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Abstract

In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth-

ods are considered for solving the second order variational inequality with displacement

obstacle. The convergence analysis is presented and the optimal order error estimates are

obtained under the hypothesis of the finite length of the free boundary. Numerical results

are provided to illustrate the correctness of theoretical analysis.
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1. Introduction

The variational inequality problem with displacement obstacle has been a very interesting

subject in many fields, see, e.g., [1,2]. As usual, it reads as: to find u ∈ K, such that

a(u, v − u) ≥ f(v − u), ∀ v ∈ K, (1.1)

where

a(u, v) =

∫

Ω

∇u · ∇vdxdy, f(v) =

∫

Ω

fvdxdy, (1.2a)

K =
{
v ∈ H1

0 (Ω) : v ≥ χ a.e. in Ω; χ ≤ 0 on ∂Ω
}
, (1.2b)

Ω ⊂ R2 is bounded convex domain. f ∈ L∞(Ω) and χ ∈ H2(Ω) are given functions.

The variational inequality theory was first introduced by Hartman and Stampacchia [3] to

study the partial differential equations, and has been playing more and more important role in

the contact problem, obstacle problem, elasticity problem, traffic problem, and so on.
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As to the problem shown in (1.1), there have been numerous studies with different finite

elements, such as conforming linear triangular element [1,4-6], quadratic element [7], noncon-

forming Crouzeix-Raviart type linear triangular element and rectangular Wilson element [8-10].

Based on the detailed analysis, the error bound of order O(h3/2−ε), for any ε > 0, was obtained

in [4] for the quadratic finite element under the hypothesis of that the free boundary has finite

length. Further, [7] derived the same error bound as [4] for the same quadratic element with-

out the above hypothesis. In [8], the Crouzeix-Raviart type nonconforming linear triangular

element was used to problem (1.1) and the error bound was estimated with order O(h).

However, to the best knowledge of the authors, all of the above studies on error estimates

depend on the essential condition of the discrete meshes, i.e., regular assumption hK

ρK
≤ C or

quasi-uniform assumption h
hK

≤ C, ∀ K ∈ Jh, where hK , ρK denote the diameters of element

K and biggest circle contained in K, respectively, h = max
K∈Jh

hK , Jh is a subdivision of Ω, C is

a positive constant which is independent of h and the function under consideration.

As we know, the domain considered may be narrow or irregular, and the cost of calculation

will be very expensive if we employ the regular subdivision on the domain. Naturally, it is an

obvious idea to use an anisotropic partition with fewer degrees of freedom for simplicity in the

application. But, in this case, some difficulties will arise in the convergence analysis and error

estimates of interpolation and consistency errors for nonconforming finite element methods. For

example, the Bramble-Hilbert lemma, the traditional interpolation theory in Sobolev spaces,

can not be directly applied to the interpolation error estimates for the meshes are characterized

by hK

ρK
→ ∞, where the limit can be considered as h → 0. On the other hand, when we deal

with the consistency error estimate on the longer or the longest edge F of the element K, there

will appear a factor |F |
|K| , which may tend to infinity and makes the estimate in vain.

In order to overcome the above difficulties, some researches have been devoted to the inves-

tigation on the narrow and anisotropic finite elements for the practical problems [11-14]. But

there are only a few of articles considering the variational inequality problem with nonconform-

ing finite elements. For example, anisotropic Carey element and Wilson element approximations

to the second order obstacle problem were investigated in [15], in which the proofs of the main

results are simplified greatly comparing with [8] and [9]. But the techniques used in [15] are

only valid to the finite elements when their interpolations can be separated into the conforming

part and nonconforming part. Moreover, a class of Crouzeix-Raviart type finite elements were

applied to the Signorini variational problem in [16], and [17] extended them to the parabolic

variational inequality problem with moving grids.

In [18], a nonconforming rotated Q1 element was proposed, of which the degrees of freedom

are function values of the midpoints of four edges of element K, and the shape function space

is spanned by {1, x, y, x2 − y2}. However, it has been proved in [14] that this element can not

be applied to anisotropic meshes directly by a counter example. At the same time, [14] also

proposed a kind of modified nonconforming finite element with the degrees of freedom of mean-

values on the four edges of element K , and the shape function space is spanned by {1, x, y, x2}

or {1, x, y, y2}, and proved its convergence for the second order problem on a special anisotropic

meshes, i.e., the longer edges of all the elements should parallel to x-axis or y-axis, respectively.

Obviously, the shape function space of this modification is asymmetrical and the requirement

on meshes is too strong.

Recently, there have appeared a lot of studies focusing on the analysis of convergence,

supercloseness and supercongvergence for some anisotropic finite element methods (cf. [19-23]).

However, the applications of Crouzeix-Raviart type anisotropic nonconforming linear triangular
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element [14] and EQrot
1 rectangular element [24] to the variational inequality problem (1.1) have

never been seen, although [25] applied the latter one to a class of nonlinear Sobolev equations

and obtained the optimal error estimates and the supercloseness for both semi-discrete and fully-

discrete approximate schemes, and [26] discussed the supercloseness and superconvergence of

nonconforming rectangular elements for the second order elliptic problems.

In this paper, we will have a try to consider the approximations of Crouzeix-Raviart type

nonconforming linear triangular element [14] and EQrot
1 rectangular element [24] to problem

(1.1) on anisotropic meshes. With the same hypothesis of finite length of the free boundary

as [1,4], the optimal error estimate of order O(h) is obtained and some numerical results are

provided to illustrate the correctness of our theoretical analysis. Thus the gap on this aspect

is filled.

2. Construction of the Finite Elements and Some Lemmas

Suppose Ω is a bounded convex domain with the boundary ∂Ω parallel to x-axis and y-

axis respectively, Jh is a family of triangular or rectangular mesh grading of Ω satisfying the

maximum angle and coordinate system conditions [13]. But it is not required to satisfy the

regular assumption or quasi-uniform assumption.

For a given rectangle K, by dividing each rectangle diagonally, we obtain triangular mesh.

Without lose of generality, we assume the center point of K is (xK , yK), the sides of K parallel

to x-axis and y-axis are of lengths 2hKx and 2hKy respectively. In addition, we assume that

hKx ≫ hKy, hx = max
K∈Jh

hKx, hy = max
K∈Jh

hKy,

h̃x = min
K∈Jh

hKx, h̃y = min
K∈Jh

hKy,
hy

h̃y

≤ C,
h

h̃x

≤ C,

where C is a positive constant independent of h and hK

ρK
, hK = diam(K) be the diameter of

the element K, h = max
K∈Jh

hK . For convenience, hKx, hKy are simply denoted by hL and hS

respectively. Obviously, hS ≤ hL ≤ hK ≤ h.

On the other hand, let the vertices of K be di(xi, yi) for the rectangular or triangular

element, and the corresponding edges be li = didi+1(i = 1, 2, 3, 4 mod (4) or i = 1, 2, 3 mod (3)).

Let K̂ = [−1, 1;−1, 1] be the reference element, the middle points of the four edges l̂1, l̂2,

l̂3 and l̂4 are denoted by â1(0,−1), â2(1, 0), â3(0, 1) and â4(−1, 0) respectively. Let K̂ be the

reference element on (λ1, λ2)-plane with vertices

d̂1 = (1, 0), d̂2 = (0, 1), d̂3 = (0, 0), l̂1 = d̂2d̂3, l̂2 = d̂3d̂1, l̂3 = d̂1d̂2.

The corresponding affine mapping FK : K̂ → K of the rectangular or triangular element is

defined by

{
x = xK + hLξ,

y = yK + hSη,
or

{
x = (x1 − x3)λ1 + (x2 − x3)λ2 + x3,

y = (y1 − y3)λ1 + (y2 − y3)λ2 + y3.

Now, we define the finite element space (K̂, P̂ , Σ̂) as

Σ̂ = {v̂i} (i = 1, 2, 3, 4, 5 or i = 1, 2, 3),
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where

v̂i =
1

|l̂i|

∫

l̂i

v̂dŝ (i = 1, 2, 3, 4 or i = 1, 2, 3) and v̂5 =
1

ˆ|K|

∫

K̂

v̂dξdη.

Moreover, let P̂ = span{1, ξ, η, ϕ(ξ), ϕ(η)}, ϕ(t) =
1

2
(3t2−1), for EQrot

1 rectangular element
([24])

,

or P̂ = span{1, λ1, λ2}, for the linear triangular element([14]).

It can be easily checked that the corresponding interpolation can be expressed as

Π̂v̂ = v̂5 +
1

2
(v̂2 − v̂4)ξ +

1

2
(v̂3 − v̂1)η +

1

2
(v̂2 + v̂4 − 2v̂5)ϕ(ξ)

+
1

2
(v̂3 + v̂1 − 2v̂5)ϕ(η), (2.1)

or

Π̂v̂ = v̂1 + v̂2 − v̂3 + 2(v̂3 − v̂1)λ1 + 2(v̂3 − v̂2)λ2. (2.2)

Then the finite element space is defined as

Vh =

{
vh : v̂h = vh|K ◦ FK ∈ P̂ satisfying (2.1) or (2.2), ∀K ∈ Jh;

∫

F

[vh]ds = 0, ∀F ⊂ ∂K

}
, (2.3)

where [vh] denotes the jump value of vh crossing the edge F if F is an interior edge, and it is

equal to vh if F is a boundary edge of ∂Ω.

Let the associated interpolation operator Πh : H2(Ω) −→ Vh, be defined by

Πh|K = ΠK , ΠKv = Π̂v̂ ◦ F−1
K , ∀v ∈ H2(K).

Now, we introduce the following two important lemmas which can be found in [14,19].

Lemma 2.1. Π̂ has the anisotropic interpolation property, i.e., ∀ v̂ ∈ H2(K̂), α = (α1, α2)

with |α| = 1, there holds

‖D̂α(v̂ − Π̂v̂)‖0,K̂ ≤ C|D̂αv̂|1,K̂ .

Consequently, we have

|u−Πhu|1,K ≤ C
∑

q∈{L,S}

hq,K |∂qu|1,K , (2.4)

|u−Πhu|0,K ≤ C
∑

q∈{L,S}

h2
q,K |∂2

qqu|0,K . (2.5)

Lemma 2.2. Let F be any edge of element K, v ∈ H1(K), vh ∈ Vh. Then

∣∣∣∣
∫

F

(v −MF v)(vh −MF vh)ds

∣∣∣∣

≤ C
|F |

|K|

( ∑

q∈{L,S}

h2
q,K‖∂qv‖

2
0,K

) 1

2

( ∑

q∈{L,S}

h2
q,K‖∂qvh‖

2
0,K

) 1

2

, (2.6)

where MF v =
1

|F |

∫

F

vds.
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As we know, Lemma 2.2 plays a very important role in estimating the consistency error for

nonconforming elements on regular meshes. But for anisotropic meshes, if F is the longer or

the longest edge of K, the factor 1
hS

will appear in (2.6), which may tend to infinite when hS

is small enough.

In order to overcome this difficulty, we introduce the following auxiliary space Ṽh which is

sufficiently close to Vh as: for EQrot
1 element,

Ṽh =

{
ũh ∈ L2(Ω) : ũh|K ∈ span{1, y, ϕ(y)}, ∀K ∈ Jh;

∫

FL

[ũh]ds = 0

}
, (2.7)

or for linear triangular element

Ṽh =

{
ũh ∈ L2(Ω) : ũh|K ∈ span{1, y}, ∀K ∈ Jh;

∫

FL

[ũh]ds = 0

}
, (2.8)

where FL are the two longer sides of K.

For any vh ∈ Vh, let ṽh ∈ Ṽh, and satisfy: for EQrot
1 element,

∫

FL

vhds =

∫

FL

ṽhds,

∫

K

vhdxdy =

∫

K

ṽhdxdy,

or for linear triangular element,

∫

FL

vhds =

∫

FL

ṽhds, ∀FL ∈ ∂K.

Obviously the above definitions are meaningful since each element K has two longer edges FL.

It is not hard to check that

∂yvh = ∂y ṽh, ∂xṽh = 0. (2.9)

Then applying Poincaré inequality yields

‖wh − w̃h‖0,K ≤ ChL‖∂xwh‖0,K , ∀wh ∈ Vh. (2.10)

Lemma 2.3. For each vh ∈ Vh, if there exists a point (xK , yK) ∈ K such that vh(x
K , yK) = 0,

then there holds

‖vh‖0,K ≤ ChL|vh|1,K . (2.11)

Proof. If there exists a point (xK , yK) ∈ K such that vh(x
K , yK) = 0, then for the linear

triangular element defined above,

‖vh‖
2
0,K =

∫

K

|vh(x, y)− vh(x
K , yK)|2dxdy

=

∫

K

|∂xvh(x
K , yK)(x− xK) + ∂yvh(x

K , yK)(y − yK)|2dxdy

=

∫

K

|∂xvh(x, y)(x − xK) + ∂yvh(x, y)(y − yK)|2dxdy

≤ 2h2
L‖∂xvh‖

2
0,K + 2h2

S‖∂yvh‖
2
0,K ≤ 4h2

L|vh|
2
1,K .
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While for EQrot
1 rectangular element,

vh(x, y)− vh(x
K , yK)

= ∂xvh(x
K , yK)(x − xK) + ∂yvh(x

K , yK)(y − yK)

+
1

2
∂2
xxvh(x

K , yK)(x − xK)2 +
1

2
∂2
yyvh(x

K , yK)(y − yK)2

= [∂xvh(x
K , yK)− ∂2

xxvh(x
K , yK)(x− xK)](x − xK)

+[∂yvh(x, y)− ∂2
yyvh(x

K , yK)(y − yK)](y − yK)

+
1

2
∂2
xxvh(x

K , yK)(x − xK)2 +
1

2
∂2
yyvh(x

K , yK)(y − yK)2

= ∂xvh(x, y)(x − xK) + ∂yvh(x, y)(y − yK)−
1

2
∂2
xxvh(x, y)(x − xK)2

−
1

2
∂2
yyvh(x, y)(y − yK)2.

Note that

‖∂2
xxvh(x, y)‖0,K ≤ h−1

L ‖∂xvh(x, y)‖0,K , ‖∂2
yyvh(x, y)‖0,K ≤ h−1

S ‖∂yvh(x, y)‖0,K ,

we have

‖vh‖0,K =

(∫

K

|vh(x, y)− vh(x
K , yK)|2dxdy

) 1

2

≤ hL‖∂xvh(x, y)‖0,K +
1

2
h2
L‖∂

2
xxvh(x, y)‖0,K + hS‖∂yvh(x, y)‖0,K

+
1

2
h2
S‖∂

2
yyvh(x, y)‖0,K ≤ ChL|vh|1,K .

The proof is completed. �

3. Convergence Analysis and Error Estimates

According to [5], the variational problem of (1.1) is equivalent to:






−∆u = f in Ω+ = { x ∈ Ω : u(x) > χ(x)},

−∆u ≥ f in Ω0 = { x ∈ Ω : u(x) = χ(x)},

u ≥ χ in Ω,

u = 0 on ∂Ω.

(3.1)

The closed convex nonempty set Kh is defined by

Kh =

{
vh ∈ Vh :

∫

li

vhds ≥

∫

li

χds, li ⊂ ∂K, i = 1, 2, 3, 4 or i = 1, 2, 3

}
.

Then the approximation problem of (1.1) reads as: to find uh ∈ Kh, such that

ah(uh, vh − uh) ≥ f(vh − uh), ∀ vh ∈ Kh, (3.2)

where ah(u, v) =
∑

K∈Jh

∫

K

∇u · ∇vdxdy.

Now, we will prove the main result of this paper.

Theorem 3.1. Let u, uh be the solutions of (1.1) and (3.2) respectively, u−χ ∈ W 2,∞(Ω), f ∈

L∞(Ω). With the hypothesis of finite length of the free boundary, we have for anisotropic meshes

that

‖u− uh‖h = C̃(u, f, χ)h, (3.3)
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where ‖ · ‖h = (
∑
K

| · |21,K)
1

2 , C̃ denotes a positive constant which depends on u, f and χ, but is

independent of h and hK/ρK.

Proof. Here, we only give the proof for the linear triangular element, and the EQrot
1 rect-

angular element can be treated similarly. Because

‖u− uh‖h ≤ ‖u−Πhu‖h + ‖Πhu− uh‖h, (3.4)

by Lemma 2.1 and (2.4), the first term on the right hand of (3.4) can be estimated as

‖u−Πhu‖h ≤ Ch|u|2,Ω. (3.5)

The main difficulty is the estimate of ‖Πhu− uh‖h, the second term on the right hand of (3.4).

For the method employed in [9] is not valid for anisotropic meshes, we should develop new

techniques to deal with this term. Notice that

‖Πhu− uh‖
2
h =ah(Πhu− uh,Πhu− uh)

=ah(Πhu− u,Πhu− uh) + ah(u,Πhu− uh)− ah(uh,Πhu− uh)

≤C‖Πhu− u‖h‖Πhu− uh‖h + ah(u,Πhu− uh)− ah(u,Πhu− uh)

≤Ch|u|2,Ω‖Πhu− uh‖h + Eh(u,Πhu− uh), (3.6)

where Eh(u,wh) = ah(u,wh)− f(wh), wh = Πhu− uh.

Then by Green’s formula and (2.9), we have

Eh(u,wh) = ah(u,wh)− f(wh) =
∑

K∈Jh

∫

K

(∇u · ∇wh − fwh)dxdy

=
∑

K∈Jh

∫

K

(
∂xu∂xwh + ∂yu∂ywh − fwh

)
dxdy

=
∑

K∈Jh

∫

K

(
∂xu∂xwh + ∂yu∂yw̃h − fwh

)
dxdy

= −
∑

K∈Jh

∫

K

(
∂2
xxuwh + ∂2

yyuw̃h + fwh

)
dxdy +

∑

K∈Jh

∫

∂K

(
∂xuwhnx + ∂yuw̃hny

)
ds

= −
∑

K∈Jh

∫

K

(
∂2
xxu+ f)(wh − w̃h

)
dxdy −

∑

K∈ Jh

∫

K

(∆u + f)w̃hdxdy (3.7)

+
∑

K∈Jh

∫

∂K

(
∂xuwhnx + ∂yuw̃hny

)
ds

=: I1 + I2 + I3,

where

I1 = −
∑

K∈Jh

∫

K

(∂2
xxu+ f)(wh − w̃h)dxdy, I2 = −

∑

K∈ Jh

∫

K

(∆u+ f)w̃hdxdy,

I3 =
∑

K∈Jh

∫

∂K

(
∂xuwhnx + ∂yuw̃hny

)
ds.
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Now, we start to estimate each term Ii (i = 1, 2, 3). Firstly, I1 can be estimated by (2.10) that

|I1| ≤ C
∑

K∈Jh

‖∂2
xxu+ f‖0,K‖wh − w̃h‖0,K

≤ C
∑

K∈Jh

hL‖∂
2
xxu+ f‖0,K‖∂xwh‖0,K

≤ Ch(|u|2,Ω + ‖f‖0,Ω)‖wh‖h. (3.8)

Secondly, thanks to Lemma 2.3 and the fact that nx
|F |
|K| is for all faces of order h−1

L or even

zero, we have

∑

K∈Jh

∫

∂K

(∂xu)whnxds =
∑

K∈Jh

∑

F⊂∂K

∫

F

(∂xu)whnxds

=
∑

K∈Jh

∑

F⊂∂K

nx

∫

F

(∂xu−MF∂xu)(wh −MFwh)ds

≤ C
∑

K∈Jh

∑

F⊂∂K

nx
|F |

|K|

( ∑

q∈{L,S}

h2
q,K‖∂2

xqu‖
2
0,K

) 1

2

( ∑

q∈{L,S}

h2
q,K‖∂qwh‖

2
0,K

) 1

2

≤ C
∑

K∈Jh

( ∑

q∈{L,S}

h2
q,K‖∂2

xqu‖
2
0,K

) 1

2

‖wh‖h. (3.9)

Similarly, by (2.9) we have

∑

K∈Jh

∫

∂K

∂u

∂y
w̃hnyds

≤ C
∑

K∈Jh

∑

F⊂∂K

ny
|F |

|K|

( ∑

q∈{L,S}

h2
q,K‖∂2

yqu‖
2
0,K

) 1

2

( ∑

q∈{L,S}

h2
q,K‖∂qw̃h‖

2
0,K

) 1

2

≤ C
∑

K∈Jh

∑

F⊂∂K

h−1
L

( ∑

q∈{L,S}

h2
q,K‖∂2

yqu‖
2
0,K

) 1

2

hS‖∂yw̃h‖0,K

≤ C
∑

K∈Jh

( ∑

q∈{L,S}

h2
q,K‖∂2

yqu‖
2
0,K

) 1

2

‖wh‖h. (3.10)

Thus combining (3.9) and (3.10) yields

|I3| ≤ Ch|u|2,Ω‖wh‖h. (3.11)

In order to estimate the term I2, let

w = −(∆u+ f), J1
h = {K ∈ Jh; K ∩ Ω0 = ∅},

J2
h = {K ∈ Jh; K ∩ Ω+ = ∅}, J3

h = {K ∈ Jh; K ∈ Jh − J1
h − J2

h}.

Then I2 can be rewritten as

I2 = (w, w̃h) = (w, ˜Πhu− uh)

= (w, ˜Πh(u− χ)− (u− χ)) + (w, u − χ) + (w, ˜Πhχ− uh) (3.12)

=: I21 + I22 + I23,
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where

I21 = (w, ˜Πh(u− χ)− (u− χ)), I22 = (w, u − χ), I23 = (w, ˜Πhχ− uh).

By virtue of the boundness of hy/h̃y and hx/h̃x, I21 can be estimated as

I21 ≤
∑

K∈Jh

‖w‖0,K‖ ˜Πh(u− χ)− (u− χ)‖0,K

≤ C
∑

K∈Jh

‖w‖0,K
(
‖Πh(u − χ)− ˜Πh(u− χ)‖0,K + ‖Πh(u− χ)− (u− χ)‖0,K

)

≤ C
∑

K∈Jh

‖w‖0,K
(
hL|Πh(u − χ)|1,K +

∑

q∈{L,S}

h2
q,K |

∂2(u− χ)

∂q2
|0,K

)

≤ C
∑

K∈Jh

‖w‖0,K
(
hL|Πh(u − χ)− (u − χ)|1,K + hL|u− χ|1,K + h2

L|u− χ|2,K
)

≤ C
∑

K∈Jh

hLhLhS‖w‖0,∞,K |u− χ|1,∞,K + Ch2‖w‖0,Ω|u − χ|2,Ω

≤ Ch2‖w‖0,∞,Ω|u− χ|1,∞,Ω + Ch2‖w‖0,Ω|u− χ|2,Ω. (3.13)

From [5] we know that

I22 = (w, u − χ) = 0. (3.14)

As to I23, we have

I23 = (w, ˜Πhχ− uh − (Πhχ− uh)) + (w,Πhχ− uh)

≤ C
∑

K∈Jh

hL‖w‖0,K |Πhχ− uh|1,K + (w,Πhχ− uh)

≤ C
∑

K∈Jh

hL‖w‖0,K |Πhχ− uh|1,K + (w,Πhχ− uh)

≤ C
∑

K∈Jh

hL‖w‖0,K
(
|Πhχ− χ|1,K + |χ− uh|1,K

)
+ (w,Πhχ− uh)

=: CI123 + I223, (3.15)

where

I123 =
∑

K∈Jh

hL‖w‖0,K
(
|Πhχ− χ|1,K + |χ− uh|1,K

)
, I223 = (w,Πhχ− uh).

When the element K lies in the contact part Ω0, we have u = χ, w ≥ 0. In this situation

(Πhχ−uh)|K ≤ 0, then I223 ≤ 0. Otherwise, there exists a point XK = (xK , yK) ∈ K satisfying

(Πhχ− uh)(X
K) = 0. Therefore, by Lemma 2.3

‖Πhχ− uh‖0,K ≤ ChL|Πhχ− uh|1,K . (3.16)

Thus, we have

I223 ≤ C
∑

K∈Jh

‖w‖0,K‖Πhχ− uh‖0,K ≤
∑

K∈Jh

ChL‖w‖0,K |Πhu− uh|1,K

≤ Ch2‖w‖20,Ω +
1

8
‖Πhu− uh‖

2
h. (3.17)
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On the other hand, we can see from (3.1) that for K ∈ J1
h, w = 0, and for K ∈ J2

h, u = χ. So,

I123=
∑

K∈J2

h

hL‖w‖0,K(|Πhχ−χ|1,K+|u− uh|1,K)+
∑

K∈J3

h

hL‖w‖0,K(|Πhχ−χ|1,K+|χ− uh|1,K |)

≤
∑

K∈J2

h

hL‖w‖0,K
(
|Πhχ− χ|1,K + |u−Πhu|1,K + |Πhu− uh|1,K) (3.18)

+
∑

K∈J3

h

hL‖w‖0,K
(
|Πhχ− χ|1,K + |χ− u|1,K + |u−Πhu|1,K + |Πhu− uh|1,K

)

≤ Ch2‖w‖0,Ω
(
|χ|2,Ω + ‖f‖0,Ω + ‖w‖0,Ω

)
+

1

8
‖Πhu− uh‖

2
h + C

∑

K∈J3

h

hL‖w‖0,K |χ− u|1,K .

Notice that the hypothesis of the free boundary length is finite implies the total number of

K ∈ J3
h is no more than O(h̃−1

y ). Hence

∑

K∈J3

h

hL‖w‖0,K |χ− u|1,K ≤
∑

K∈J3

h

h2
LhKy‖w‖0,∞,Ω|χ− u|1,∞,Ω

≤
Ch2

xhy

h̃y

‖w‖0,∞,Ω|χ− u|1,∞,Ω ≤ Ch2‖w‖0,∞,Ω|χ− u|1,∞,Ω

and

I23 ≤ Ch2(|u|2,Ω + ‖f‖0,Ω)(‖w‖0,Ω + |χ|2,Ω) +
1

4
‖Πhu− uh‖

2
h + Ch2‖w‖0,∞,Ω|χ− u|1,∞,Ω

≤ C̃(u, f, χ)h2 +
1

4
‖Πhu− uh‖

2
h. (3.19)

Collecting (3.7), (3.8), and (3.11)-(3.19), yields

|Eh(u,wh)| ≤ C̃(u, f, χ)h2 +
1

4
‖Πhu− uh‖

2
h. (3.20)

Substituting (3.20) into (3.6), we have

‖uh −Πhu‖
2
h ≤ C̃(u, f, χ)h2. (3.21)

Then the desired result follows from (3.5) and (3.21). �

Remark 3.1. We can also use the auxiliary finite element space

Ṽh = {ũh ∈ L2(Ω); ũh|K ∈ span{1, x, ϕ(x)} or ũh|K ∈ span{1, x}, ∀K,

∫

FL

[ũh]ds = 0},

if the long edge of rectangular element K or long right-angle edge of triangle element K parallel

to y−axis.

Remark 3.2. How to get the optimal order estimates remains open for the above two

anisotropic finite elements when the length of free boundary is infinite. Furthermore, how to

extend the results obtained herein to the quadrilateral cases of [28, 29] is also a very interesting

topic in the future studying.
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4. Numerical Example

In order to investigate the numerical behavior of the above two finite elements, we consider

the following example [27]:






−△u ≥ −50, in Ω,

u ≥ −0.5, in Ω,

(−△u+ 50)(u+ 0.5) = 0, in Ω,

u = 0, on ∂Ω,

(4.1)

where Ω = [0, 1]× [0, 1].

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 4.1 The reference solution of the obstacle problem

We use the following projection SOR algorithm to solve this problem.

Algorithm:

Step 1. Set u
(0)
h .

Step 2. For i = 1, ..., N

ũ
(k+1)
hi =

1

aii

(
bi −

i−1∑

j=1

aiju
(k+1)
hj −

N∑

j=i+1

aiju
(k)
hj

)
.

Step 3. Set uhi = max{χi, u
(k)
hi + ω(ũ

(k+1)
hi − u

(k)
hi )}, 0 < ω < 2 is relaxation factor.

Step 4. If ‖u
(k+1)
h − u

(k)
h ‖ ≤ ε, then go to the next step, otherwise go back to step 2.

Step 5. Output uh.

Because there is no exact solution to the above problem (4.1), the numerical solution about

bilinear finite element on a sufficient refined mesh (h = 1/256) is used as the reference solution

(see Fig. 4.1).

We subdivide Ω in two ways: Mesh 1 and Mesh 2 (see Fig. 4.2). Mesh 1 is rectangular mesh

and Mesh 2 is right triangular mesh, on which max
K∈Jh

hK/ρK≈ 14. The numerical results about

the two nonconforming finite elements are listed in Table 1 and pictured in Fig. 4.3 and Fig. 4.4,

where m and n are the subdivision numbers along x-direction and y-direction, respectively.
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Fig. 4.2 Mesh 1 (left) and Mesh 2 (right) with m× n = 16× 16
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Fig. 4.3 The finite element solutions on Mesh 1 (left) and Mesh 2 (right) with m× n = 64× 64
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Fig. 4.4 The error graphes of the two finite elements

Table 1 Error estimates in broken energy norm

m× n 8× 8 16× 16 32× 32 64× 64

Rectangular element 0.33078256 0.17471666 0.09437756 0.05078487

Order / 0.9209 0.8885 0.8940

Triangular element 2.11976070 1.15148513 0.61768332 0.31866036

Order / 0.8804 0.8986 0.9548
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From Fig. 4.1 we see that the solution presents an anisotropic phenomenon, i.e., it changes

rapidly near the boundary. Thus in order to get more accurate approximation solution and

improve the computing efficiency (see Fig. 4.3), we subdivide the domain with anisotropic

meshes in local regions (see Fig. 4.2). On the other hand, the numerical results listed in Table

1 and the error graphes pictured in Fig. 4.4 indicate that the convergence rates with order O(h)

in broken energy norm are obtained for two nonconforming finite elements considered, which

confirm our theoretical analysis.
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