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Abstract. Research on the theories and the efficient numerical methods of M-matrix
algebraic Riccati equation (MARE) has become a hot topic in recent years due to its
broad applications. In this paper, based on the alternately linearized implicit iteration
method (ALI) [Z.-Z. Bai et al., Numer. Linear Algebra Appl., 13(2006), 655-674.], we
propose a new alternately linearized implicit iteration method (NALI) for computing
the minimal nonnegative solution of M-matrix algebraic Riccati equation. Conver-
gence of the NALI method is proved by choosing proper parameters for the MARE
associated with nonsingular M-matrix or irreducible singular M-matrix. Theoretical
analysis and numerical experiments show that the NALI method is more efficient than
the ALI method in some cases.
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1 Introduction

The nonsymmetric algebraic Riccati equation (NARE) is of the form

XCX−XD−AX+B=0, (1.1)

where A, B, C and D are real matrices of sizes m×m, m×n, n×m and n×n respectively.
For (1.1), let

K=

(

D −C
−B A

)

. (1.2)

If K is an M-matrix, then (1.1) is called an M-matrix algebraic Riccati equation (MARE).
M-matrix algebraic Riccati equation arises from many branches of applied mathematics,
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such as transport theory, Wiener-Hopf factorization of Markov chains, stochastic process,
and so on [2,3,5,7,14,18,20]. Research on the theories and the efficient numerical methods
of MARE has become a hot topic in recent years. The solution of practical interest is the
minimal nonnegative solution. For theoretical background we refer to [5, 7, 8, 10–12, 15].

The following are some notations and definitions we need in the sequel.
For any matrices A=(aij),B=(bij)∈R

m×n, we write A≥B(A>B), if aij ≥bij(aij >bij)
for all i, j. A is called a Z-matrix if aij ≤0 for all i 6= j. A Z-matrix A is called an M-matrix
if there exists a nonnegative matrix B such that A = sI−B and s ≥ ρ(B) where ρ(B) is
the spectral radius of B. In particular, A is called a nonsingular M-matrix if s>ρ(B) and
singular M-matrix if s=ρ(B).

We review some basic results of M-matrix. The following lemmas can be found in [4,
Chapter 6].

Lemma 1.1. Let A be a Z-matrix. Then the following statements are equivalent:
(1) A is a nonsingular M-matrix;
(2) A−1≥0;
(3) Av>0 for some vectors v>0;
(4) All eigenvalues of A have positive real part.

Lemma 1.2. Let A and B be Z-matrices. If A is a nonsingular M-matrix and A≤B, then B is
also a nonsingular M-matrix. In particular, for any nonnegative real number α, B=αI+A is a
nonsingular M-matrix.

Lemma 1.3. Let A be an M-matrix, B ≥ A be a Z-matrix. If A is nonsingular or irreducible
singular and if A 6=B, then B is also a nonsingular M-matrix.

Lemma 1.4. Let A be a nonsingular M-matrix or an irreducible singular M-matrix. Let A be
partitioned as

A=

(

A11 A12

A21 A22

)

,

where A11 and A22 are square matrices. Then A11 and A22 are nonsingular M-matrices.

Lemma 1.5. If A, B are nonsingular M-matrices and A≤B, then A−1≥B−1.

For the minimal nonnegative solution of the MARE, we have the following important
result [5, 7, 8, 12].

Lemma 1.6. If K is a nonsingular M-matrix or an irreducible singular M-matrix, then (1.1)
has a unique minimal nonnegative solution S. If K is nonsingular, then A−SC and D−CS are
also nonsingular M-matrices. If K is irreducible, then S > 0 and A−SC and D−CS are also
irreducible M-matrices.

There are many numerical methods up to now proposed for the minimal nonnegative
solution of MARE, such as Schur method, matrix sign function, fixed-point iteration,
Newton iteration, doubling algorithms, and so on. For details see [1, 5–7, 9, 13, 16, 17, 19].
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For the MARE with a nonsingular M-matrix, the alternately linearized implicit itera-
tion method (ALI) was proposed in [1] as follows.

The ALI method

• Set X0=0∈R
m×n.

• For k = 0,1,··· , until {Xk} converges, compute Xk+1 from Xk by solving the
following two systems of linear matrix equations:

{

Xk+1/2(αI+(D−CXk))=(αI−A)Xk+B,
(αI+(A−Xk+1/2C))Xk+1=Xk+1/2(αI−D)+B,

(1.3)

where α>0 is a given parameter.

The following convergence theorem of the ALI method was proved in [1].

Theorem 1.1. For the MARE (1.1), if the matrix K in (1.2) is a nonsingular M-matrix and the
parameter α satisfies

α≥max{ max
1≤i≤m

{aii}, max
1≤j≤n

{djj}},

then {Xk} generated by the ALI method is well defined, monotonically increasing and converges
to S, the minimal nonnegative solution.

In the methods of Newton and fixed-point, it needs to solve a Sylvester matrix equa-
tion in each iteration, while in the ALI method it only needs to solve two systems of linear
matrix equations in each iteration. Since it is much easier to solve linear matrix equation
than Sylvester matrix equation, the ALI method is effective than the Newton method and
fixed-point methods.

However, there is still room for improvement in the ALI method. In this paper, we
propose a new alternately linearized implicit iteration method (NALI) for solving the
minimal nonnegative solution of MARE. Compared with the ALI method, the new iter-
ation method is more efficient because the coefficient matrices of the linear matrix equa-
tions in NALI are fixed in each iteration. Hence, less CPU times are required for solving
MARE, which will be confirmed by the numerical results.

The rest of the paper is organized as follows. In section 2, we propose a new ALI
method and prove its convergence. In Section 3, we use some numerical examples to
show the effectiveness of the new method. Concluding remarks is given in Section 4.

2 New ALI method

In the following we propose a new ALI method (NALI).
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The NALI method

• Set X0=0∈R
m×n.

• For k = 0,1,··· , until {Xk} converges, compute Xk+1 from Xk by solving the
following two systems of linear matrix equations:

{

Xk+1/2(αI+D)=(αI−A+XkC)Xk+B,
(βI+A)Xk+1=Xk+1/2(βI−D+CXk+1/2)+B,

(2.1)

where α>0,β>0 are two given parameters.

The NALI method has the same coefficient matrices in the linear matrix equations as the
ALI method, but independent of the iteration step. Compared with the ALI method, the
NALI method is more efficient since the coefficient matrices of the linear matrix equations
are fixed in each iteration. Hence, less CPU times are required for solving MARE.

In the following, we give the convergence analysis of the NALI method. We need
several lemmas.

Lemma 2.1. Let {Xk} be the matrix sequence generated by the NALI method,

R(X)=XCX−XD−AX+B,

and S be the minimal nonnegative solution to (1.1). Then for any k≥ 0, the following equalities
hold:

(a) (Xk+1/2−S)(αI+D)=(αI−A+XkC)(Xk−S)+(Xk−S)CS;

(b) (Xk+1/2−Xk)(αI+D)=R(Xk);

(c) R(Xk+1/2)=(αI−A+Xk+1/2C)(Xk+1/2−Xk)+(Xk+1/2−Xk)CXk;

(d) (βI+A)(Xk+1−S)=(Xk+1/2−S)(βI−D+CXk+1/2)+SC(Xk+1/2−S);

(e) (βI+A)(Xk+1−Xk+1/2)=R(Xk+1/2);

(f) R(Xk+1)=(Xk+1−Xk+1/2)(βI−D+CXk+1)+Xk+1/2C(Xk+1−Xk+1/2).

Proof. We first prove (a). From SCS−SD−AS+B=0, we have −SD=AS−SCS−B. Thus

(Xk+1/2−S)(αI+D)=Xk+1/2(αI+D)−S(αI+D)

=(αI−(A−XkC))Xk+B−αS+(AS−SCS−B)

=(αI−A+XkC)(Xk−S)+(Xk−S)CS.
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Next we prove (b) and (c). We have

(Xk+1/2−Xk)(αI+D)=Xk+1/2(αI+D)−Xk(αI+D)

=(αI−(A−XkC))Xk+B−Xk(αI+D)=R(Xk).

From (2.1), we have

Xk+1/2D=(αI−(A−XkC))Xk+B−αXk+1/2.

Thus

R(Xk+1/2)=Xk+1/2CXk+1/2−AXk+1/2−Xk+1/2D+B

=(Xk+1/2CXk+1/2−AXk+1/2+B)−((αI−A+XkC)Xk+B−αXk+1/2)

=(αI−A+Xk+1/2C)(Xk+1/2−Xk)+(Xk+1/2−Xk)CXk.

Finally, we prove (d), (e) and (f). We have

(βI+A)(Xk+1−S)=(βI+A)Xk+1−(βI+A)S

=Xk+1/2(βI−(D−CXk+1/2))+B−βS−(SD−SCS−B)

=(Xk+1/2−S)(βI−D+CXk+1/2)+SC(Xk+1/2−S),

(βI+A)(Xk+1−Xk+1/2)=(βI+A)Xk+1−(βI+A)Xk+1/2

=Xk+1/2(βI−(D−CXk+1/2))+B−(βI+A)Xk+1/2=R(Xk+1/2),

R(Xk+1)=Xk+1CXk+1−AXk+1−Xk+1D+B

=(Xk+1CXk+1−Xk+1D+B)−(Xk+1/2(βI−(D−CXk+1/2))+B+βXk+1)

=(Xk+1−Xk+1/2)(βI−D+CXk+1)+Xk+1/2C(Xk+1−Xk+1/2).

This completes the proof of the lemma.

Lemma 2.2. Let {Xk} be the matrix sequence generated by the NALI method, K in (1.2) be a
nonsingular M-matrix or an irreducible singular M-matrix and S be the minimal nonnegative
solution to (1.1). If the parameters α,β of the NALI method satisfy

α≥max{aii}, β≥max{djj},

then for any k≥0,
0≤Xk+1/2≤S, 0≤Xk+1 ≤S. (2.2)

Proof. When K in (1.2) is a nonsingular M-matrix or an irreducible singular M-matrix,
A and D are nonsingular M-matrices by Lemma 1.4. Thus αI+D and βI+A are both
nonsingular M-matrices by Lemma 1.2. From Lemma 1.1 we have (αI+D)−1 ≥ 0, (βI+
A)−1≥0.

We prove (2.2) by induction. When k=0, from (2.1) we have X1/2(αI+D)=B. Thus

X1/2=B(αI+D)−1≥0.
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On the other hand, by Lemma 2.1(1), we have

(X1/2−S)(αI+D)=(αI−A)(−S)−SCS≤0,

thus
X1/2−S=((αI−A)(−S)−SCS)(αI+D)−1≤0.

Similarly, from (2.1) we have

(βI+A)X1=X1/2(βI−D+CX1/2)+B,

thus
X1=(βI+A)−1(X1/2(βI−D+CX1/2)+B)≥0.

From Lemma 2.1(4), we have

(βI+A)(X1−S)=(X1/2−S)(βI−D+CX1/2)+SC(X1/2−S),

thus
X1−S=(βI+A)−1((X1/2−S)(βI−D+CX1/2)+SC(X1/2−S))≤0.

Thus we have proved
0≤X1/2≤S, 0≤X1≤S.

Suppose that the assertions (2.2) hold for k= l−1. From (2.1), we have

Xl+1/2(αI+D)=(αI−(A−XlC))Xl+B,

thus
Xl+1/2=((αI−A+XlC)Xl+B)(αI+D)−1≥0.

On the other hand, by Lemma 2.1(1), we have

(Xl+1/2−S)(αI+D)=(αI−A+XlC)(Xl−S)+(Xl−S)CS,

thus
Xl+1/2−S=((αI−A+XlC)(Xl−S)+(Xl−S)CS)(αI+D)−1≤0.

Similarly, from (2.1) we have

(βI+A)Xl+1=Xl+1/2(βI−(D−CXl+1/2))+B,

thus
Xl+1=(βI+A)−1(Xl+1/2(βI−D+CXl+1/2)+B)≥0.

On the other hand, by Lemma 2.1(4), we have

(βI+A)(Xl+1−S)=(Xl+1/2−S)(βI−D+CXl+1/2)+SC(Xl+1/2−S),

thus

Xl+1−S=(βI+A)−1((Xl+1/2−S)(βI−D+CXl+1/2)+SC(Xl+1/2−S))≤0.

Hence the assertions (2.2) hold for k= l.
Thus we have proved by induction that the assertions (2.2) hold for all k≥0.
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Lemma 2.3. Let the assumption be as in Lemma 2.2. Then for any k≥0, we have

Xk ≤Xk+1/2≤Xk+1, R(Xk+1/2)≥0, R(Xk+1)≥0.

Proof. We prove this by induction. When k=0, it is clear that 0=X0≤X1/2. From Lemma
2.1(3), we have

R(X1/2)=(αI−A+X1/2C)X1/2≥0.

By Lemma 2.1(5), we have (βI+A)(X1−X1/2)=R(X1/2). Thus

X1−X1/2=(βI+A)−1R(X1/2)≥0.

By Lemma 2.1(6), we have

R(X1)=(X1−X1/2)(βI−D+CX1)+X1/2C(X1−X1/2)≥0.

Suppose that the assertions hold for k=l−1. By Lemma 2.1(2), we have (Xl+1/2−Xl)(αI+
D)=R(Xl). Thus

Xl+1/2−Xl =R(Xl)(αI+D)−1≥0.

From Lemma 2.1(3), we have

R(Xl+1/2)=(αI−A+Xl+1/2C)(Xl+1/2−Xl)+(Xl+1/2−Xl)CXl ≥0.

From Lemma 2.1(5), we have (βI+A)(Xl+1−Xl+1/2)=R(Xl+1/2). Thus

Xl+1−Xl+1/2=(βI+A)−1R(Xl+1/2)≥0.

By Lemma 2.1(6), we have

R(Xl+1)=(Xl+1−Xl+1/2)(βI−D+CXl+1)+Xl+1/2C(Xkl+1−Xl+1/2)≥0.

Hence the assertions hold for k= l.

Thus we have proved by induction that the assertions hold for all k≥0.

Using the lemmas above, we can prove the following convergence theorem of the
NALI method.

Theorem 2.1. For the MARE (1.1), if K in (1.2) is a nonsingular M-matrix or an irreducible
singular M-matrix and the parameters α,β satisfy

α≥max{aii}, β≥max{djj},

then {Xk}, generated by the NALI method, is well defined, monotonically increasing and con-
verges to S, the minimal nonnegative solution.
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Proof. Combining Lemma 2.2 with Lemma 2.3, we have shown that {Xk} is nonnegative,
monotonically increasing and bounded from above. Thus there is a nonnegative matrix
S∗ such that limk→∞

Xk =S∗. It also holds that limk→∞
Xk+1/2 =S∗. From Lemma 2.2, we

have S∗ ≤ S. On the other hand, take the limit in the NALI method, we know S∗ is a
solution of the MARE (1.1), thus S≤S∗. Hence S=S∗.

In actual computations, we choose the parameters in the NALI method to be

α=max{aii}, β=max{djj}.

To solve the linear matrix equations in the NALI method efficiently, we first compute the
inverse of the coefficient matrices when the size of the problem is not too large.

3 Numerical experiments

In this section we use several examples to show the effectiveness of the NALI method.
We compare the NALI method with the ALI method and present computational results
in terms of the numbers of iterations (IT), CPU time (CPU) and the residue (RES). The
residue is defined to be

RES :=
‖XCX−XD−AX+B‖∞

‖XCX‖∞+‖XD‖∞+‖AX‖∞+‖B‖∞

as in [1]. In our implementations all iterations are run in MATLAB2012 on a personal
computer and are terminated when the current iterate satisfies RES<10−6 or the number
of iterations is more than 9000.

Experiment 1. Consider the MARE (1.1) with

A=

(

4.27 −2
−1 6

)

, B=

(

1 1
2 1

)

,

C=

(

3 4
2 1

)

, D=

(

5 −1
−1 4

)

.

This MARE is taken from [6], where the corresponding K is a nonsingular M-matrix. The
computational results are summarized in Table 1. From Table 1 we can see that, though

Table 1: Computational results of Experiment 1.

Methods IT CPU RES
ALI 125 0.008192 9.8169e-07

NALI 183 0.003300 9.6837e-07

the NALI method needs a little more iterations, it needs fewer CPU time than the ALI
method. Thus the NALI method is more efficient than the ALI method.
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Experiment 2. Consider the MARE (1.1) with

D=

(

2 0
0 100

)

, C=

(

2 0 0
100 0 0

)

,

B=





0 0
0 0

1.5 1.5



, A=





3 −3 0
0 3 −3
0 0 3



.

This MARE is taken from [3], where the corresponding K is an irreducible singular M-
matrix. The computational results are summarized in Table 2. From Table 2 we can see

Table 2: Computational results of Experiment 2.

Methods IT CPU RES
ALI 322 0.025949 9.9686e-07

NALI 26 0.001307 6.5227e-07

that the NALI method is more efficient than the ALI method.

Experiment 3. Consider the MARE (1.1) with

D=

(

30 −10
−10 30

)

, C=

(

10 10
10 10

)

,

B=

(

10 10
10 10

)

, A=

(

30 −10
−10 30

)

.

This M-MARE is taken from [3] and the corresponding K is an irreducible singular M-
matrix. The computational results are summarized in Table 3. From Table 3 we can see

Table 3: Computational results of Experiment 3.

Methods IT CPU RES
ALI 375 0.025187 9.9800e-07

NALI 622 0.022169 9.9718e-07

that, though with more iterations, the NALI method needs fewer CPU time than the ALI
method, so it is efficient.

Experiment 4. Consider the MARE (1.1) for which A,B,C,D are generated as follows.

First set R = rand(100,100); then set W = diag(Re)−R, with e = (1,1,··· ,1)T; finally,
define

D=W(1 :50,1 :50), C=−W(1 :50,51 :100),

B=−W(51 :100,1 :50), A=W(51 :100,51 :100).
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Table 4: Computational results of Experiment 4.

Methods IT CPU RES
ALI 22 0.029371 9.2745e-07

NALI 29 0.019395 6.9917e-07

In this case, the corresponding K is an irreducible singular M-matrix. The computational
results are summarized in Table 4. From Table 4 we can see that, though with a little more
iterations, the NALI method needs fewer CPU time than the ALI method, so it is more
efficient.

4 Concluding remarks

We have proposed a new alternately linearized implicit iteration method (NALI) for com-
puting the the minimal nonnegative solution of the M-matrix algebraic Riccati equation.
Convergence of the NALI method is guaranteed for the MARE associated with a nonsin-
gular M-matrix or an irreducible singular M-matrix. Numerical experiments have shown
that the NALI method is more efficient than the ALI method in some cases.
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