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Abstract. In this paper, a meshless regularization method of fundamental solutions is
proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numer-
ical implementation and analysis are challenging since one needs to handle composite
materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed
since small errors in the input data cause large errors in the desired output solution.
Therefore, regularization is necessary in order to obtain a stable solution. Numerical
results for several benchmark test examples are presented and discussed.
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1 Introduction

Heat conduction Stefan problems with phase change in multiple dimensions are of im-
portance in several industrial applications in continuous casting of steel, welding pro-
cesses, crystal and biofilm growth, etc. The classical direct Stefan problem which requires
determining both the temperature and the free boundary can become tedious and com-
plicated in the case of multi-dimensional multi-phase models. This fact has motivated
researchers to consider inverse Stefan problems in which the free boundary is known
and the boundary and/or initial data are unknown [4, 6]. This inverse problem which
has application in the technology of refining a material by means of recrystalisation [16],
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is difficult to solve since, as a non-characteristic Cauchy problem, it is ill-posed [2, 4, 9].
Although there exists an extensive literature on one-phase one- and two-dimensional in-
verse Stefan problems, the two-dimensional two-phase case has been considerably less
examined. Prior to this study, [1] regularized such an inverse and ill-posed problem by
means of a convolution equation, but the domain considered in their paper is infinite.
In this paper, we develop a meshless regularized numerical method of fundamental so-
lutions (MFS) for solving a two-dimensional two-phase linear inverse Stefan problem.
In doing so, we extend the recent meshless method of fundamental solutions proposed
in [11, 13] for the one-dimensional two-phase and two-dimensional one-phase inverse
linear Stefan problems, respectively, to the two-dimensional two-phase change case. Fur-
ther applications of the MFS to inverse problems can be found in the survey paper [14].

2 Mathematical formulation

In this section, we extend some of the notation and mathematical setup of [5] from the
one-phase to the two-phase situation. Let l > 0, T > 0 and for t∈ [0,T] define the liquid
(water) zone

Ω1(t)={(x,y)∈R
2| 0< x< s(y,t), 0<y<1},

and the solid (ice) zone

Ω2(t)={(x,y)∈R
2| s(y,t)< x< l, 0<y<1},

where the liquid-solid interface s(y,t)∈(0,l) is known and given. The boundaries ∂Ωi(t)=
Γi(t)∪Σ(t), where

Σ(t)={(x,y)∈R
2| x= s(y,t), 0<y<1}

and Γi(t)=∂Ωi(t)\Σ(t), for i=1,2. Denote also Ω(t)=Ω1(t)∪Σ(t)∪Ω2(t), so that ∂Ω(t)=
Γ1(t)∪Γ2(t). The whole solution domain of each piece of the composite bi-material, for
i = 1,2, are denoted by Ωi =

⋃

t∈(0,T]Ωi(t), and we observe that the boundary ∂Ωi of Ωi

consists of the ”bottom”

Ω1(0)={(x,y)∈R
2| 0≤ x≤ s(y,0), 0≤y≤1},

Ω2(0)={(x,y)∈R
2| s(y,0)≤ x≤ l, 0≤y≤1},

the ”top”

Ω1(T)={(x,y)∈R
2| 0≤ x≤ s(y,T), 0≤y≤1},

Ω2(T)={(x,y)∈R
2| s(y,T)≤ x≤ l, 0≤y≤1},

the interface boundary Σ=
⋃

t∈(0,T)Σ(t), and the ”fixed” boundary Γi =
⋃

t∈(0,T)Γi(t). We
assume that the interface s∈ (0,l) is a known and sufficiently smooth function.
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The two-dimensional, two-phase linear inverse Stefan problem requires determining
the temperature solutions ui∈C2,1(Ωi)∩C1,0(Ωi) satisfying the heat equations, for i=1,2,

α1∇2u1=
∂u1

∂t
in Ω1, (2.1a)

α2∇2u2=
∂u2

∂t
in Ω2, (2.1b)

where αi > 0 is the thermal diffusivity of the conductor Ωi, along with the continuity
boundary conditions at the interface Σ, namely

u1=u2=0 on Σ, (2.2a)

∂s

∂t
=−K1

∂u1

∂ν

+K2
∂u2

∂ν

on Σ, (2.2b)

where Ki >0 are some constants depending on the thermal conductivities, densities and
latent heat, and ν is the inward unit normal pointing outside the liquid zone Ω1, a bound-
ary condition on Γ2 which can be of Dirichlet (or Neumann) type, say

u2= f on Γ2 (2.3)

and the initial conditions

u1=u0
1 on Ω1(0), (2.4a)

u2=u0
2 on Ω2(0). (2.4b)

Given the input data f ,u0
1 and u0

2, the compatibility conditions

u0
1=u0

2=0 on Σ(0), (2.5a)

f =u0
2 on Γ2(0), (2.5b)

for a given interface s(y,t), the problem of determining the temperature and heat flux
on Γ1 is termed a two-dimensional, two-phase linear inverse design Stefan problem. In
Fig. 1 we present the solution domain and boundary conditions.

An initial attempt would be to split the two-phase Stefan problem (2.1)-(2.5) into a
direct problem for u2 in Ω2 followed by a one-phase inverse Stefan problem for u1 in Ω1.
More specifically, one can first solve, using for example the MFS presented in [12], the
direct well-posed problem for u2 in Ω2 given by Eqs. (2.1b), (2.3), (2.4b), (2.5b),

u2=0 on Σ, (2.6a)

u0
2=0 on Σ(0), (2.6b)

and given s(y,t), to determine

∂u2

∂ν

=: q2 on Σ. (2.7)
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Figure 1: Representation of the two-dimensional two-phase inverse Stefan problem, with locations of the initial
and boundary conditions (2.2a)-(2.4).

This output can then be introduced into (2.2b) to yield

K1
∂u1

∂ν

=K2q2−
∂s

∂t
on Σ. (2.8)

Then Eqs. (2.1a), (2.4a), (2.8),

u1=0 on Σ, (2.9a)

u0
1=0 on Σ(0), (2.9b)

for a given interface s(y,t), form a two-dimensional one-phase linear inverse and ill-
posed Stefan problem which has been previously solved using the MFS by the authors
in [11]. The above splitting is useful in considering the uniqueness of the two-dimensional
two-phase inverse Stefan problem (2.1)-(2.5). Namely, the direct problem in Ω2 given by
Eqs. (2.1b), (2.3), (2.4b), (2.5b), (2.6a) and (2.6b) has a unique solution, whilst the two-
dimensional one-phase inverse linear Stefan problem given by Eqs. (2.1a), (2.4a), (2.8)-
(2.9b) has at most one solution. Moreover, as pointed out in [8], the knowledge of the
initial condition (2.4a) with (2.9b) is not needed for obtaining the uniqueness of the solu-
tion of the inverse Cauchy-Stefan problem given by Eqs. (2.1a), (2.8) and (2.9a). However,
the inverse linear Stefan problem is ill-posed since it may not have a solution even if the
surface Σ is analytic [4], and even if the solution does exist, it will not depend continu-
ously on the input data q2,u0

1 and s [6]. In this paper, we solve simultaneously, without
splitting, the full composite problem (2.1)-(2.5) using the MFS, as described in the next
section.

3 The method of fundamental solutions

In this section we combine the MFS of [10] and [11] for the one-dimensional composite
and two-dimensional single materials, respectively. We therefore search for a solution
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(u1,u2) of the problem (2.1)-(2.5) as linear combinations of ”non-singular” fundamental
solutions, namely

u1(x,t)=
2M

∑
m=1

N

∑
j=1

c
(j)
m F1(x,t;y

(j)
m ,τm), (x,t)∈Ω1, (3.1a)

u2(x,t)=
2M

∑
m=1

N

∑
j=1

d
(j)
m F2(x,t;z

(j)
m ,τm), (x,t)∈Ω2, (3.1b)

where

Fi(x,t;x′ ,t′)=
H(t−t′)

4παi(t−t′)
exp

(

− |x−x′|2
4αi(t−t′)

)

, i=1,2, (3.2)

are the fundamental solutions of the heat equations (2.1a) and (2.1b) and H is the Heavi-
side function.

In expressions (3.1a) and (3.1b), the source points (y
(j)
m ,τm) and (z

(j)
m ,τm) for m=1,2M,

j=1,N are located outside their corresponding solution domains Ω1 and Ω2, respectively.
In particular, we take the times (τm)m=1,2M uniformly distributed in (−T,T) as

τm =
(2m−2M−1)T

2M
, m=1,2M,

and the space points y
(j)
m and z

(j)
m on fictitious lateral boundaries ∂Ω′

1(t) and ∂Ω′
2(t),

which embrace the domains Ω1(t) and Ω2(t), respectively, where for t∈[−T,0) we define

Ω1(t)={(x,y)∈R
2| 0< x< s(y,−t), 0<y<1},

Ω2(t)={(x,y)∈R
2| s(y,−t)< x< l, 0<y<1},

as the mirror images of Ω1(t) and Ω2(t) for t∈[0,T]. At the fixed time τ=τm we have, [11],

y
(j)
m =















































(

s
(2j−1

N/2
,τm

)

+h1,
2j−1

N/2

)

, for j=1,N/4,

( s(1,τm)(2(j−N/4)−1)

N/2
,1+h1

)

, for j=N/4+1,N/2,

(

−h1,1− 2(j−N/2)−1

N/2

)

, for j=N/2+1,3N/4,

( s(0,τm)(2(j−3N/4)−1)

N/2
,−h1

)

, for j=3N/4+1,N,

z
(j)
m =















































(

l+h2,
2j−1

N/2

)

, for j=1,N/4,

(

s(1,τm)+
(l−s(1,τm))(2(j−N/4)−1)

N/2
,1+h2

)

, for j=N/4+1,N/2,

(

−h2+s
(2(3N/4− j)+1

N/2
,τm

)

,
2(3N/4− j)+1

N/2

)

, for j=N/2+1,3N/4,

(

s(0,τm)+
(l−s(0,τm))(2(j−3N/4)−1)

N/2
,−h2

)

, for j=3N/4+1,N.
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The parameters h1,h2>0 need to be prescribed and they are characterising the distance
between the space boundary of the solution domains, Ω1 and Ω2, respectively, and the
exterior dilated space boundaries on which the source points are located. Preliminary
and previous experience indicates that h1 and h2 should be chosen neither too small nor
too large and, in this study, they are chosen by trial and error. Alternatively, in a future
work they could be optimized such that the error between the numerical MFS solutions
(3.1a,b) and the data on the boundary Σ∪Γ2∪Ω1(0)∪Ω2(0) is minimized (viz maximum
principle for the heat equation).

Once we have selected the 2(N×2M) source points y
(j)
m ∈⋃

t∈[−T,T]∂Ω′
1(t) and z

(j)
m ∈

⋃

t∈[−T,T]∂Ω′
2(t), we select the collocation points on Σ∪Γ2∪Ω1(0)∪Ω2(0). Let

ti =
iT

M1
for i=0,M1.

At the fixed time t= ti we define the collocation points

x
(i)
k =

(

s
(2k−1

N1/2
,ti

)

,
2k−1

N1/2

)

for k=1,N1/4.

Collocating the Stefan conditions (2.2a) and (2.2b) at these points, we obtain 3N1×(M1+
1)/4 equations. We also need to impose the initial conditions (2.4a) (if prescribed) and
(2.4b). At the time t=0, we take some uniform distribution of points on Ω1(0) as

ω
(j)
k =

( k

M2
s(yj,0),

j

N1/2+1

)

for k=1,M2−1, j=1,N1/2,

and on Ω2(0) as

w
(j)
k =

(

s(yj,0)+
(l−s(yj ,0))k

M2
,

j

N1/2+1

)

for k=1,M2−1, j=1,N1/2.

Collocating the initial conditions (2.4a) and (2.4b) at these points we obtain an extra N1×
(M2−1) equations.

We finally collocate the boundary condition (2.3) at points on Γ2, namely at each ti for
i=0,M1

v
(1)
k =

(

l,
2k−1

N1/2

)

for k=1,N1/4,

v
(2)
j =

(

s(0,ti)+
(l−s(0,ti))(2j−1)

2M3
,0
)

for j=1,M3,

v
(3)
j =

(

s(1,ti)+
(l−s(1,ti))(2j−1)

2M3
,1
)

for j=1,M3,

to obtain an extra (N1/4+2M3)×(M1+1) equations.
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Summing up we obtain a linear system of N1(M1+M2)+2M3(M1+1) equations with
4NM unknowns. Choosing parameters such that N1(M1+M2)+2M3(M1+1)≥4NM we
obtain a square or over-determined system of linear equations, say

AX=B, (3.3)

where

X=(c
(j)
m ,d

(j)
m )tr for m=1,2M, j=1,N,

is the unknown vector of MFS coefficients, A is a matrix containing the values of the fun-
damental solutions (3.2) and its normal derivatives at the source and collocation points
outlined above, and B is a vector containing the input values of ∂s/∂t, f , u0

1 and u0
2 at the

respective collocation points.

Since the inverse problem is ill-posed and, in addition, the MFS results in ill-
conditioned systems of equations, regularization is necessary [3,15]. Therefore, instead of
solving (3.3) we minimize the functional ‖AX−B‖2+λ‖X‖2 which yields the regularized
solution

Xλ=(Atr A+λI)−1AtrB, (3.4)

where I is the identity matrix, the superscript tr denotes the transpose of the matrix, and
λ>0 is a regularization parameter to be prescribed by trial and error, or according to some
specialized criterion such as the discrepancy principle, the generalized cross validation
or the L-curve criterion [7]. By trial and error we mean that we choose the smallest λ>0
for which a stable (free of oscillations and unbounded behaviour) numerical solution is
still obtained.

4 Numerical results and discussion

In this section we investigate numerically three benchmark test examples of two-
dimensional two-phase inverse Stefan problems. The first two examples possess an ana-
lytic solution and correspond to the problem given by Eqs. (2.1)-(2.5) in which the initial
condition (2.4a) is known. The relative (percentage) error (%) is calculated as

∣

∣

∣

analytic−numeric

analytic

∣

∣

∣
×100.

Note that in the first two examples we have not included the relative error along the
free boundary Σ, due to the homogeneous interface condition (2.2a). The third example
does not have an analytical solution available and moreover, the initial condition (2.4a) is
unknown. We take M1=20, M2=20, M3=10, N1=40, M=10, N=40, i.e., 2020 collocation
points (equations) and 1600 source points (unknowns).
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4.1 Example 1

We solve the problem (2.1)-(2.5) with the input data given by T = 1, l = 3, α1 = 1, K1 =
7/(2

√
5), α2=1/2, K2=3/

√
5. The moving boundary is given by

s(y,t)=
y+1

2
+

5t

4
, (y,t)∈ (0,1)×(0,1), (4.1a)

u2(3,y,t)=exp
(

−5+y+
5t

2

)

−1, (y,t)∈ (0,1)×(0,1), (4.1b)

u2(x,0,t)=exp
(

−2x+1+
5t

2

)

−1, (x,t)∈ (s(0,t),3)×(0,1), (4.1c)

u2(x,1,t)=exp
(

−2x+2+
5t

2

)

−1, (x,t)∈ (s(1,t),3)×(0,1), (4.1d)

u1(x,y,0)=u0
1(x,y)=exp

(

−x+
y+1

2

)

−1,

(x,y)∈Ω1(0)={(x,y)∈R
2| y∈ (0,1), x∈ (0,s(y,0))}, (4.1e)

u2(x,y,0)=u0
2(x,y)=exp(−2x+y+1)−1,

(x,y)∈Ω2(0)={(x,y)∈R
2| y∈ (0,1), x∈ (s(y,0),3)}. (4.1f)

(a) (b)

(c)

Figure 2: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%) on
the boundary x=0, obtained with h1 =4 and h2 =2, for Example 1 (no noise).
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(a) (b)

(c)

Figure 3: (a) The exact heat flux, (b) the MFS approximation, and (c) the relative error (%), on the boundary
x=0, obtained with h1 =4 and h2 =2, for Example 1 (no noise).

Note that the inward unit normal to the interface boundary Σ={(x,y,t)∈R
3| y∈(0,1), t∈

(0,1), x= s(y,t)} is given by

ν=− ∇Φ

|∇Φ| =
1√
5/4

(

−1,
1

2

)

,

where

Φ(x,y,t)= x−s(y,t).

Then the problem given by the Eqs. (2.1)-(2.2b), (4.1a)-(4.1f) has the analytic solution

u1(x,y,t)=exp
(

−x+
y+1

2
+

5t

4

)

−1,

(x,y,t)∈Ω1={(x,y,t)∈R
3| y∈ [0,1], t∈ [0,1], x∈ [0,s(y,t)]}, (4.2a)

u2(x,y,t)=exp
(

−2x+y+1+
5t

2

)

−1,

(x,y,t)∈Ω2={(x,y,t)∈R
3| y∈ [0,1], t∈ [0,1], x∈ [s(y,t),3]}. (4.2b)
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(a) (b)

(c)

Figure 4: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%), on
the boundary y=0, obtained with h1 =4 and h2 =2, for Example 1 (no noise).

One can check that conditions (2.2a) and (2.2b) are satisfied by direct substitution and
using

∂u1

∂ν

=
√

5/4,
∂u2

∂ν

=
√

5 on Σ.

The unknown data which is sought is given by the temperature u1 on Γ1 and the heat flux
∂u1/∂ν on the left wall x=0, namely

u1(0,y,t)=exp
(y+1

2
+

5t

4

)

−1,
∂u

∂x
(0,y,t)=−exp

(y+1

2
+

5t

4

)

,

(y,t)∈ (0,1)×(0,1), (4.3a)

u1(x,0,t)=exp
(

−x+
1

2
+

5t

4

)

−1, (x,t)∈ (0,s(0,t))×(0,1), (4.3b)

u1(x,1,t)=exp
(

−x+1+
5t

4

)

−1, (x,t)∈ (0,s(1,t))×(0,1). (4.3c)

In order to test the stability of the numerical results noise is added to the temperature
data (2.3), via (4.1b)-(4.1d), as

u
p
2 =(1+pρ) f on Γ2, (4.4)
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(a) (b)

(c)

Figure 5: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%), on
the boundary y=1, obtained with h1 =4 and h2 =2, for Example 1 (no noise).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

log‖AXλ−B‖

lo
g
‖X

λ
‖

λ=10−5

λ=10−7

λ=10−9

Figure 6: The L-curve for Example 1 (p=5% noise).

where p is the percentage of noise and ρ are random variables taken from a uniform
distribution in [−1,1].

Figs. 2 and 3 show the numerical results for the temperature and the heat flux at the
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(a) (b)

(c) (d)

Figure 7: The relative error between the exact and numerical u1(x,y,t) on (a) x=0, (b) y=0, (c) y=1, and
(d) the relative error (%) between the exact and numerical (∂u1/∂x)(0,y,t), obtained with h1 =3 and h2 =2,
for Example 1 (p=5% noise).

boundary x=0 in comparison with the exact solutions (4.3a) when p=0, i.e., when there
is no noise in the data (4.4), and λ=10−14. From these figures it can be seen that the MFS
numerical approximations are in good agreement with the exact solution. Additionally,
Figs. 4 and 5 show the results for the temperature on the boundaries y=0 and y=1, re-
spectively, and again the agreement with the exact solutions (4.3b) and (4.3c) is excellent.
Next, in order to investigate the stability of the numerical results we add p= 5% noise
into the flux data (4.4) and take λ=10−7. Fig. 6 presents the L-curve which plots the loga-
rithm of the residual log‖AXλ−B‖ versus the logarithm of the norm log‖Xλ‖ for various
values of λ>0. From this figure it can be seen that the corner of the L-curve occurs near
λ=10−7.

Fig. 7 shows the relative error plots and from these it can be seen that the numerical
solution is stable and reasonably accurate.

4.2 Example 2

We investigate a similar example to [13], which considered the one-dimensional two-
phase linear inverse Stefan problem (and is extended to the two-dimensional case here).
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(a) (b)

(c)

Figure 8: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%), on
the boundary x=0, obtained with h1 =h2 =2, for Example 2 (no noise).

The input data is given by T=1, l=2, α1=0.5, α2=1, K1=0.252612 and K2=
√

2. The free
boundary is given by

s(y,t)=γ
√

t+t0+y, (y,t)∈ (0,1)×(0,1), (4.5)

with the boundary data given by

u2(2,y,t)=−1+

erfc
( 2−y
√

8α2(t+t0)

)

erfc
( γ√

8α2

) , (y,t)∈ (0,1)×(0,1), (4.6a)

u2(x,0,t)=−1+

erfc
( x
√

8α2(t+t0)

)

erfc
( γ√

8α2

) , (x,t)∈ (s(0,t),2)×(0,1), (4.6b)

u2(x,1,t)=−1+

erfc
( x−1
√

8α2(t+t0)

)

erfc
( γ√

8α2

) , (x,t)∈ (s(1,t),2)×(0,1), (4.6c)
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(a) (b)

(c)

Figure 9: (a) The exact heat flux, (b) the MFS approximation, and (c) the relative error (%), on the boundary
x=0, obtained with h1 =h2 =2, for Example 2 (no noise).

where γ=0.479611, t0=0.695571, and erf and erfc are the error and complementary error
functions, respectively, given by

erf(ξ)=
2√
π

∫ ξ

0
e−σ2

dσ and erfc(ξ)=1−erf(ξ).

The initial data (2.4a) and (2.4b) are given by

u1(x,y,0)=u0
1(x,y)=1−

erf
( x−y
√

8α1t0

)

erf
( γ√

8α1

) ,

(x,y)∈Ω1(0)={(x,y)∈R
2| y∈ (0,1), x∈ (0,s(y,0))}, (4.7a)

u2(x,y,0)=u0
2(x,y)=−1+

erfc
( x−y√

8α2t0

)

erfc
( γ√

8α2

) ,

(x,y)∈Ω2(0)={(x,y)∈R
2| y∈ (0,1), x∈ (s(y,0),2)}. (4.7b)
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(a) (b)

(c)

Figure 10: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%), on
the boundary y=0, obtained with h1 =h2 =2, for Example 2 (no noise).

Note that the inward unit normal to the interface boundary Σ={(x,y,t)∈R
3| y∈(0,1), t∈

(0,1), x= s(y,t)} is given by

ν=− ∇Φ

|∇Φ| =
1√
2
(−1,1),

where Φ(x,y,t)= x−s(y,t). Then the problem given by the Eqs. (2.1)-(2.5), with the data
(4.5)-(4.7b) has the analytic solution

u1(x,y,t)=1−
erf

( x−y
√

8α1(t+t0)

)

erf
( γ√

8α1

) ,

(x,y,t)∈Ω1={(x,y,t)∈R
3| y∈ [0,1], t∈ [0,1], x∈ [0,s(y,t)]}, (4.8a)

u2(x,y,t)=−1+

erfc
( x−y
√

8α2(t+t0)

)

erfc
( γ√

8α2

) ,

(x,y,t)∈Ω2={(x,y,t)∈R
3| y∈ [0,1], t∈ [0,1], x∈ [s(y,t),2]}. (4.8b)
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(a) (b)

(c)

Figure 11: (a) The exact temperature solution, (b) the MFS approximation, and (c) the relative error (%), on
the boundary y=1, obtained with h1 =h2=2, for Example 2 (no noise).

The unknown data which is sought is given by the temperature u1 on Γ1 and the heat flux
∂u1/∂ν on the left wall x=0, namely

u1(0,y,t)=1−
erf

(

− y
√

8α1(t+t0)

)

erf
( γ√

8α1

) , (4.9a)

∂u1

∂x
(0,y,t)=−

√
2

2

exp
( (x−y)2

8α1(t+t0)

)

√

πα1(t+t0)erf
( γ√

8α1

) , (y,t)∈ (0,1)×(0,1), (4.9b)

u1(x,0,t)=1−
erf

( x
√

8α1(t+t0)

)

erf
( γ√

8α1

) , (x,t)∈ (0,s(0,t))×(0,1), (4.9c)

u1(x,1,t)=1−
erf

( x−1
√

8α1(t+t0)

)

erf
( γ√

8α1

) , (x,t)∈ (0,s(1,t))×(0,1). (4.9d)

In order to test the stability of the numerical results noise is added to the temperature
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: The MFS approximation of the temperature on (a) x = 0, (c) y = 0, (e) y = 1 and the MFS
approximation of the flux on (g) x=0, and the relative error (%) between the exact and numerical u1(x,y,t) on
(b) x=0, (d) y=0, (f) y=1, and (h) the relative error (%) between the exact and numerical (∂u1/∂x)(0,y,t),
obtained with h1 =h2 =2, for Example 2 (p=5% noise).
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data (2.3), via (4.6a)-(4.6c), as in (4.4). When p = 0 and p = 5%, we use λ = 10−13 and
λ = 10−6, respectively. The numerical results are presented in Figs. 8-12 and the same
conclusions as in Example 1 are obtained.

4.3 Example 3

We consider T=1, K1=1, K2=2, α1=2, α2=1, l=π/2. We take the moving boundary as
in [1], given by

s(y,t)= tan−1(y2+t+1), (y,t)∈ (0,1)×(0,1), (4.10a)

u2(x,y,0)=u0
2(x,y)=(tan−1(y2+1)−x)2|cos(2y)|,

(x,y)∈Ω2(0)={(x,y)∈R
2|y∈ (0,1),x∈ (s(y,0),π/2)}. (4.10b)

We also take
u2= f =u0

2+t on Γ2. (4.11)

In [1], the initial condition (2.4a) was also imposed as in (4.10b) and the numerical results
were found meaningless probably because the resulting inverse problem has no solution.

(a) (b)

(c) (d)

Figure 13: The MFS approximations for: (a) u1(0,y,t), (b) ∂u1/∂x(0,y,t), (c) u1(x,0,t), and (d) u1(x,1,t),
obtained with h1 =4 and h2 =2, for Example 3 (no noise).
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(a) (b)

(c) (d)

Figure 14: The MFS approximations for: (a) u1(0,y,t), (b) ∂u1/∂x(0,y,t), (c) u1(x,0,t), and (d) u1(x,1,t),
obtained with h1 =3 and h2 =2, for Example 3 (p=5% noise).

In our study, we do not impose the initial condition (2.4a) in the inverse problem. In this
case, the system of Eqs. (3.3) contains 2M3(M1+1)+N1(M1+(M2+1)/2) equations with
4MN unknowns. Taking M1=20, M2=20, M3=10, N1=40, M=10, N=40, we obtain a
system of 1640 equations with 1600 unknowns.

Example 3 has no analytical solution available explicitly. Plots of the MFS approxi-
mations obtained for p=0 (and λ=10−7) and p=5% (and λ=10−6) are shown in Figs. 13
and 14, respectively. Further, the values of the mean and maximum absolute differences
between the MFS approximations obtained for p = 0 and p = 5% are shown in Table 1.
From Figs. 13 and 14, and Table 1 it can be seen that the differences between the numer-
ical results are of the same order as the amount of noise. Furthermore, the numerical
solution in Fig. 14 is stable, free of oscillations and unbounded behaviour.

Table 1: Mean and maximum differences between the MFS approximations obtained for p = 0 and 5%, for
Example 3.

Figures to compare 13(a) & 14(a) 13(b) & 14(b) 13(c) & 14(c) 13(d) & 14(d)
Mean difference 0.3197 1.0413 0.0740 0.0860
Max difference 0.6380 1.9025 0.5886 0.5808
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5 Conclusions

We have extended the MFS of [11] to the inverse two-phase two-dimensional linear Stefan
problem. The numerical results show that the method is accurate and stable with respect
to noise in the input data. Future work will concern extending the MFS developed in
this study to the three-phase and three-dimensional inverse Stefan problems, see [17,18],
respectively.
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