffusion for fractional Fokker-Planck equa-
tion. In view of the asymptotic properties of Fox-H functions, Eidelman and Kochubei
[13] studied the asymptotic behavior of time regularized fractional diffusion equations.
Kilbas et al. [14] investigated the Cauchy-type problem for diffusion-wave equations with
Riemann-Liouville time-fractional derivative. One can refer to the reviews [1, 2, 12, 15]
for various applications and the analytical methods of solving fractional diffusion-type
equations.

The analytical solution of a fractional diffusion equation can be expressed in the form
of special functions such as Fox-H function, Mittag-Leffler function, Wright function and
hyperbolic geometry function. In general, it is difficult to compute the exact solutions,
especially for long time, because of the slow convergence of those special functions. On
the other hand, it is usually impossible to obtain the exact solution for the general case.
These reasons motivate us to enhance the research of numerical methods for fractional
differential equations which are valuable tools in exploring numerous phenomenons.

Due to the significant importance of the fractional equations in applications, the nu-
merical solutions received immense interest in recent years. A variety of numerical
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schemes have been designed by using finite difference in space and various discretiza-
tions in time for time fractional diffusion equations. To the best of our knowledge, the
popular difference approximations for the time fractional derivatives can be divided into
two classifications: The L1-type approximation [16–18, 22] and the Grünwald-Letnikov
approximation [23, 24]. For examples, Yuste et al. [25] presented the weighted average
methods and gave the corresponding stability analysis with von Neumann method for
explicit, implicit, and Crank-Nicolson schemes, and Chen and Liu [23] completed the
corresponding convergence analysis by using Fourier method. Langlands and Henry
[17] investigated the accuracy and stability of an implicit numerical scheme using L1-
approximation. Sun and Wu [22] proved the local truncated error of L1-approximation
in order of O(τ2−α). Zhuang et al. [24] presented an unconditionally stable numeri-
cal scheme, and established the global accuracy. Combining the predictor-corrector ap-
proach with the method of lines, Deng [26] designed an algorithm for time fractional
Fokker-Planck equation. Cui [27] proposed a compact finite difference scheme with first
order temporal accuracy and fourth order spatial accuracy. Lin and Xu [18] studied a
finite difference scheme in time combined with Legendre spectral methods in space. In
view of spectral methods is a global scheme, Zayernouri and Karniadakis introduced
these poly-fractonomials as the eigenfunctions of fractional Sturm-Liouville problems
in [19]. Combining adaptive integration in spectral method, Xu and Hesthaven [20] de-
veloped a stable multi-domain spectral penalty method for fractional partial differential
equations (PDEs). Zeng et al. [21] presented two finite difference/element approaches
to the fractional diffusion equation. In any case, these methods require the storage of
all previous function values u(0),u(τ),··· ,u(nτ) and O(n) flops at the nth step. Thus it
requires on average O(N) storage and O(N2) total computational cost with N being the
total number of time steps. It forms a bottleneck for long time simulations, especially
when one tries to solve a fractional partial differential equation.

In this paper, we consider the numerical solution of the time fractional subdiffusion
equation on the spatial unbounded domain. To overcome the difficulty of unbounded-
ness of the domain, one powerful tool is to use the artificial boundary methods (ABMs)
to reformulate the problem appropriately on a bounded domain. One refers to see mono-
graph [28] for ABMs. The key procedure of ABMs is to design suitable (or ideal) bound-
ary conditions to absorb the waves arriving at artificial boundaries. In the literature,
much attention has been received on the study of the classical PDEs. However, few work
is reported for the fractional diffusion equation on unbounded domain due to the essen-
tial difficulty of dealing with the global information for time or/and spatial fractional
operators. Recently, the exact ABCs are constructed for the one-dimensional time frac-
tional diffusion equation in [29, 30]. For the two-dimensional time fractional diffusion
equation, the exact and local ABCs are proposed in [31–34, 44] by using circle artificial
boundaries.

It is well-know that the exact ABCs are stable, but the computational cost is expen-
sive (O(N2)) using the direct method to discretize the Caputo fractional derivative. On
the other hand, local ABCs (LABCs) are efficient (O(N log(N)) computation cost) and
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tractable, but it is hard to give stability analysis. In this paper, we consider to design high-
order LABCs for the problem (1.1)–(1.3) using Padé expansion to approximate one-way
equations in Laplace space. Then auxiliary variables are introduced to reduce the order of
the derivative with respect to t. Finally, the exact ABCs are approximated by a system of
ODEs within the artificial boundaries. This kind of approximated ODE system is called
high-order LABCs in [50]. In this paper, we give the priori estimate (stability analysis) of
the reduced problem with high-order LABCs, construct a finite difference scheme, and
give the corresponding stability and convergence rate of the numerical scheme.

The outline of this paper is given as follows. In Section 2, we present the derivative
of high-order LABCs using the Padé expansion to approximate the fractional root. In
Section 3, we give the prior estimate of the reduced problem with high-order LABCs. In
Section 4, we construct a finite difference scheme for the reduced problem and present the
stability and convergence results of the finite difference scheme. In Section 5, numerical
examples are given to demonstrate the accuracy and efficiency of our high-order LABCs.
Finally, we end this paper with the conclusion and the future work.

2 Artificial boundary conditions

In this section, we consider to construct ABCs for the time fractional diffusion equation
(1.1). We first introduce artificial boundaries Γ− := {x|x= xl} and Γ+ := {x|x= xr} to
limit a computational domain, which divide the real line R into three parts:

Ω− :={x|−∞< x< xl}, Ωi :={x|xl < x< xr}, Ω+ :={x|xr < x<∞},

where the constants xl , xr are chosen such that sup{u0(x)}⊂Ωi and sup{ f (x,t)} ⊂Ωi.
Denote the exterior domain by Ωe =Ω−∪Ω+. Restricting the solution u(x,t) to Ωe, we
have

C
0 Dα

t u(x,t)=καuxx(x,t), x∈Ωe, (2.1)

u(x,0)=0, x∈Ωe, (2.2)

u(x,t)|x∈Γ− =u(xl ,t) (2.3)

u(x,t)|x∈Γ+ =u(xr,t), (2.4)

u→0, as |x|→∞. (2.5)

To derive artificial boundary conditions, we introduce Laplace transform by

L{ f (t);s}= f̂ (s)=
∫ +∞

0
e−st f (t)dt, Re(s)>0, (2.6)

and its inverse by

L−1{g(s);t}= g(t)=
1

2πi

∫ +i∞

−i∞
estg(s)ds, i2=−1. (2.7)
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With the help of Laplace transform to Caputo fractional derivative in the form of [1]

L{C
0 Dα

t f (t);s}= sα f̂ (s)−sα−1 f (0), (2.8)

we obtain

sαû(x,s)=καûxx(x,s), x∈Ωe, Re(s)>0. (2.9)

Noting the boundary conditions (2.5), the solutions of equation (2.9) gives

û(x,s)=A1(s)e
− sα/2√

κα
x
, x∈Ω+, (2.10)

û(x,s)=A2(s)e
sα/2√

κα
x
, x∈Ω−. (2.11)

Differentiating equations (2.10) and (2.11) with respect to x, we have

ûx(x,s)=− sα/2

√
κα

û(x,s), x∈Ω+, (2.12)

ûx(x,s)=
sα/2

√
κα

û(x,s), x∈Ω−. (2.13)

Taking the inverse Laplace transform to (2.12)-(2.13) with the initial value condition (2.2),
we have the exact ABCs obtained in [29]

ux(x,t)=
1√
κα

C
0 D

α
2

t u(x,t), x∈Γ− (2.14)

ux(x,t)=− 1√
κα

C
0 D

α
2

t u(x,t), x∈Γ+. (2.15)

In this paper, we would like to construct the efficient high-order LABCs. To derive the
high-oder LABCs, generally, one good way is to approximate s

α
2 by using Padé expansion

[43], given by

s
α
2 ≈ s

α
2
0

[
1+

L

∑
k=1

ak

bk
−

L

∑
k=1

ak

bk

s0

s0−(s0−s)bk

]
, (2.16)

where L is the order of Padé expansion and s0 is the Padé expansion point. Replacing s
α
2

in (2.12) and (2.13) by the Padé approximation (2.16), we arrive at

ûx(xl,s)=
sα/2

0√
κα

[
1+

L

∑
k=1

ak

bk
−

L

∑
k=1

ak

bk

s0

s0−(s0−s)bk

]
û(xl ,s), (2.17)

ûx(xr,s)=− sα/2
0√
κα

[
1+

L

∑
k=1

ak

bk
−

L

∑
k=1

ak

bk

s0

s0−(s0−s)bk

]
û(xr,s). (2.18)
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To avoid high order derivative with respect to t, applying the similar technique given
in [36], we introduce auxiliary functions

φ̂k(s)=

[
1

s0−(s0−s)bk

]
û(xl ,s), and ϕ̂k(s)=

[
1

s0−(s0−s)bk

]
û(xr,s).

Noting the duality of s↔∂t, we have the boundary conditions

ux(xl ,t)=
sα/2

0√
κα

[(
1+

L

∑
k=1

ak

bk

)
u(xl,t)−s0

L

∑
k=1

ak

bk
φk(t)

]
, (2.19)

bk∂tφk(t)+s0(1−bk)φk(t)=u(xl ,t), k=1,2,...,L. (2.20)

ux(xr,t)=− sα/2
0√
κα

[(
1+

L

∑
k=1

ak

bk

)
u(xr,t)−s0

L

∑
k=1

ak

bk
ϕk(t)

]
, (2.21)

bk∂t ϕk(t)+s0(1−bk)ϕk(t)=u(xr,t), k=1,2,...,L. (2.22)

With boundary conditions (2.19)-(2.22), the problem (1.1)-(1.3) is reduced to an IBV prob-
lem on a bounded computational domain, given by

C
0 Dα

t u(x,t)=καuxx(x,t)+ f (x,t), (x,t)∈Ωi×(0,T], (2.23)

u(x,0)=u0(x), x∈Ωi, (2.24)

ux(xl ,t)=
sα/2

0√
κα

[(
1+

L

∑
k=1

ak

bk

)
u(xl,t)−s0

L

∑
k=1

ak

bk
φk(t)

]
, (2.25)

bk∂tφk(t)+s0(1−bk)φk(t)=u(xl ,t), k=1,...,L, (2.26)

ux(xr,t)=− sα/2
0√
κα

[(
1+

L

∑
k=1

ak

bk

)
u(xr,t)−s0

L

∑
k=1

ak

bk
ϕk(t)

]
, (2.27)

bk∂t ϕk(t)+s0(1−bk)ϕk(t)=u(xr,t), k=1,...,L, (2.28)

φk(0)= ϕk(0)=0, k=1,...,L. (2.29)

Remark 2.1. When α= 1, see [49–51], for any given integer L the analytical formulae of
{ak} and {bk} in Padé expansion (2.16) are explicitly given by

ak =
2

2L+1
sin2

(
kπ

2L+1

)
, and bk =cos2

(
kπ

2L+1

)
. (2.30)

For this special case α=1, Lu [52] established an exact formula for the error

EL(s)= s
1
2 −s

1
2
0

[
1+

L

∑
k=1

ak

bk
−

L

∑
k=1

ak

bk

s0

s0−(s0−s)bk

]
. (2.31)

The error estimate is given by

EL(s)=2
√

s

(
µ2L+1(s)

1+µ2L+1(s)

)
, for µ(s)=

√
s−1√
s+1

and for all s>0. (2.32)
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Based on the observation of the formulae (2.30) and practical applications, one notes that
0<ak,bk<1. In this paper, we will use this assumption of 0<ak,bk<1 to prove the stability
of the reduced problem with high-order LABCs. This kind of Padé expansion has been
successfully applied in other problems , see [35–38].

3 Stability analysis of the reduced problems

Next we give the stability analysis of the reduced problem (2.23)-(2.29). At first, we intro-
duce the notations of the inner product, the classic L2 norm and the Riemann-Liouville-
type fractional integral, given by

(u,v)=
∫ xr

xl

u(x)v(x)dx, ‖u‖2
L2(Ωi)

=‖u‖2
0 =(u,u),

0 I−α
t g(t)=

1

Γ(α)

∫ t

0

g(s)

(t−s)1−α
ds, 0<α<1,

with the composite property (p>0,q>0) [45]

0I
−p
t (0I

−q
t g(t))= 0I

−p−q
t g(t). (3.1)

Lemma 3.1 ([40]). Suppose that u∈C1[xl ,xr], then we have

||u||2∞ ≤
( 1

xr−xl

)
||u||2L2([xl ,xr])

+2||u||L2([xl ,xr])||ux||L2([xl ,xr]). (3.2)

Lemma 3.2 ([41]). For any function v(t) absolutely continuous on [0,T], we have inequality

1

2
C
0 Dα

t v2(t)≤v(t)C
0 Dα

t v(t), 0<α<1. (3.3)

Lemma 3.3 ([47, 48]). For inequality

v(t)≤ a(t)+b(t)
∫ t

0
(t−s)α−1v(s)ds, α>0 (3.4)

for t in [0,T], where a(t) is not a decreasing function locally integrable over [0,T], and b(t) is a
nonnegative, nondecreasing continuous and bounded function, then

v(t)≤ a(t)Eα(b(t)Γ(α)t
α), 0≤ t≤T, (3.5)

where Eα(z)=∑
∞
n=1

zn

Γ(nα+1) is the Mittag-Leffler functions.

Theorem 3.1. Suppose that the coefficients of Padé expansion {ak}L
k=1,{bk}L

k=1 given in (2.16)
satisfy ak >0 and bk ∈ (0,1) (k=1,··· ,L) and f (x,t)∈C(Ωi). Then the solution of the reduced
problem (2.23)-(2.29) holds the prior estimate

∫ t

0
‖u(·,s)‖2

0ds ≤ 0 I−α
t (a(t)Eα(c1Γ(α)tα)), (3.6)
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where the constant c1 only depends on the length of the computation domain l=xr−xl , s0, bk and
ak, and

a(t)=
t1−α

Γ(2−α)
‖u0‖2

0+
∫ t

0
‖ f (·,s)‖2

0ds.

Proof. Taking inner product in (2.23) and integrating by parts with respect to x, we have
(C

0
Dα

t u(x,t),u(x,t)
)
=−κα‖ux‖2

0+καux(x,t)u(x,t)
∣∣xr

xl
+
(

f (x,t),u(x,t)
)
. (3.7)

Inserting boundary conditions (2.25) and (2.27) into (3.7), we obtain

(C

0
Dα

t u,u
)
+κα‖ux‖2

0=−s
α
2
0

√
κα

(
1+

L

∑
k=1

ak

bk

)(
u2(xl,t)+u2(xr,t)

)

+s0s
α
2
0

√
κα

L

∑
k=1

ak

bk

(
φk(t)u(xl ,t)+ϕk(t)u(xr,t)

)
+
(

f (x,t),u(x,t)
)
. (3.8)

Multiplying (2.26) by s0s
α
2
0

√
κα

ak
bk

φk(t) and summing the results, we arrive at

1

2
s0s

α
2
0

√
κα

L

∑
k=1

ak∂tφ
2
k(t)+s2

0s
α
2
0

√
κα

L

∑
k=1

ak(1−bk)

bk
φ2

k(t)

= s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
u(xl ,t)φk(t). (3.9)

Taking the similar manipulation to Eq. (2.28), we obtain

1

2
s0s

α
2
0

√
κα

L

∑
k=1

ak∂t ϕ2
k(t)+s2

0s
α
2
0

√
κα

L

∑
k=1

ak(1−bk)

bk
ϕ2

k(t)

= s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
u(xr,t)ϕk(t). (3.10)

Furthermore, using the Cauchy-Schwarz inequality, we have the following estimate

s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
u(xl,t)φk(t)≤ s0s

α
2
0

√
κα

L

∑
k=1

ak

bk

(
1

4δk
u2(xl ,t)+δkφ2

k(t)

)
, (3.11)

s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
u(xr,t)ϕk(t)≤ s0s

α
2
0

√
κα

L

∑
k=1

ak

bk

(
1

4δk
u2(xr,t)+δk ϕ2

k(t)

)
. (3.12)

Taking δk=
s0(1−bk)

2 in (3.11) and (3.12), and combining (3.8)–(3.12), we have

(C

0
Dα

t u(x,t),u(x,t)
)
+κα‖ux‖2

0+
1

2
s0s

α
2
0

√
κα

L

∑
k=1

ak

(
∂tφ

2
k(t)+∂t ϕ2

k(t)
)

≤−s
α
2
0

√
κα

(
1−

L

∑
k=1

ak

1−bk

)
(
u2(xl,t)+u2(xr,t)

)
+( f ,u). (3.13)
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Setting c=
∣∣∣−s

α
2
0

√
κα

(
1−∑

L
k=1

ak
1−bk

)∣∣∣, using Lemma 3.1 and Cauchy-Schwarz inequality

u2(xl ,t), u2(xr,t)≤ǫ‖ux‖2
0+(1/ǫ+1/l)‖u‖2

0 ,

( f ,u)≤ 1

2
(‖u‖2

0+‖ f‖2
0),

with ǫ=κα/2c, we arrive at the inequality

(C

0
Dα

t u(x,t),u(x,t)
)
+

1

2
s0s

α
2
0

√
κα

L

∑
k=1

ak

(
∂tφ

2
k(t)+∂t ϕ2

k(t)
)

≤ c1

2
‖u(x,t)‖2

0+
1

2
‖ f (x,t)‖2

0, (3.14)

where l= xr−xl and c1=
(
2c2l+2cκα+καl

)
/καl. Using Lemma 3.2, we arrive at

C
0 Dα

t ‖u(x,t)‖2
0+s0s

α
2
0

√
κα

L

∑
k=1

ak

(
∂tφ

2
k(t)+∂t ϕ2

k(t)
)
≤ c1‖u(x,t)‖2

0+‖ f (x,t)‖2
0. (3.15)

Let y(t)=‖u(x,t)‖2
0 , and integrating over [0,t], we deduce that

∫ t

0

C
0 Dα

s y(s)ds=
∫ t

0

1

Γ(1−α)

∫ s

0

yη(η)

(s−η)α
dηds

=
1

Γ(1−α)

∫ t

0
yη(η)dη

∫ t

η

1

(s−η)α
ds

=
1

Γ(2−α)

∫ t

0
yη(t−η)1−αdη

=− t1−α

Γ(2−α)
y(0)+

1

Γ(1−α)

∫ t

0

y(η)

(t−η)α
dη

=− t1−α

Γ(2−α)
y(0)+0 Iα−1

t y(t). (3.16)

Integrating from 0 to t in both sides of Eq.(3.15), and eliminating the positive resulting
φ2

k(t), ϕ2
k(t) on the left hand side, and in view of φ2

k(0)= 0, ϕ2
k(0)= 0 for k= 1,··· ,m, we

have

0 Iα−1
t y(t)≤ c1

∫ t

0
y(s)ds+

t1−α

Γ(2−α)
y(0)+

∫ t

0
‖ f (x,s)‖2

0ds. (3.17)

Taking p=α and q=1−α, we have

0 I−α
t (0 Iα−1

t y(t))=
∫ t

0
y(s)ds. (3.18)
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Let a(t)= t1−α

Γ(2−α)
y(0)+

∫ t
0 ‖ f (x,s)‖2

0ds. The inequality (3.17) can be equivalently written by

0 Iα−1
t y(t)≤ a(t)+c1 0 I−α

t (0 Iα−1
t y(t)).

With the application of Lemma 3.3, we have

0 Iα−1
t y(t)≤ a(t)Eα(c1Γ(α)tα). (3.19)

Performing Riemann-Liouville fractional integral 0 I−α
t on both side of (3.19), we have

∫ t

0
‖u(x,s)‖2

0ds ≤ 0 I−α
t (a(t)Eα(c1Γ(α)tα)). (3.20)

The proof is complete.

4 A finite difference scheme

In this section, we shall construct a finite difference scheme for numerically solving
the problem (2.23)-(2.29). For two given positive integers J and N, we let {tn}N

n=0 be

a equidistant partition of [0,T] with tn = nτ and τ = T/N, let {xj}J
j=0 be a partition of

interval (xl ,xr) with xj = xl+ jh and h=(xr−xl)/J. Denote

δtu
n
j =

un
j −un−1

j

τ
, δxun

j+ 1
2
=

un
j+1−un

j

h
, 1≤n≤N, 0≤ j< J

u
n− 1

2
j =

un
j +un−1

j

2
, δ2

xun
j =

1

h

(
δxun

j+ 1
2
−δxun

j− 1
2

)
, 1≤n≤N, 1≤ j< J.

Denote the set of mesh grid functions V={v=(v0,v1,...,vJ)}. For any v,u∈V, we define

uj+ 1
2
=

1

2
(uj+uj+1), ‖u‖=(u,u)1/2,

C
0 D

α
t vn =

τ−α

Γ(2−α)

[
a
(α)
0 vn−

n−1

∑
k=1

(a
(α)
n−k−1−a

(α)
n−k)v

k−a
(α)
n−1v0

]
(4.1)

with a
(α)
k := (k+1)1−α−k1−α. The approximate operator (4.1) is introduced in [16, 18]

and called L1-approximation for Caputo derivative. The rigorous error bound of L1-
approximation is established in [22], given by:

Lemma 4.1 ([22]). Suppose that v∈C2[0,tn] and

Tn :=C
0 Dα

t v(t)
∣∣

t=tn
−C

0 D
α
t vn. (4.2)

where 0<α<1. Then

|Tn|≤ τ2−α

Γ(2−α)

(
1−α

12
+

22−α

2−α
−(1+2−α)

)
max

0≤t≤tn

|v′′
(t)|. (4.3)
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Lemma 4.2 ([22]). Suppose that v∈C3[xl ,xr]. Then

uxx(x0)−
2

h

[
δxu 1

2
−ux(x0)

]
=−h

3
uxxx(x0+θ1h), θ1∈ (0,1), (4.4)

uxx(xJ)−
2

h

[
ux(xJ)−δxuJ− 1

2

]
=

h

3
uxxx(xJ−θ2h), θ2∈ (0,1). (4.5)

Lemma 4.2 can be verified directly by the Taylor expansion. Define mesh functions
by

un
j =u(xj,tn), f n

j = f (xj,tn).

Applying L1-approximation operator (4.1) to the time-fractional derivatives and using
the second-order central difference quotient to approximate the spatial derivatives for
the interior point, by the virtue of Lemma 4.2 to combine the artificial boundary condi-
tions, and Crank-Nicolson scheme to approximate the temporal derivatives of auxiliary
variables φk(t) and ϕk(t), we have

C
0 D

α
t un

j =καδ2
xun

j + f n
j +Tn

j , 1≤ j≤ J−1 ,1≤n≤N, (4.6)

C
0 D

α
t un

0 =
2κα

h
δxun

1
2
− 2

√
καsα/2

0

h

[(
1+

L

∑
k=1

ak

bk

)
un

0−s0

L

∑
k=1

ak

bk
φn

k

]
+ f n

0 +Tn
0 , (4.7)

bkδtφ
n
k +s0(1−bk)φ

n− 1
2

k =un
0+Rn

0 , k=1,··· ,L, (4.8)

C
0 D

α
t un

J =−2κα

h
δxun

J− 1
2
− 2

√
καsα/2

0

h

[(
1+

L

∑
k=1

ak

bk

)
un

J −s0

L

∑
k=1

ak

bk
ϕn

k

]
+ f n

J +Tn
J , (4.9)

bkδt ϕn
k +s0(1−bk)ϕ

n− 1
2

k =un
J +Rn

J , k=1,··· ,L, (4.10)

u0
j =u0(xj), 0≤ j≤ J, (4.11)

φ0
k =0,ϕ0

k =0, k=1,··· ,L. (4.12)

where

|Tn
j |≤O(τ2−α+h2), 1≤ j≤ J−1, 1≤n≤N, (4.13)

|Tn
0 |≤O(τ2−α+h), |Tn

J |≤O(τ2−α+h), 1≤n≤N, (4.14)

|Rn
0 |≤O(τ2), |Rn

J |≤O(τ2), 1≤n≤N. (4.15)

Omitting Tn
j (0≤ j≤ J, 0≤n≤N), a finite difference scheme is constructed for solving the
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initial-boundary value problem (2.1)-(2.5) in form of

C
0 D

α
t un

j =καδ2
xun

j + f n
j , 1≤ j≤ J−1 ,1≤n≤N, (4.16)

C
0 D

α
t un

0 =
2κα

h
δxun

1
2
− 2

√
καsα/2

0

h

[(
1+

L

∑
k=1

ak

bk

)
un

0−s0

L

∑
k=1

ak

bk
φn

k

]
+ f n

0 , (4.17)

bkδtφ
n
k +s0(1−bk)φ

n− 1
2

k =un
0 , k=1,··· ,L, (4.18)

C
0 D

α
t un

J =−2κα

h
δxun

J− 1
2
− 2

√
καsα/2

0

h

[(
1+

L

∑
k=1

ak

bk

)
un

J −s0

L

∑
k=1

ak

bk
ϕn

k

]
+ f n

J , (4.19)

bkδt ϕn
k +s0(1−bk)ϕ

n− 1
2

k =un
J , k=1,··· ,L. (4.20)

u0
j =φ(xj), 0≤ j≤ J, (4.21)

φ0
k =0,ϕ0

k =0, k=1,··· ,L. (4.22)

4.1 Stability of the finite difference scheme

Noting that, for 0<α<1, the coefficients a
(α)
k =(k+1)1−α−k1−α satisfy

1= a
(α)
0 > a

(α)
1 > a

(α)
k →0 as k→∞,

we have the following inequalities.

Lemma 4.3 ([22]). For any mesh function vk ∈V, we have

(C
0 D

α
t vk)vk =

τ−α

Γ(2−α)

[
vk−

k−1

∑
i=1

(a
(α)
k−i−1−a

(α)
k−i)v

i−a
(α)
k−1v0

]
vk

≥ τ−α

2Γ(2−α)

[
(vk)2−

k−1

∑
i=1

(a
(α)
k−i−1−a

(α)
k−i)(v

i)2−a
(α)
k−1(v

0)2

]

=
1

2
C
0 D

α
t (v

k)2.

Lemma 4.4 ([22]). For any mesh function v∈V, we have

τ
n

∑
k=1

C
0 D

α
t (v

k)2=
ττ−α

Γ(2−α)

n

∑
k=1

[
(vk)2−

k−1

∑
i=1

(a
(α)
k−i−1−a

(α)
k−i)(v

i)2−a
(α)
k−1(v

0)2

]

=
τ−α

Γ(2−α)

[
τ

n

∑
k=1

a
(α)
n−k(v

k)2−τ
n

∑
k=1

a
(α)
k−1(v

0)2

]

=
τ−α

Γ(2−α)

[
τ

n

∑
k=1

a
(α)
n−k(v

k)2−τn1−α(v0)2

]

=
1

Γ(2−α)
0I

α−1
t (vn)2− t1−α

n

Γ(2−α)
(v0)2,
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where we denote 0I
α−1
t (vn)2=τ1−α ∑

n
k=1 a

(α)
n−k(v

k)2.

Remark that Lemmas 4.3 and 4.4 correspond to the properties of the continuous frac-
tional results in Lemma 3.2 and the relationship of (3.16), respectively.

Lemma 4.5 ([42]). For any mesh function u∈V, the inequality satisfies

||u||2∞ ≤ǫ||δxu||2+(1/ǫ+1/l)||u||, (4.23)

where l= xr−xl denotes the length of the computational interval.

Lemma 4.6 ([46]). Suppose {yn}, {gn}, {ωn} are nonnegative sequences and

yn ≤ gn+ ∑
0≤k<n

ωkyk, for n≥0. (4.24)

Then

yn ≤ gn+ ∑
0≤k<n

ωkgk exp

(
∑

k≤j<n

ωj

)
, for n≥0. (4.25)

Furthermore, if gn = g is a positive constant, it holds

yn ≤ gexp

(
∑

0≤j≤n

ωj

)
, for n≥0. (4.26)

Theorem 4.1. Suppose that the sequences {ak}L
k=1, {bk}L

k=1 presented in (2.16) satisfy ak > 0
and bk∈(0,1) for k=1,2,...,L, and the time step satisfies 2ταΓ(2−α)c1<1/2. Then the solution
of the discretized problem (4.16)-(4.22) satisfies the estimate, for n>0

‖un‖2≤
(

1+4tα
nc1Γ(2−α)exp(4tα

nc1Γ(2−α))
)
‖gn‖2, (4.27)

where gn =2Γ(2−α)tα
n max

0≤k≤n
(‖ f k‖2)+2τα−1t1−α

n ‖u0‖2.

Proof. Multiplying hun
j on both sides of (4.16), multiplying h

2 un
0 and h

2 un
J on both sides

of (4.17) and (4.19), respectively, summing the results, and using integration by parts as
follows

−(δxun
1
2
)un

0−h
J−1

∑
j=1

δ2
xun

j un
j +(δxun

J−1/2)u
n
J =‖δxun‖2,

we obtain

(
C
0 D

α
t un,un

)
+κα‖δxun‖2

=−√
καs

α
2
0

(
1+

L

∑
k=1

ak

bk

)[(
un

0

)2
+
(
un

J

)2
]
+
√

καs
α
2
0 s0

L

∑
k=1

ak

bk

[
φn

k un
0+ϕn

k un
J

]
+
(

f n,un
)
. (4.28)
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Multiplying (4.18) by s0s
α
2
0

√
κα

ak
bk

φ
n− 1

2

k , (4.20) by s0s
α
2
0

√
κα

ak
bk

ϕ
n− 1

2

k , and summing the results
yield

s0s
α
2
0

√
κα

L

∑
k=1

ak(δtφ
n
k ,φ

n− 1
2

k )+s2
0s

α
2
0

√
κα

L

∑
k=1

ak(1−bk)

bk
(φ

n− 1
2

k )2

= s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
un

0φ
n− 1

2

k , (4.29)

s0s
α
2
0

√
κα

L

∑
k=1

ak(δt ϕ
n
k ,ϕ

n− 1
2

k )+s2
0s

α
2
0

√
κα

L

∑
k=1

ak(1−bk)

bk
(ϕ

n− 1
2

k )2

= s0s
α
2
0

√
κα

L

∑
k=1

ak

bk
un

J ϕ
n− 1

2

k . (4.30)

Summing both sides of (4.28),(4.29) and (4.30), and then using the same arguments as the
Cauchy-Schwarz inequality in (3.11) and (3.12), we have

(
C
0 D

α
t un,un

)
+κα‖δxun‖2+s0s

α
2
0

√
κα

L

∑
k=1

ak

[
(δtφ

n
k ,φ

n− 1
2

k )+(δt ϕn
k ,ϕ

n− 1
2

k )

]

≤−s
α
2
0

√
κα

(
1−

L

∑
k=1

ak

1−bk

)[(
un

0

)2
+
(
un

J

)2
]
+
(

f n,un
)
.

Let c =
∣∣∣−s

α
2
0

√
κα

(
1−∑

L
k=1

ak
1−bk

)∣∣∣. Using Lemma 4.5 and Cauchy-Schwarz inequality

again yield

(
C
0 D

α
t un,un

)
+

1

2
s0s

α
2
0

√
κα

L

∑
k=1

ak

[
δt(φ

n
k )

2+δt(ϕn
k )

2
]
≤ c1‖un‖2+

1

2
‖ f n‖2 (4.31)

with c1 =
(
2c2l+2cκα+καl

)
/καl. Multiplying τ to both side of (4.31), using Lemma 4.3

and summing the resulting from 1 to n, we have

τ
n

∑
i=1

C
0 D

α
t ‖ui‖2+s0s

α
2
0

√
κα

L

∑
k=1

ak

[
(φn

k )
2+(ϕn

k )
2
]
≤2c1τ

n

∑
i=1

‖ui‖2+τ
n

∑
i=1

‖ f i‖2. (4.32)

With application of Lemma (4.4), we arrive at

0I
α−1
t ‖un‖2≤2c1Γ(2−α)τ

n

∑
i=1

‖ui‖2+Γ(2−α)τ
n

∑
i=1

‖ f i‖2+t1−α
n ‖u0‖2, (4.33)
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where 0I
α−1
t (vn)2 = τ1−α ∑

n
k=1 a

(α)
n−k(v

k)2. Noting that the coefficients a
(α)
k := (k+1)1−α−

(k)1−α enjoy the properties:

1= a
(α)
0 > a

(α)
1 > ···> a

(α)
k →0 as k→∞,

we reduce (4.33) to

‖un‖2≤2c1Γ(2−α)τα
n

∑
i=1

‖ui‖2+Γ(2−α)τα
n

∑
i=1

‖ f i‖2+τα−1t1−α
n ‖u0‖2. (4.34)

Taking τ small enough to satisfy 2ταΓ(2−α)c1<1/2, and denoting ωi=4ταc1Γ(2−α), we
can rewrite (4.34) by

‖un‖2≤
n−1

∑
i=1

ωi‖ui‖2+2Γ(2−α)τα
n

∑
i=1

‖ f i‖2+2τα−1t1−α
n ‖u0‖2

≤
n−1

∑
i=1

ωi‖ui‖2+2Γ(2−α)tα
n max

0≤k≤n
(‖ f k‖2)+2τα−1t1−α

n ‖u0‖2.

Let yn = ‖un‖2, gn =2Γ(2−α)tα
n max

0≤k≤n
(‖ f k‖2)+2τα−1t1−α

n ‖u0‖2 and using Lemma 4.6, we

have

‖un‖2≤
(
‖gn‖2+ ∑

0≤k≤n

ωk‖gk‖2exp
(

∑
k≤j≤n

ωj

))

≤
(

1+ ∑
0≤k≤n

ωkexp
(

∑
0≤j≤n

ωj

))
‖gn‖2

=

(
1+4tα

nc1Γ(2−α)exp
(
4tα

nc1Γ(2−α)
))

‖gn‖2.

The proof is complete.

Theorem 4.2. Suppose that the sequences {ak}L
k=1,{bk}L

k=1 given in (2.16) satisfy ak > 0 and
bk ∈ (0,1) for k=1,2,...,L; u(xj,tn) and un

j are the solutions of the problem (2.23)–(2.29) and the

numerical scheme (4.16)–(4.22), respectively. Then

‖u(xj,tn)−un
j ‖≤ c(τ2−α+h2), 1≤n≤N. (4.35)

Proof. Denote en
j = u(xj,tn)−un

j , εn
k = φk(tn)−φn

k and ǫn
k = ϕk(tn)−ϕn

k . Subtracting (4.6)-
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(4.12) from (4.16)-(4.22), we have the error equation

C
0 D

α
t en

j =καδ2
xen

j +Tn
j , 1≤ j≤ J−1 ,1≤n≤N, (4.36)

C
0 D

α
t en

0 =
2κα

h
δxen

1
2
− 2

√
καs

α
2
0

h

[(
1+

L

∑
k=1

ak

bk

)
en

0−s0

L

∑
k=1

ak

bk
εn

k

]
+Tn

0 , (4.37)

[s0−(s0−δt)bk]ε
n− 1

2

k = en
0 +Rn

0 , k=1,...,L. (4.38)

C
0 D

α
t en

J =
2κα

h
δxen

J− 1
2
+

2
√

καs
α
2
0

h

[(
1+

L

∑
k=1

ak

bk

)
en

J −s0

L

∑
k=1

ak

bk
ǫn

k

]
+Tn

J , (4.39)

[s0−(s0−δt)bk]ǫ
n− 1

2

k = en
J +Rn

J , k=1,...,L. (4.40)

e0
j =0, 0≤ j≤ J; ε0

k =0, ǫ0
k =0. (4.41)

With the similar argument given in Theorem 4.1, replacing f j by Tj, u0 by en
0 +Rn

0 and un
J

by en
J +Rn

J in the proof of Theorem 4.1, and using the facts (en
0+Rn

0)
2≤2(en

0)
2+2(Rn

0)
2 and

(en
J +Rn

J )
2≤2(en

J )
2+2(Rn

J )
2, we have

‖en‖2≤ (1+4tα
n c̃1Γ(2−α)exp(4tα

n c̃1Γ(2−α)))×

2Γ(2−α)tα
n

(
max

0≤k≤n

(
‖Tk‖2+2c(Rk

0)
2+(Rk

J)
2
))

, (4.42)

where c̃1=2c1. Taking into account (4.13)-(4.15) concludes the proof.

5 Numerical experiments

In this section three numerical examples are given to demonstrate the effectiveness of
our high-order LABCs and the theoretical results established Section 4.1. In the first
example, we consider the example given in reference [30]. In the second example, we
take the single Gaussian function as the initial values for the homogeneous problem (1.1)
(i.e. f (x,t)=0). In the third example, we take the double Gaussian function as the initial
value.

Example 5.1. In this example, we consider the homogeneous problem (1.1) with the exact
solution

u(x,t)=

{
x4(π−x)4[exp(−x)t3+γ+1], (x,t)∈Ωi =(0,π),

0, (x,t)∈Ω−
⋃

Ω+
(5.1)

with κα=1. And the source term f (x,t) is determined by the exact solution (5.1).

We chose the same measure presented in [30]

E(h,τ)=

√√√√τ
N

∑
k=1

‖ek‖2
∞, order1= log2

E(h,τ)

E(h,τ/2)
, order2= log2

E(h,τ)

E(h/2,τ)
.
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We list the numerical results in Tables 1-6. The numerical errors and convergence orders
of numerical scheme (4.16)-(4.22) in time direction are presented in Tables 1-3, and the
numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in space di-
rection are presented in Tables 4-6. In Tables 1-3, the numerical errors are obtain by fixing
the spatial step h=π/10000. For different L and s0, the numerical results are reported in
Table 2 and Table 3, respectively. And in Tables 4-6, the numerical errors are obtain by
fixing the temporal step τ = 1/1000. In Tables 5-6, we give the errors and convergence
orders of numerical scheme (4.16)-(4.22) in space direction for different L and s0. All the
numerical results illustrate the efficiency of the constructed ABCs.

Table 1: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in time direction with
s0=6,L=6,h=π/10000.

α=0.1 α=0.3 α=0.5
τ E(h,τ) order1 E(h,τ) order1 E(h,τ) order1

1/10 6.0975e-003 2.9644e-002 8.0170e-002
1/20 1.7982e-003 1.7617 9.5933e-003 1.6277 2.8858e-002 1.4741
1/40 5.2749e-004 1.7693 3.0915e-003 1.6337 1.0422e-002 1.4693
1/80 1.5378e-004 1.7783 9.8995e-004 1.6429 3.7776e-003 1.4641

Table 2: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in time direction with
α=0.5,s0 =8,h=π/10000 and different L.

L=3 L=5 L=9
τ E(h,τ) order1 E(h,τ) order1 E(h,τ) order1

1/10 8.0429e-002 8.0154e-002 7.9809e-002
1/20 2.8932e-002 1.4751 2.8845e-002 1.4745 2.8738e-002 1.4736
1/40 1.0446e-002 1.4698 1.0411e-002 1.4702 1.0366e-002 1.4711
1/80 3.7798e-003 1.4665 3.7651e-003 1.4674 3.7363e-003 1.4722

Table 3: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in time direction with
α=0.5,L=6,h=π/10000 and different s0.

s0=3.5 s0 =8 s0=10
τ E(h,τ) order1 E(h,τ) order1 E(h,τ) order1

1/10 8.0403e-002 8.0049e-002 7.9956e-002
1/20 2.8960e-002 1.4732 2.8812e-002 1.4742 2.8778e-002 1.4742
1/40 1.0493e-002 1.4647 1.0397e-002 1.4705 1.0380e-002 1.4711
1/80 3.8830e-003 1.4342 3.7554e-003 1.4691 3.7434e-003 1.4714

Example 5.2. In this example, we consider the homogeneous problem (1.1) with κα = 1
and the initial Gaussian function

u0(x)=
1√

0.4π
e−

x2

0.4 . (5.2)
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Table 4: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in space direction with
s0=3.5,L=2,τ=1/1000.

α=0.1 α=0.3 α=0.5
h E(h,τ) order2 E(h,τ) order2 E(h,τ) order2

π/10 8.8216e-001 8.7209e-001 8.7082e-001
π/20 2.1242e-001 2.0541 2.1065e-001 2.0496 2.0951e-001 2.0554
π/40 5.2725e-002 2.0104 5.2328e-002 2.0092 5.2051e-002 2.0090
π/80 1.3163e-002 2.0020 1.3074e-002 2.0009 1.3105e-002 1.9898

Table 5: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in space direction with
α=0.3,s0 =10,τ=1/1000 and different L.

L=3 L=5 L=10
h E(h,τ) order2 E(h,τ) order2 E(h,τ) order2

π/10 8.5161e-001 8.5031e-001 8.5042e-001
π/20 2.0775e-001 2.0354 2.0759e-001 2.0342 2.0762e-001 2.0344
π/40 5.1736e-002 2.0056 5.1711e-002 2.0052 5.1714e-002 2.0053
π/80 1.2936e-002 1.9998 1.2931e-002 1.9997 1.2931e-002 1.9997

Table 6: Numerical errors and convergence orders of numerical scheme (4.16)-(4.22) in space direction with
α=0.3,L=5,τ=1/1000 and different s0.

s0=3 s0=10 s0=20
h E(h,τ) order2 E(h,τ) order2 E(h,τ) order2

π/10 8.5302e-001 8.5031e-001 8.4951e-001
π/20 2.0791e-001 2.0366 2.0760e-001 2.0342 2.0751e-001 2.0034
π/40 5.1764e-002 2.0059 5.1711e-002 2.0052 5.1696e-002 2.0050
π/80 1.2942e-002 1.9998 1.2931e-002 1.9996 1.2927e-002 1.9996

Define the pointwise error on the grid point by en
j = uex(xj,tn)−un

j and the relative

L2-Error by

L(h,τ)2=‖e(t)‖/‖uex(t)‖.

The “exact solution” uex(x,t) of the problem (2.23)-(2.29) is calculated by using the finest
mesh sizes and on a larger computational interval. In the following, we demonstrate our
numerical methods for different α in various aspects:

(i) the dependence of the parameter s0 appeared in our boundary conditions, Figure 1
and Figure 2 show the almost optimal convergence rate in space (the second order)
and time (the first order) by computing the solution in the interval [xl ,xr]= [−3,3],
and with the final time T=0.5, mesh sizes J=30,60,120,240 and N=1000; one can
see that the convergence rates in time and space are not sensitive to the choice of
the parameter s0.
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Figure 1: Space convergence rate of the relative L2-Error: different choice of s0 for α = 0.25, 0.5, 0.75, 0.95,
respectively.

(ii) the dependence of the length of the computational interval, Figure 2 shows the
convergence rate in space by changing the length of the computational interval;
one can see that the length has a small influence on the convergence rate in time
and space.

(iii) the dependence of the order of Padé expansion L, Figure 3 shows the convergence
rate in space by changing L, where we use the computational interval [xl ,xr] =
[−3,3], and the final time T = 0.5, mesh sizes J = 30,60,120,240 and n= 1000; and
one can see that the boundary condition has worked well when L=3.

Overall, Figures 1–4 demonstrate our theoretical results in Theorems 4.1 and 4.2. Figure
5 shows the evolutions of the numerical solutions for different α. The numerical results
show that the influence of the parameters on the solution of the fractional subdiffusion
equation is consistent with the results in references [2, 12].

Example 5.3. In this example, we take the double Gaussian distribution

u0(x)=
1√

0.04π
e−

(x−1)2

0.04 +
1√

0.08π
e−

(x+1)2

0.08 ,

as the initial value of problem (1.1)-(1.3) with κα=1.
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Figure 2: Spatial convergence rate of L2-Error with different lengths of computational intervals for α =
0.25, 0.5, 0.75, 0.95, respectively.
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Figure 3: Time convergence rate of L2-Error with different s0 and α=0.25, 0.5, 0.75, 0.95, respectively.
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Figure 4: Time convergence rate of L2-Error with different L and α=0.25, 0.5, 0.75, 0.95, respectively.

Figure 5: The evolution of numerical solutions with J=400, N=200, L=3, s0=10 for different α.

The results of spatial and time convergence are summarized in Figure 6. In the com-
putation, we choose the computational domain as [xl ,xr]= [−3,3] and the terminal time
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Figure 6: Spatial and time convergence rates of L2-Error for different α=0.2, 0.5, 0.75, 0.99, respectively.

Figure 7: The evolution of numerical solutions with J=1000, N=200, L=4, s0 =1.5 for different α.

T=0.1. The “exact solution” is computed on the fine enough mesh sizes on a larger com-
putational interval with the corresponding high-order LABCs. Figure 6 shows that the
convergence rate of our numerical scheme presented (4.16)-(4.22) is almost second order
in space and first order in time. Figure 7 provides the evolution of numerical solutions
with J = 1000, N = 200, L= 4, s0 = 1.5 for different α= 0.2, 0.5, 0.75, 0.99, respectively. To
make it more clear, we plot the numerical solutions for different α in Figure 8. One can
see that there are no reflections appeared at the artificial boundaries, which once again
demonstrates the effectiveness of our high-order LABCs.
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Figure 8: The numerical solutions with J = 1000, N= 200, L= 4, s0 = 1.5 for different α at time t= 0.4 and at
time t=1, respectively.

6 Conclusions

In this paper, we have constructed high-order LABCs, which is an approximation of exact
ABCs. These high-order LABCs are stable and efficient, and numerical examples demon-
strates that they can well absorb the heat flow touched on the artificial boundaries. One
can see that the computational cost is saved using high-order LABCs at artificial bound-
aries. However, insider of the computational domain, we discretize the Caputo fractional
derivative using the classical L1 approximation, which is dominant for the computation
cost. Hence we do not reduce the computational cost apparently except the artificial
boundaries. In the future, we will present a fast evaluation of the Caputo fractional
derivative. This fast evaluation is based on the key observation that the convolution
kernel is smooth away from the origin and thus admits an efficient sum-of-exponentials
approximation. Noting that the convolution with the exponential kernel can be evalu-
ated via a recurrence relation in O(1) operation at each time step [53–56], thus we can
evaluate the convolution defining the Caputo fractional derivative in O(N log2 N) time
and only need to store O(log2 N) history modes [57].
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