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Abstract. We study the growth of solutions of higher order complex linear differential
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1 Introduction and main results

For a function f meromorphic in the unit disc ∆={z : |z|<1}, the order of growth is given
by

ρ( f )= limsup
r→1−

log+T(r, f )

log 1
1−r

.

If f is an analytic function in ∆, then the order of growth of f is often given by

ρM( f )= limsup
r→1−

log+ log+ M(r, f )

log 1
1−r

,

where
M(r, f )=max

|z|=r
z∈∆

| f (z)|, log+x=max{logx,0}.
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It follows from the following inequality in [20, Theorem V.13]

T(r, f )≤ log+M(r, f )≤
1+3r

1−r
T

(

1+r

2
, f

)

, r∈ (0,1),

that
ρ( f )≤ρM( f )≤ρ( f )+1.

It is possible that there exists f such that ρ( f ) 6= ρM( f ); for example, f (z)= exp{( 1
1−z )

λ}
satisfies ρ( f )=λ−1 and ρM( f )=λ, where λ>1 is a constant, which can be found in [20, p.
205].

In order to state our results, some notations are needed. For any r ∈ (0,∞), exp1r =
expr, expn+1r=exp(expn r), log1r= logr, logn+1r= log(logn r), n≥1 is integer. exp0(r)=
r= log0r, exp−1r= log1r. Second, we recall some definitions.

Definition 1.1 ([10]). For f meromorphic in ∆, set

D( f )= limsup
r→1−

T(r, f )

log 1
1−r

.

If D( f )=∞, we say that f is admissible. If D( f )<∞, we say that f is non-admissible.

For the function of fast growth in ∆, we also need the definition of iterated p−order,
which can be found in [4].

Definition 1.2. Let f be a meromorphic function in ∆. Then

ρp( f )= limsup
r→1−

log+
p T(r, f )

log 1
1−r

,

where p≥1 is integer. If f is an analytic function in ∆, then the iterated p-order is also given by

ρM,p( f )= limsup
r→1−

log+
p+1 M(r, f )

log 1
1−r

.

Obviously, ρ1( f )≤ρM,1( f )≤ρ1( f )+1 for any analytic functions in ∆. However, it follows
from [20, Theorem V.13] that ρp( f ) = ρM,p( f ) for p≥ 2. In general, ρ2( f ) or ρM,2( f ) are
called hyper-order of f in ∆. In this paper, we assume that the reader is familiar with the
fundamental results and standard notation of the Nevanlinna’s theory of meromorphic
functions in ∆, see [15] and [25] for more details.

Definition 1.3 ([2, 3]). Let 1≤ q≤ p or 2≤ q= p+1, and f be a meromorphic function in ∆.
Then the [p,q]-order of f is defined as

ρ[p,q]( f )= limsup
r→1−

log+
p T(r, f )

logq
1

1−r

.
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For an analytic function f in ∆, we also define

ρM,[p,q]( f )= limsup
r→1−

log+
p+1 M(r, f )

logq
1

1−r

.

For the [p,q]-order of analytic function f in ∆, we have the following conclusion.

Proposition 1.1 ([21]). Let f be an analytic function of [p,q]-order in ∆. Then the following
statements hold:

(1) If p=q=1, then ρ( f )≤ρM( f )≤ρ( f )+1.

(2) If p=q≥2 and ρ[p,q]( f )<1, then ρ[p,q]( f )≤ρM,[p,q]( f )≤1.

(3) If p=q≥2 and ρ[p,q]( f )≥1; or p>q≥1, then ρ[p,q]( f )=ρM,[p,q]( f ).

(4) If p≥1 and ρ[p,p+1]( f )>1, then D( f )=∞; If ρ[p,p+1]( f )<1, then D( f )=0.

It is always interested in studying the growth of solutions of linear differential equa-
tions in the unit disc by using the Nevanlinna’s theory of meromorphic functions. The
analysis of slowly growing solutions has been studied in [7,10,11,13,14,18]. Fast growth
of solutions are considered in [1, 5, 6, 10, 12, 16]. There are a few results in studying the
growth of solutions of differential equations in an angular domain. One of our main pur-
pose of this paper is to investigate the properties of solutions in an angular domain of the
differential equation

Ak(z) f (k)+Ak−1(z) f (k−1)+···+A1(z) f ′+A0(z) f =0, (1.1)

where A0(z) 6≡0,A1(z),. . .,Ak(z) are analytic functions in ∆.
In 2000, Heittokangas studied the growth of solutions of second order linear differen-

tial equations and obtained the following result.

Theorem 1.1. ([10]) Suppose that A0(z),A1(z) are analytic functions in ∆ satisfying one of the
following conditions.

(1) ρ(A1)<ρ(A0);

(2) A0(z) is admissible while A1(z) is non-admissible.

Then all non-trivial solutions of the equation

f ′′+A1(z) f ′+A0(z) f =0 (1.2)

are of infinite order.

In 2002, Chen generalized Theorem 1.2 to consider arbitrary order equation (1.1). The
result is stated as follows.
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Theorem 1.2. ([6]) Suppose that A0(z),A1(z),. . . ,Ak(z) are analytic functions in ∆ satisfying
one of the following conditions.

(1) max
1≤j≤k

ρ(Aj)<ρ(A0);

(2) Aj(z) is non-admissible while A0 is admissible, where j=1,2,.. . ,k.

Then all non-trivial solutions of the equation (1.1) are of infinite order.

In 1994, Wu [24] studied the growth of solutions of the equation (1.2) in an angular
domain by using the Nevanlinna’ theory in an angular domain (see [9, Chapters 1 and
3]), and obtained the following result.

Theorem 1.3. Let A0(z) and A1(z) be analytic in ΩC(α,β)={z :α≤arg z≤β}, where 0≤α<

β≤2π. If for any l>0, the measure of

{

θ : α< θ<β,liminf
r→∞

(|A1(reiθ)|+1)rl

|A0(reiθ)|
=0

}

is bigger than zero, then any non-trivial solutions f of (1.2) satisfies ρα,β( f )=∞.

Remark 1.1. The order ρα,β in Theorem 1.4 is defined by

ρα,β( f )= limsup
r→∞

log+T0(r,ΩC(α,β), f )

logr
,

where T0(r,ΩC(α,β), f ) is Ahlfors-Shimizu characteristic in the angular domain ΩC(α,β)=
{z : α<argz<β}, see [9] for more details.

In 2009, Xu and Yi [22] generalized Theorem 1.4 to the case of arbitrary order linear
differential equation (1.1). The properties of solutions of linear differential equations
with analytic coefficients in an angular domain of the whole complex plane are showed
in Theorem 1.4 and [22, Theorem 1]. It is natural to ask: What can we say for the growth
of solutions of (1.1) with analytic coefficients in an angular domain of the unit disc? We
will investigate the problem in this paper. In order to state our results, we also need the

following notations. For 0≤α<β≤2π,r>0, and any given ε∈ (0,
β−α

2 ), set

Ω(α,β)={z : α<argz<β,|z|<1},

Ω(α,β)={z : α≤argz≤β,|z|<1},

Ωε ={z : α+ε<argz<β−ε,|z|<1},

Ω(r)=Ω(α,β)∩{z : 0< |z|< r<1}.
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To measure the growth of meromorphic functions in Ω(α,β), we need recall the Ahlfors-
Shimizu characteristic in Ω(α,β) (see [20]). In order to state shortly we use Ω denotes
Ω(α,β) in the following statements. Let f ba a meromorphic function in Ω. Define

S(r,Ω, f )=
1

π

∫ ∫

Ω(r)

(

| f ′(z)|

1+| f (z)|2

)2

dσ,

T0(r,Ω, f )=
∫ r

0

S(t,Ω, f )

t
dt,

where dσ= rdrdθ for z= reiθ .

Definition 1.4 ([17, 23]). Let f be a meromorphic function in Ω. Then the order of growth of f
is defined by

ρΩ( f )= limsup
r→1−

log+T0(r,Ω, f )

log 1
1−r

.

For fast growing of meromorphic functions in Ω, we use the iterated p-order to mea-
sure its growing, which is found in [17].

Definition 1.5. Let f be a meromorphic function in Ω. Then

ρΩ,p( f )= limsup
r→1−

log+
p T0(r,Ω, f )

log 1
1−r

.

To precise measure the growth of meromorphic function in Ω, similarly the case of
unit disc, we define [p,q]-order.

Definition 1.6. Let 1≤ q≤ p, and f be a meromorphic function in Ω. Then the [p,q]-order of f
is defined as

ρΩ,[p,q]( f )= limsup
r→1−

log+
p T0(r,Ω, f )

logq
1

1−r

.

We remark that the definitions of ρΩ( f ), ρΩ,p( f ) and ρΩ,[p,q]( f ) of a meromorphic
function f in Ω are reasonable, because

T0(r,C, f )=

{

T(r, f )+O(1), 0< r<1,
T(r, f )+O(logr), 0< r<∞,

where C denotes whole complex plane.
In this paper, we mainly obtain the following results by using the similar way of [23].

Theorem 1.4. Let p≥ q≥ 1 and A0(z),A1(z),. . .,Ak(z) be analytic functions in Ω= {z : α<

argz<β,|z|<1}. If
max
1≤j≤k

{ρΩ,[p,q](Aj)}<ρΩε ,[p,q](A0),
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then every non-trivial solution f of (1.1) satisfies

ρΩ,[p+1,q]( f )≥ρΩε ,[p,q](A0).

To state the second result, we also need the following notations. For H ⊂ [0,1), the
upper and lower densities of H are given, which can be found in [5], see also [3], by

dens(H)= limsup
r→1−

m(H∩[0,r))

m([0,r))
, dens(H)= liminf

r→1−

m(H∩[0,r))

m([0,r))

respectively, where m(G)=
∫

G
dt

1−t for G⊂ [0,1).

Theorem 1.5. Let p≥ q≥ 1 and F be a set of complex numbers satisfying dens({|z| : z∈ F ⊂
Ω})>0, and let A0(z),A1(z),. . .,Ak(z) be analytic functions in Ω= {z : α<argz< β,|z|<1}
such that for some real constants 0≤γ<λ, we have

T0(r,Ωε,A0)≥expp

{

λlogq(
1

1−|z|
)

}

,

T0(r,Ω,Aj)≤expp

{

γlogq(
1

1−|z|
)

}

, j=1,.. . ,k,

as |z|= r→1− for z∈F. Then every non-trivial solution f of (1.1) satisfies ρΩ,[p,q]( f )=∞ and
ρΩ,[p+1,q]( f )≥λ.

2 Auxiliary results

In this section, we give some auxiliary results for the proof of our theorems. The proof of
the following lemma can be found in [19] plays an important role in proving our results.

Lemma 2.1. Let

ζ(z)=
(ze−iθ0)

π
δ +2(ze−iθ0 )

π
2δ −1

(ze−iθ0)
π
δ −2(ze−iθ0 )

π
2δ −1

, (2.1)

where 0≤ θ0 =
α+β

2 < 2π, 0< δ = β−α
2 <π. Then ζ(z) is a conformal map of angular domain

Ω={z : α<argz< β,|z|<1} onto the unit disc ∆. Moreover, for any positive number ε< δ, the
transformation (2.1) satisfies

ζ

({

1

2
< |z|< r}∩{z : |arg z−θ0|<δ−ε

})

⊂

{

ζ : |ζ|<1−
ε

2
π
2δ+1δ

(1−r)

}

,

ζ−({ζ : |ζ|<ρ})⊂

(

{z : |z|<1−
δ

8π
(1−ρ)}∩{z : |argz−θ0|<δ}

)

,

where ρ<1 is a constant. The inverse transformation of (2.1) is

z(ζ)= eiθ0

[

−(1+ζ)+
√

2(1+ζ2)

1−ζ

]
2δ
π

. (2.2)
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The following lemma due to Wu [23, Lemma 2.2].

Lemma 2.2. Let f be a meromorphic function in Ω= {z : α<argz< β,|z|<1}, where 0≤α<

β<2π. For any given ε∈ (0,
β−α

2 ), set

δ=
β−α

2
, b=

ε

2
π
2δ+1δ

.

Then the following statements hold.

T0(r,C, f (z(ζ)))≤
16π

δ
T0

(

1−
δ

8π
(1−r),Ω, f (z)

)

+O(1), (2.3)

T0(r,Ωε, f (z))≤
2

b
T0(1−b(1−r),C, f (z(ζ)))+O(1), (2.4)

where z(ζ) is the inverse transformation of (2.1).

Remark 2.1. Applying the formula T(r, f )=T0(r,C, f )+O(1), Lemma 2.2 and the defini-
tion of [p,q]-order, we immediately obtain that

ρ[p,q]( f (z(ζ)))≤ρΩ,[p,q]( f (z)), ρΩε,[p,q]( f (z))≤ρ[p,q]( f (z(ζ))). (2.5)

The following lemma can be proved by the same method of [8, Lemma 1], see also [23,
Lemma 2.3].

Lemma 2.3. Let f be a meromorphic function in Ω= {z : α<argz< β,|z|<1}, where 0≤α<

β<2π, and z= z(ζ) be the inverse transformation of (2.1). Set

F(ζ)= f (z(ζ)), ψ(ζ)= f (l)(z(ζ)).

Then

ψ(ζ)=
l

∑
j=1

αjF
(j)(ζ),

where the coefficients αj are the polynomials (with numerical coefficients) in the variables V(ζ)(=
1

z′(ζ) ),V
′(ζ),··· . Moreover, we have T(r,αj)=O(log 1

1−r ), j=1,2,.. . ,l.
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3 Proofs of Theorems

Proof of Theorem 1.5. Suppose that f is a non-trivial solution of (1.1) in Ω. Applying
Lemma 2.3, we have

k

∑
i=1

Ai(z(ζ)) f (i)(z(ζ))+A0(z(ζ)) f (z(ζ))

=
k

∑
i=1

Ai(z(ζ))
i

∑
j=1

αjF
(j)(ζ)+A0(z(ζ)) f (z(ζ))

=
k

∑
j=1

αj

k

∑
i=j

Ai(z(ζ))F(j)(ζ)+A0(z(ζ)) f (z(ζ)).

Then F(ζ)= f (z(ζ)) is a solution of the differential equation

Bk(ζ)F(k)(ζ)+Bk−1(ζ)F(k−1)(ζ)+·+B0(ζ)F(ζ)=0, in∆, (3.1)

where

B0(ζ)=A0(z(ζ)), Bj(ζ)=αj

k

∑
i=j

Ai(z(ζ)), j=1,.. . ,k,

are analytic in ∆. Since T(r,αj)=O(log 1
1−r ), j=1,.. . ,k, hence it follows from this and the

Nevanlinna’s theory that

T(r,Bj)≤T(r,αj)+
k

∑
i=j

T(r,Ai(z(ζ)))+O(1)

=
k

∑
i=j

T0

(

r,C,Ai(z(ζ))
)

+O

(

log
1

1−r

)

, j=1,.. . ,k.

Applying Lemma 2.2 and our conditions, we get

ρ[p,q](Bj)≤ max
1≤j≤k

ρ[p,q](Aj)≤ max
1≤j≤k

ρΩ,[p,q](Aj)<ρΩε , [p,q](A0),

ρ[p,q](B0)=ρ[p,q](A0)≥ρΩε,[p,q](A0).

It follows from two inequalities above that

ρ[p,q](Bj)<ρ[p,q](B0), for j=1,.. . ,k. (3.2)

By [21, Theorem 2.1], we get ρ[p+1,q](F)≥ ρ[p,q](B0) for all non-trivial solutions F of
(3.1). It follows from this and (2.5) that

ρΩ,[p+1,q]( f )≥ρ[p+1,q]( f (z(ζ)))=ρ[p+1,q](F)≥ρ[p,q](B0)≥ρΩε [p,q](A0).

Thus ρΩ,[p+1,q]( f )≥ρΩε [p,q](A0) for all non-trivial solutions f of (1.1). This completes the
proof.
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Proof of Theorem 1.6. Suppose that f is a non-trivial solution of (1.1) in Ω. By using the
similar reasoning of the proof of Theorem 1.5, we get (3.1). By (2.3) and (2.4) in Lemma 2.2,
we get

T(r,B0)=T(r,A0)=T0(r,C,A0(z(ζ)))+O(1)

≥
b

2
T0(1−

1−r

b
,Ωε,A0)+O(1)

≥
b

2
expp

{

λlogq(
b

1−r
)

}

=O

(

expp{λlogq(
1

1−r
)}

)

and for j=1,.. . ,k,

T(r,Bj)≤
k

∑
i=j

T(r,Ai(z(ζ)))+O(log
1

1−r
)

=
k

∑
i=j

T0(r,C,Ai(z(ζ)))+O(log
1

1−r
)

≤
16π

δ

k

∑
i=j

T0

(

1−
δ

8π
(1−r),Ω,Ai

)

+O(log
1

1−r
)

≤
16π

δ
expp

{

γlogq(
1

δ
8π (1−r)

)

}

=O

(

expp{γlogq(
1

1−r
)}

)

,

as |z|= r → 1− and z∈G, where the set G is a set of image of F by transformation (2.1)
satisfying dens{|ζ| : ζ∈G}>0.

Applying [3, Theorem 1.1], we get ρ[p,q](F)=∞ and ρ[p+1,q](F)≥λ for all non-trivial
solutions F of (3.1). It follows from this and (2.5) that

ρΩ,[p,q]( f )=∞, ρΩ,[p+1,q]( f )≥λ

for all non-trivial solutions f of (1.1). This completes the proof.
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