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Abstract. In this article we study the complex oscillation of differential polynomials
generated by meromorphic solutions of the non-homogeneous linear differential equa-
tion
fO+ A (@) f5 D+ A1 () f+ Ao (2) f=F,
where A;(z) (i=0,1,---,k—1) and F are meromorphic functions of finite [p,q|-order in
the complex plane.
AMS subject classifications: 34M10, 30D35

Key words: Non-homogeneous linear differential equations, differential polynomials, meromor-
phic solutions, [p,q]-order.

1 Introduction and preliminaries

In this paper, we assume that the reader knows the standard notations and the funda-
mental results of the Nevanlinna’s value distribution theory of meromorphic functions
(see [10] , [15], [22]). Throughout this paper, we assume that a meromorphic function is
meromorphic in the whole complex plane C. Let us define inductively for r€RR, exp, r:=e"
and

exp, 7:=exp (exppr) , pEN.

We also define for all r sufficiently large log, 7:=logr and
log, ,7:=log (logpr) , pENN.
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Moreover, we denote by exp,r:=r, log,r:=r, log_,r:=exp;r and exp_;7:=log;r. In
[12], [13], Juneja-Kapoor-Bajpai investigated some properties of growth of entire func-
tions of [p,q]-order. In [21], in order to keep accordance with the general definitions of
entire function f(z) of iterated p—order [14], [15], Liu-Tu-Shi gave a minor modifica-
tion to the original definition of [p,q] —order given in [12], [13]. With this new concept
of [p,q] —order, the [p,q] —order of solutions of complex linear differential equations was
investigated (see e.g. [2-4], [6], [11], [20], [21], [23]).

Now we introduce the definitions of the [p,q] —order as follows.

Definition 1.1. ([20, 21]) Let p>g>1 be integers. If f(z) is a transcendental meromorphic
function, then the [p,q|-order of f(z) is defined by

7

log, T(r,f)
_ 13 p
o () =limssp =t 2=

where T (r,f) is the Nevanlinna characteristic function of f. For p =1, this notation is called
order and for p=2 hyper-order. It is easy to see that 0 <p,, . (f) < oco. By Definition 1.1, we have

that pp 1) (f) = p1(f) = p(f) usual order, ppp 1) (f) = p2(f) hyper-order and pip ) (f) = pp (f)
iterated p—order.

Definition 1.2. ([11]) Let p>g>1 be integers. If f(z) is a transcendental meromorphic func-
tion, then the lower [p,q]-order of f(z) is defined by

. log,T(r.f)
Hipg (f)= hmmflpi.

r—>+00 qur
Remark 1.1. ([20]) If f(z) is a meromorphic function satisfying 0< p(, 4 (f) <oo, then

6)) Olp—n,q] <f) =00 (Tl<p), Olp.g—n) <f) =0 (1’l<q), Clp+n,q+n] (f) =1 (1’1<p) forn=1,2,-

(ii) If [p1,41] is any pair of integers satisfying g1 =p1+q—p and p; <p, then Clp1a1] (f)=0
if O<p[p,q] (f)<land Plp1a] (f)=o0if1 <Plpq) (f) <eco.

(ii) p(py g, (f) =00 for g1 —p1> g—pand pjp, 4, (f) =0 for g1 —p1 < q—p.

Definition 1.3. ([20]) A transcendental meromorphic function f(z) is said to have index-pair
[P,9] if 0<pyp,q (f) <ooand pp,_1,4_1)(f) is not a nonzero finite number.

Remark 1.2. ([20]) Suppose that f; is a meromorphic function of [p,q]-order p; and f, is
a meromorphic function of [p1,q1]-order py, let p < p;. We can easily deduce the result
about their comparative growth:

(i) If p1—p>q1—g, then the growth of f; is slower than the growth of f,.
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(ii) If p1 —p<q1—gq, then f; grows faster than f,.

(iii) If p1—p=4g1—q>0, then the growth of f; is slower than the growth of f; if p» >1,
and the growth of f; is faster than the growth of f; if po <1.

(iv) Especially, when p; =p and g1 =4 then f; and f; are of the same index-pair [p,q]. If
p1> p2, then fi grows faster than f,; and if p; <y, then f; grows slower than f,. If
p1=p2, Definition 1.1 does not show any precise estimate about the relative growth

of f1 and f>.

Definition 1.4. ([20]) Let p > q > 1 be integers. Let f be a meromorphic function satisfying
0<p[p,q (f)=p <oco. Then the [p,q] —type of f(z) is defined by

. log, 1 T(r.f)
Tip,q) (f) :hmsupp—p.
r—+too [logqflr}

Similarly, the [p,q] —type of an entire function f of [p,q] —order 0 <py, o (f)=p < oo is defined

as
. log, M(r,f)
™, (pq) (f) ZIHEiupi[l ? }p ,
r *© qufl r

where M(r, f) =max;—,|f (z)].

Definition 1.5. ([20]) Let p > q > 1 be integers. The [p,q]-exponent of convergence of the zero-
sequence of a meromorphic function f(z) is defined by

log N(r,l)
: P f

A =limsup————+-.
[p,q] <f) r—>+oop logqr

Similarly, the [p,q]-exponent of convergence of the sequence of distinct zeros of f (z) is defined by

log N(r,l)
= T p f
T ) =tmsup= 2

4

where N (r, }) (N (r,%)) is the integrated counting function of zeros (distinct zeros) of f (z) in
{z:|z| <r}. By Definition 1.5, we have that Ap, 1 (f) = A, (f) the iterated exponent of conver-

gence of the sequence of zeros of f(z) and X[p,l} (f)=A,(f) the iterated exponent of convergence
of the sequence of distinct zeros of f(z).

Definition 1.6. ([11]) Let p >q > 1 be integers. The lower [p,q]-exponent of convergence of the
zero-sequence of a meromorphic function f(z) is defined by

log N (r,1>
e p f
Ajpg () —lrlr_rgrgof log, 7 '



68 B. Belaidi, M. A. Abdellaoui / J. Math. Study, 50 (2017), pp. 65-83

Similarly, the lower [p,q]-exponent of convergence of the sequence of distinct zeros of f(z) is

defined by
— . log,N (r’Jl()
Apa) ) =lmint 50

By Definition 1.6, we have that Ay, 1) (f)=2A, (f) the iterated lower exponent of convergence of the

sequence of zeros and K[p,l] (f) :Ep (f) the iterated lower exponent of convergence of the sequence
of distinct zeros of f (z). Moreover, we may obtain the definitions of Apyq (f — @), Apq (f— ),

Alpg (f—¢) and K[M] (f— @), when f is replaced by a meromorphic function f— ¢.

2 Main results

Consider the complex differential equation
fO+ A (2) fE V44 AL (2) '+ Ao (2) f=0 2.1)
and the differential polynomial
e =difO +di_1 FED 4 1 dyf, (2.2)

where Ay (z),A1(z),...,Ax-1(z) and dy(z) ,d1 (2),...,dx (z) are meromorphic functions in the
complex plane.

Recently, many authors have investigated the complex oscillation properties of so-
lutions and differential polynomials generated by solutions of differential equations in
the unit disc and in the complex plane C, see [1]- [9], [11], [16]- [21], [23]. Recently, the
first author investigated the growth and oscillation of the differential polynomial (2.2)
generated by meromorphic solutions of equation (2.1). Before we state those results and
the results of this paper, we need to define the following sequences of functions w; ;,3;
(i=0,---,k—1;j=0,--- k—1) by

g a;,j—l +1Xi—1,]'—1—Aiak,1,]-,1, foralli=1,---,k—1, (2 3)
7 "‘6,]'71 — Aog—1,j-1, fori=0, .
‘Xi,ozdi_dkAi/ fori=0,---,k—1 (24)
ﬁ}—1+“k—1]’71F, forall j=1,--- k-1,
-~ ’ 2.5
P { dF, for j=0. (2.5)
We define also I by
&0,0 X10 . . Kk_10
Xo,1 &1 - . &k-11
hy =

&ok—1 &1k—1 - - OKp—1k-1
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and ¢ (z), Yk (z) by
) a0 - - Wk-10
1 ¢’ L N
110 (Z) = hk (Z) . . 7
Gl?(k_l) K1k—1 - -« Kk—1k—1
¢—Po a1y .. W10
1 ¢’ —p1 ®11 - - Kg-11
WETRE| R
eV —Br 1 wipo1 o Mpe1pe1

where hy #0 and a;; (i=0,---,k—1;j=0,--- ,k—1) are defined in (2.3) and (2.4), and ¢ is a
meromorphic function with p,, 1 (¢) <co.

Theorem 2.1. ([6]) Let p > q>1 be integers, and let A;(z) (i=0,1,---,k—1) be meromorphic
functions of finite [p,q] —order. Let d;(z) (j=0,1,--- k) be finite [p,q] —order meromorphic func-
tions that are not all vanishing identically such that h, #0. If f(z) is an infinite [p,q] —order
meromorphic solution of (2.1) with p(, 41,4 (f) = p, then the differential polynomial (2.2) satisfies
Pipa) (8) =Pipq (f) =00,
Pip+149 (8k) =Pppr1,q (f) =p-
Furthermore, if f is a finite [p,q| —order meromorphic solution of (2.1) such that

Olpg) (f) >maX{P[M] (Ai) (i=0,1,-- k=1),p1,q (d)) (j:O,l,---,k)},

then
Pipa) (8k) =P(p.q (f)-
Theorem 2.2. ([6]) Under the hypotheses of Theorem 2.1 , let ¢ (z) #0 be a meromorphic function

of finite [p,q] —order such that (z) is not a solution of (2.1). If f(z) is an infinite [p,q] —order
meromorphic solution of (2.1) with p(,41,4 (f) = p, then the differential polynomial (2.2) satisfies

Apg) (8k— @) =A(pg) (8k— @) =p[pq) (f) =0,
Mp+1,] (k= @) =Aps1,4 (8 — @) =P[p+1,9 (f) =p-
Furthermore, if f is a finite [p,q] —order meromorphic solution of (2.1) such that

Olp.q) (f) >max{p[p,q} (Ai) (i:O,l,‘”,k—l),p[p,q] (90)/

Pipal (4)) (j:0,1,~-~,k)}
then -
Apa) (86— @) =) (8k = 9) =P1p g ()-
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Theorems 2.1 and 2.2 investigated the growth and oscillation of higher order dif-
ferential polynomial (2.2) generated by meromorphic solutions of homogeneous linear
differential equation (2.1). A natural question is now that when the equation is non-
homogeneous linear differential, can the similar results hold? We give an affirmative
answer by studying the controllability of solutions of the non-homogeneous linear dif-
ferential equation

O+ A (2) fE D 4o+ AL (2) f+ Ao (2) f=F, (2.6)
where, Ag(z), A1(z),..., Ax—1(2), F(z) are meromorphic functions of finite [p,q] —order.

Theorem 2.3. Let p>q>1 be integers, and let A;(z) (i=0,1,---,k—1), F(z) be meromorphic
functions of finite [p,q] —order. Let d;(z) (j=0,1,--- k) be finite [p,q] —order meromorphic func-
tions that are not all vanishing identically such that h, #0. If f(z) is an infinite [p,q] —order
meromorphic solution of (2.6) with p(, 41,4 (f) = p, then the differential polynomial (2.2) satisfies

Pip.g (k) =P[p,q (f) =00,
Olp+1,9] (gk) =Plp+14) <f) =p.

Furthermore, if f is a finite [p,q| —order meromorphic solution of (2.6) such that

Olp.q) (f) >maX{P[p,q} (Ai) ((=0,1,---,k=1) 00,4 (F),

Plpq (dj) (1=0,1,-+k) }/ 2.7)

then

Olp.q) (gk) =Plpg (f)
Remark 2.1. In Theorem 2.3, if we do not have the condition /i Z0, then the conclusions
of Theorem 2.3 cannot hold. For example, if we take d;=dA; (i=0,---,k—1), then I =0.
It follows that g, =d\F. So, if f(z) is an infinite [p,q] —order meromorphic solution of (2.6),

then p(, 41(8k) = P[p,q (dkF) < p[p,q (f) =00, and if f is a finite [p,q] —order meromorphic
solution of (2.6) such that (2.7) holds, then

Pipa) (8k) =Pipq) (dkF) < max {P[M] (F).P1pq) (dr) } <Ppa) (f)-

Theorem 2.4. Under the hypotheses of Theorem 2.3, let ¢ (z) # 0 be a meromorphic function of
finite [p,q] —order such that yy(z) is not a solution of (2.6). If f(z) is an infinite [p,q] —order
meromorphic solution of (2.6) with p(,,1,4 (f) = p, then the differential polynomial (2.2) satisfies

X[M] (k= @) =Appq) (8k— @) =p[pq (f) =00,
Mp+1,9) (86— @) = A1, (8K — @) =P[ps1,4 (f) =p-
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Furthermore, if f is a finite [p,q| —order meromorphic solution of (2.6) such that

Plp.q] (f) >max{p[p,q] (Ai) (i:0,1,~-~,k—1),p[p,¢ﬂ (F),

Ot (@) 00 (@) (=01 k) }, (28)
then
X[sz] (8k= ) = Ay, (8= @) =Pp,q (f)-
Corollary 2.1. Let p>q>1 be integers, and let Ay(z),---, Ax_1(z), F(z)Z0 be finite [p,q] —order

meromorphic functions such that

1 .
max{p[p,q} (A,‘),A[p,q} <A—0> P[p+1,4] (F) =1, ,k—l} <p[p,q} (A())

Let dj(z) (j=0,1,---,k) be finite [p,q] —order meromorphic functions that are not all vanishing
identically such that hy #0, and let ¢(z) be a meromorphic function of finite [p,q] —order such
that Py (z) is not a solution of (2.6). Then the differential polynomial (2.2) satisfying for all
meromorphic solutions f whose poles are of uniformly bounded multiplicities of equation (2.6)

E[M] (8k= @) = A, (8= @) =Pyp,q (f) =00,
Mp+1,9) (k= @) = Aps1,9) (8 — @) =P(p+1,4) (8) = P[p+1,9) (f) =P[p,q) (A0),

with at most one exceptional solution fo satisfying p(,+1,4 (fo) <Pp,q (Ao)-

We consider now the differential equation
f'+A@) f=F, (2.9)

where A(z) and F(z) are meromorphic functions of finite [p,q] —order. In the following,
we will give sufficient conditions on A and F which satisfied the results of Theorem 2.3
and Theorem 2.4 without the conditions ” I #0 ” and ” i, (z) is not a solution of (2.6) ”
where k=2.

Corollary 2.2. Let p>q>1 be integers, and let A(z), F(z) # 0 be meromorphic functions
satisfying

Pipal (F) <Hipq (A) <pppgq (A) <oo,  0<T)p 0 (A) <oo.
Suppose that A(z) =Y o oca, 2 is also an entire function such that the sequence of exponents

{An} satisfies the gap condition A, /n> (logn)**" (y>0,n€N). Let dy, dy, dy be meromorphic
functions that are not all vanishing identically such that

max {P[M] (dj) (j=0,1,2) } <Hipq) (A) SP[p,q) (A) <oo.
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If f(z) is a transcendental meromorphic solution to (2.9) satisfying

Mpa (/) < Hipq (A),
then the differential polynomial go =d, f" +di f'+do f satisfies
Hipa) (82) = P1pa) (82) = Hip) (f) = P1pg (f) =00
Hip+1,q)(82) = Hip+1,q) (f) = Pipg (A) <P1p11,9) (82) = Pp+1,9) () =P[p,q) (A)-

Corollary 2.3. Under the hypotheses of Corollary 2.2, let ¢ be a meromorphic function such that
Plp,q (@) <oo.If f(z) is a transcendental meromorphic solution to (2.9) satisfying A, (1/f) <
Hip,q (A), then the differential polynomial o =da f" +d; f' +do f with dy #0 satisfies

Afpr1g) (82— @) =Appr1,9) (82— @) = Hppq (A)
S Api1g (82— @) =Api1g (82— 9) =p[pq (A)-
Remark 2.2. The present article may be understood as an extension and improvement of
the recent article of the first author [6] from equation (2.1) to equation (2.6).

3 Some lemmas

Lemma 3.1. ([20]) Let p > q > 1 be integers, and let Aoy, A1,---, Ax—1, F #0 be meromorphic
functions. If f(z) is a meromorphic solution of equation (2.6) such that

maX{P[p,q] (F)/p[p,q] (Ai) <i:01"'/k_1)} <Plpq] (f) <o,

then Ajp,q) (f) =Afpq) (f) =P(pq (f)-

Lemma 3.2. ([6]) Let p>q>1 be integers, and let Ao, A1,---, Ax—1, F#O0 be finite [p,q] —order
meromorphic functions. If f(z) is a meromorphic solution of equation (2.6) with py, , (f) =+o0
and p(,41,4 (f) =p <00, then

Aipgl () =Atpg) () =01, () =00, Appiag (F) = Appirg () =Pppi1,g (f) =p-

Lemma 3.3. ([6]) Let p>q > 1 be integers, and let f, g be non-constant meromorphic functions
of [p,q|-order. Then we have

Plpagl (f+g) Smax{p[p,q} (f)/p[p,q} (g)}/
Plp.q] (fg) < max{p[p,q] (f)rp[p,q] (8) } .

Furthermore, if p(, 01 (f) > 01,4 (§), then we obtain p, o1 (f+8) =p(p,q (f8) =Pp,q (f)-
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Lemma 3.4. Let p>gq>1 be integers, and let f, g be non-constant meromorphic functions with

Plp,q (f) as [p,ql-order of f and p, 51(g) as lower [p,q]-order of g. Then we have

Hip.q) (f+8) Smax{p[p,q] <f)rl"[p,q} (g)}/
Hip.q) (fg) < max{p[p,q] <f)rl"[p,q} (8) }

Furthermore, if p(, 41 () > Pyp,q (f), then we obtain

Hipg) <f+g) =Hpq) (fg) =Hip,q] <g)

Proof. Without loss of generality, we assume that p[,, 4 (f) <+o0 and p, 4 (g) <+00. From
the definition of the lower [p,q] —order, there exists a sequence r, — 400 (1 — 400) such
that
 log, T(rg)
”LIT""W = Hipg]

(8)-

Then, for any given £ > 0, there exists a positive integer N; such that

T(rug) <exp, { (g (8)+¢)log, rn}

holds for n > Nj. From the definition of the [p,q] —order, for any given ¢ >0, there exists a
positive number R such that

T(r,f) <exp, { (P1pg) (f) +e)log, r}

holds for r > R. Since r, — o0 (n— +00), there exists a positive integer N, such that
r, > R, and thus

T(ruf) <exp,{ (01 (f) +€)10gqrn}
holds for n > N,. Note that
T(r,f+8) ST(rf)+T(r,g)+1n2,
T(r.fg) <T(r.f)+T(rg).
Then, for any given ¢ >0, we have for n >max{N;,N, }
T(ru f+8) <T(ryf)+T(r,8)+In2
< exp, {(pppq (f) +€)log,rn} +exp,{ (4[p,q(g) +e)log,ru} +1n2
< 2exp, { (max{p[p,q] (f) Mg (8) } —|—£) log, 7, } +In2 (3.1)

and

T(rn f8&) <T(ru f)+T(r,8)
< 2exp, { (max{p[plq] (f) Mg (8) } —|—£) log, 7, } (3.2)
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Since e > 0 is arbitrary, from (3.1) and (3.2), we easily obtain

Hipq (f+8) <max {p[p,q] (f) Hip,q (&) } (3.3)
Hipa (£2) <max{ 01 () g () }- (3.4)

Suppose now that p, 1 (8) >[4 (f) . Considering that

T(r,g)=T(r,f+8—f)<T(r,f+8)+T(r,f)+In2, (3.5)
T(r,) :T<r,%> gT(r,fg)-l—T(r,%)
=T(r,fg)+T(r,f)+0(1). (3.6)

By (3.5), (3.6) and the same method as above we obtain that

Hip.q) (g) < max{.u[p,q} (f+g)/p[p,q} (f)} =H{pqg] (f+g)/ (3.7)
Hip.q) (8) < max{”[p,q] (fg)rp[p,q] (f)} =Hipq) (f8)- (3.8)

By using (3.3) and (3.7) we obtain [, 5 (f+8) = 1[4 (g) and by (3.4) and (3.8), we get
Hip.q] (fg§)= Hip.q] (8)- O

Lemma 3.5. ([6]) Let p>g>1 be integers, and let f,g be meromorphic functions with [p,q) —order
0< Ppq) (f),p[p,q] () <ooand [p,q] —type 0 < Tip.a] (f),r[p,q] (g) <oo. Then the following state-

ments hold:
(@) If o1, (8) <P(pq (f), then

Tpq) (f +8) = T(pg) (f8) = T(p,q (f)-
(1) If P1p,g) (f) = Pp,q (&) and Ty 4 (&) 7 Tp,q (f), then

Ppq) (f+8) =Pipq) (f&) =P(p,q (f)-

Lemma 3.6. (see Theorem 1.6 in [20]) Let p > q > 1 be integers, and let Ao (z), -, Ax—1(z),
F (z) #0 be meromorphic functions in the plane satisfying

1 .
maX{P[p,q] (Ai) Ay (A_o) Pp+1,4) (F) ‘121"""‘_1} <P[p,q (Ao)-

Then all meromorphic solutions f whose poles are of uniformly bounded multiplicities of (2.6)

satisfy P(p41,4 (f) =0[p,q (Ao) with at most one exceptional solution fo satisfying p,11,q (fo) <
Plpa) (Ao)-
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Lemma 3.7. (see Theorem 2.1 in [23]) Let p > q > 1 be integers, and let Ao (z), -, Ax_1(2),
F (z) be meromorphic functions satisfying that there exists some d € {0,...,k—1} such that

01 :max{p[p,q} (F)/p[p,q] (A,‘),i#d: i=0,1,-- ,k—l} < Hip.q] (Ad) Sp[p,q] (Ad) < o0.

Suppose that A;(z) =Y yca, 2" is also an entire function such that the sequence of exponents
{ Ay} satisfies the gap condition

Au/n> (logn)*™ (3>0,neN).

If f(z) is a transcendental meromorphic solution to (2.6) satisfying Ap, g (1/f) < pipq (Ad),
then we have

Hip+1,g) (F) = Hipg) (Ad) SP1pr1,q)(f) =0[pg (Ad)-

Lemma 3.8. ([11]) Let p > g >1 be integers, and let Ay, Ay,---, Ax_1, F %0 be meromorphic
functions. If f(z) is a meromorphic solution of equation (2.6) satisfying

max{p[erl,q] (F)/p[p+1,q] (Ai) 1i=0,1,-- ,k—l} <Hlp+14] <f)/ (3.9)

then Ay 1,9 (f) = Appr1,q)(f) = Hips1,q (f)-

Lemma 3.9. Assume that f(z) is a solution of equation (2.6). Then the differential polynomial
gk defined in (2.2) satisfies the system of equations

gk—PBo=aoof +arof +-+ag_10f kY,
Si—Br=ao1ftarif' +-+ap_ 115D,

gl —Ba=woof+arof +-+ap_1of D, (3.10)
k— _
&E VB =agp 1 fFapp 1 f 4 ta g1 fED,
where

o W;’]-,l +1Xj_1,]'_1—Ai£tk,1,j,1, fO?’ alli=1,--- k-1, (3.11a)
i 01— Aolk—1,j-1, for i=0, i
wjo=di—dyA;, fori=0,-- k-1 (3.11b)

Biitax-1j1F, forall j=1,-- k-1,

= ’ 3.11

P { diF, for j=0. (3-110)

Proof. Suppose that f is a solution of (2.6). We can rewrite (2.6) as

k—1
fO=F-Y A;f® (3.12)
i=0
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which implies

= dief O +di 1 fED o dy f 4do f
k=1 ‘
= Y (di—dxA;) ) +diF. (3.13)
=0

1

We can rewrite (3.13) as
k-1 ,
gk—Bo=Y_wiof", (3.14)
i=0

where «; are defined in (2.4) and By = diF. Differentiating both sides of Eq. (3.14) and
replacing f(¥) with (3.12), we obtain

k-1 k1 . k-1 ok ,
Sk—Bo= Z“Q,of(l) + Z“i,Of(ZH) = Z“Q,of(z) + Z“i—l,of(l)
i=0 i=0 i=0 i=1
k-1 = . .
=aof + Y alof D+ Y aii10f P +ag0f
i=1 i=1
k-1 kel kel ,
=agof+ Y aiof D+ Y wirof V=Y we10Aif D +ar_1,F
i=1 i=1 i=0
k-1 ,
= (wpo—e—1,040) f+ Y (@) o+ai—10—ax—1,04;) f +ag_1oF. (3.15)

i=1
We can rewrite (3.15) as

k—1 ‘
gk—p1=Y i f9, (3.16)
i=0
where

fii= { IX;/O +ai10—ag_104;, foralli=1,--- k-1, (3.17)

oc{w —Aottx_10, fori=0,
B1=PBo+ax—10F.
Differentiating both sides of Eq. (3.16) and replacing f(¥) with (3.12), we obtain

k-1 k1 , k-1 ok ‘
—Bi=Y i fO+Y a fC=Y"al fO+Y a;q,f0)
i=0 i=0 i=0 i=1
k-1 k1 ,
=ag 1 f+ Yl fO+Y a1 fO+ap_qf®
i=1 i=1

k=1 k-1 ke .
=af f+ Y 0l f P4+ i fY =Y A1 fD a0 F

k-1 .
= (wpr—a-1140) f+ Y (afy+ai11— A1) fO +ag_11F (3.18)
i-1
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which implies that

k—1 ,
g —Bo=Y winfW, (3.19)
i=0
where
o 0 +ai11— A1, foralli=1,--- k-1,
2 { a0 — Aok—1,1, fori=0 (3.20)
B2=p1+ax 1,F.
By using the same method as above we can easily deduce that
() Y
&' ==L wiif", j=01 k-1, (3.21)
i=0
where «; ; and B; are given by (3.11). This completes the proof of Lemma 3.9. O

Lemma 3.10. ([20]) If f(z) is a meromorphic function, then p(, 5\ (f') =0 (p,q)(f)-

Lemma 3.11. ([23]) If f(z) is a meromorphic function, then p, o\ (f') = p(p,q) (f)-

4 Proof of the Theorems and the Corollaries

Proof of Theorem 2.3. Suppose that f(z) is an infinite [p,q] —order meromorphic solution
of (2.6) with p(, 114 (f) =p. By Lemma 3.9, g satisfies the system of equations

gk—Bo=woof tarof +-+ag_10f*Y,
S—Bi=wo1f+af +-- a1 fED,
gllg_ﬁZZ"‘O,Zf"‘“l,zf/‘i“"+06k—1,2f(k_1), (4.1)

ke _
81(< 1)_,3k71:ao,kflf‘i‘“l,k—lf/‘i‘""ka—l,k—lf(k b,

where
g Dé;,j—l‘i‘lXi—l,]’—l—Ailxk,ll]-,l, foralli=1,---,k—1, w2
7 “6,]‘71 — Aog—1,j-1, fori=0, .
ajo=d;—dyA;, foralli=0,1,--- k-1 43)
ﬁ}—1+“k—1]’71F, forall j=1,--- k-1,
-~ ’ 4.4
P { dyF, for j=0. (4.4)



78 B. Belaidi, M. A. Abdellaoui / J. Math. Study, 50 (2017), pp. 65-83

By Cramer’s rule, and since h #0, then we have

Sk—Po a0 - - Q10
/

1 Sk~ B &1 - . Og—11
f_hk :
(k=1)

S 7 PBr—1 k-1 - - Kk—1k—1

It follows that
f=Co(gk—Bo)+Ci(gk—PB1)+---+Cr (g,ik_l) _,kal)

k—1
—Cogk+Cigi+-+Ci 18 V=Y. CiB;, (4.5)
j=0

where C; are finite [p,q] —order meromorphic functions depending on a; j, where ; ; are
defined in (4.2) ,(4.3) and B; are defined in (4.4).

If o[, (8k) < +o0, then by (4.5) we obtain p(,, 4 (f) < +0o, which is a contradiction.
Hence Plp.q] (8k) =Plpal (f)=oo.

Now, we prove that p(,.14(8k) = 0[p+1,4 (f) =p- By (22), Lemma 3.3 and Lemma
3.‘10, we get p[,11,4](8k) < P[p+1,4 (f) and by (4.5) we have p(,114(f) < p[p+1,q (8x)- This
yield pjp11,)(8k) =P[p+1,9 (f) =p-

Furthermore, if f(z) is a finite [p,q] —order meromorphic solution of Eq. (2.6) such
that

p[p,q] (f) > max{p[p,q} (F), p[p,q] (Al'), p[wﬂ (d]) :i:O,- .. ,k—l,jIO,l,- .. ,k—l}, (46)

then
p[P,tﬂ (f) >max{p[p,q] (061',]') , p[P,fﬂ (C]‘B]) ZiZO,' .. ,k—l,jZO,' . ,k—l} . (47)

By (2.2) and (4.6) we have Plpq] (k) < Olpg] (f). Now, we prove Olp.g] (k) = Olp.g] (f). If
Olp,q (8k) <P[p,q (f), thenby (4.5) and (4.7) we get

Pipa () = maX{P[M] (CiBj) (j=0,- k=104 (gk)} <Pipa) (f)

which is a contradiction. Hence py, o1 (8x) = 0[p,q (f) - O

Proof of Theorem 2.4. Suppose that f(z) is an infinite [p,q] —order meromorphic solution
of equation (2.6) with p(,, 414 (f) =p. Set w(z) =g — ¢ Since p,, 5 (¢) < oo, then by Lemma
3.3 and Theorem 2.3 we have o[, ;1 (W) =p[,,4 (k) =00 and pp, 11,4 (W) =p[p+1,4 (§x) =p- To
prove

Apgl (8k= @) = Apg (8k— @) =00, Apping (86— @) =Aping (8k— @) =p,
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we need to prove X[p,q} (w)=A[p,q (w) =00 and X[p-&-l,q} (W) =Aps1,4 (w)=p. By gk=w+g,
and using (4.5), we get

f=Cow+Crw'+-+Cew® D+ (2), (4.8)

where

$(2) =Colg—Po) +Ci (¢’ 1) +--+Ciot (91 = Bia ).
Substituting (4.8) into (2.6), we obtain

2k—2 )
Ckflw(Zkil) + Z 4)]w(]) —F— (l/)]Ek) +Ak71 (Z) l/)]Ekil) +-... _|_A0 (Z) ll)k) :H,
j=0

where ¢; (j=0,---,2k—2) are meromorphic functions of finite [p,q]-order. Since y(z) is

not a solution of (2.6), it follows that H #0. Then, by Lemma 3.2, we obtain X[p,q} (w) =
Appg (w) =00 and A1) (W) =App 11,4 (w) =p, i e,

Mpa) (8= ) =Apq) (8= ) =0,
Mp+1,q1 (8= @) = Aparg) (8k =) =p-
Suppose that f (z) is a finite [p,q] —order meromorphic solution of equation (2.6) such
that (2.8) holds. Set w(z) = gx — ¢. Since [, 5 (¢) <p[p,q4 (f), then by Lemma 3.3 and The-

orem 2.3 we have pj, ;1 (w) =Plpa] (8k) =P[p,q (f)- To prove Ap, o1 (8k— @) = App g (8k— @) =
Pip,q (f) we need to prove A, o (w) = Ay g (W) = pp,q (f) . Using the same reasoning as
above, we get

%-2
Craw® V4 Y gl =F— (¢£k>+Ak_l 2+ A (z)¢k) —H,
=0

where ¢; (j=0,--,2k—2) are meromorphic functions with [p,q] —order satisfying py, ¢ (¢7) <

¥k (z) =Co(¢—Po)+Ci (¢ —B1)+--+Ci ((P(k_l) _,kal) ,
Plp.q) (H) <pppq (f)-

Since  (z) is not a solution of (2.6), it follows that H #0. Then by Lemma 3.1, we obtain
Alpa) (W) =g (W) =Py g1 (f) 1 € Ay g) (85— @) = A1) (8k = @) =Pppq) (f)- 0
Proof of Corollary 2.1. Suppose that f (z) is a meromorphic solution of equation (2.6). Then,

by Lemma 3.6, we have all meromorphic solutions f whose poles are of uniformly bounded
multiplicities of (2.6) satisfy p[,11,4] (f) =0[p,q (Ao) with at most one exceptional solution
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fo satistying p(,11,4 (fo) <p[p,q (Ao). Since P (z) is not a solution of equation (2.6), then
by Theorem 2.4 we obtain

X[szﬂ (8= ) = A1 (8k— @) =Pip,q (8k) =P[p,q) (f) =00,
Ap+1,4) (86— @) = A i1, (8 — @) =P(p+1,9) (8K) = P[p+1,9) (f) =0[p,q (A0)

hold for all meromorphic solutions f whose poles are of uniformly bounded multiplic-
ities of (2.6) with at most one exceptional solution fy satisfying o[, 11,4 (fo) < p[p,g (Ao)-
O

Proof of Corollary 2.2. Suppose that f is a transcendental meromorphic solution to (2.9).

Then by Lemma 3.7, we have i, 5 (f) =p[p,q (f) =00 and

‘u[p+1,q] <f) :‘u[p,q] <A) Sp[erl,q] (f) :P[p,q] (A)
On the other hand, we have

g2=daf"+dif' +dof. (49)
It follows that ,
§2—Po=wo0f+a1of’, »
{ g —Br=wo1f+ar1f. (4.10)

By (2.3) and (2.4), we obtain

_ | 4, fori=1,
abo__{ do—dyA, fori=0 (4.11a)
L "‘i,o + 0,0, fori=1,
e { woo— Ay, fori=0, (4.11Db)
and by (2.5) we get
Bo=daoF, B1=Po+aroF =(doF) +di F.
Hence
ao,ozdo_dZA, “l,O:dl/
np1=— (dZA)/—dlA—I-d/, @12)
a1 =—dy A+do+d]
and
&o1 @11

= d5 A%+ (dhdy —didy —2dody +d7) A+drdy A" —dydy +dod] +d5.

First we suppose that d, Z0. By d#0, A#0 and Lemma 3.5 we have p(,, o1 (h2) =p [ 4 (A) >
0. Now suppose d, =0, d1 #0. Then, by Lemma 3.3, we get

O1pq) (h2) =Pyp,q (A1 A—dpdy +dod’ +d5) =, (A) >0.
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Finally, if d, =0, d; =0 and d #0, then hy = d% #0. Hence hy #0. By hp #0 and (4.10), we
obtain .
FELH! (82—,30)}1—2“1,0 (82—P1) (4.13)

By (4.9), Lemma 3.3, Lemma 3.4 and Lemma 3.11, we have

Plpg (82) <P1p,q (f) (O1p+1,4(82) S Ppp11,4 (F)),

Hipa) (82) Smax{ ppg) () 00ng) (4)) (1=01,2) } = pipg (),

Hip+1q] (gZ)SmaX{V[pH,q] (f)ppirg (df) (j=01 2)} Hip+1q) (),
and by (4.13) we have

pq] (f) <Pipq (82) (Orps1,91(f) < P[ps1,9)(82)),
pa) (f) S a1 (82) (Hips1,g (f) Sips1,9(82))-
Therefore, Plp.al (gZ) (f Hip.q) (gZ) Hip.q) (f)=oc0and

)=
Hip+1,q)(82) = Mipt1,g) (f) = Hip,q (A) SP[pt1,4 (82) =P[p+1,9) (f) =P[p,q (A)-
This completes the proof. O

Proof of Corollary 2.3. Suppose that f (z) is a transcendental meromorphic solution of (2.9).
Then, by Corollary 2.2, we have o[, 41(82) = 0(p,q (f) = H(p,q) (§2) = H[p,q (f) =00 and

Hip1,q)(82) = Mipr1,q () = Hipg) (A) <0114 (82) =Pp+1,9 (f) =P[p,q (A)-
Set w(z) =daf"+d1f' +dof —¢. Then, by p, ;1 (¢) < oo, Lemma 3.3 and Lemma 3.4, we
have pjy, 4 (W) = (g (82) = Hipg) (f) = (g (f) =00 and
Hip1,q) (W) =Hpr1,q)(82) = Hips1,q) (f) = Hip,q (A)
<P(p+1,9) (W) =P(p+1,9) (82) =P(p+1q) (f) =P[p,g (A)-
To prove
Apr1q) (82— @) =App 11,4 (82— @) =Hppq (A)
<A1, (82— @) = A s, (82— 9) =P, (A),
we need to prove
A1) (0) =211, (0) = pipg (A) S A1, (@) = Ay g (@) = plpg (A)-
Using ¢» =w-+ @, we get from (4.13)

—x1 oW +aq qw
f=— LT = L2 4, (4.14)
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where

¥a(2) = _"‘1,0(4"—[312;'“1,1 (¢—PBo)

—d1 (¢ — ((doF)' +d1F)) + (—dy A+do+d}) (¢ —daF)

= . 4.15
d3 A2+ (dydy —dydy —2dodr +d3 ) A+dydp A’ —djdy +dod) +d3 (415
Substituting (4.14) into equation (2.9), we obtain
—&1,0_ m 1 ’ "
hz w +Prw +Prw +Pow=F— (1,[)2 +A(z)1p2> =G, (4.16)

where ¢; (j=0,1,2) are meromorphic functions with pp, .1 (¢;) <o (j=0,1,2). First, we
suppose that ¢» =0. Then, G=F #0. Now, if 2(z) #0, then by Lemma 3.7 it follows
that ¢ (z) is not a solution of equation (2.9) because 1 is a transcendental meromorphic
function with p(, ; (2) <co. Hence G #0. By Lemma 3.2 and Lemma 3.8, we obtain

Z[PHJI} (W) =App11,q) (@) = ppg (A) < X[Pﬂ,q] (W) =Alpi1,g (W) =p[pq (A),

that is,
Afps1g) (82— @) =Appi1,9) (82— ) = Hipq (A)
< Apig (82— @) =Api1,g (82— @) =p[pg (A)-
This completes the proof. O
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