
Journal of Computational Mathematics

Vol.33, No.2, 2015, 209–226.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1412-m2014-0041

A CASCADIC MULTIGRID ALGORITHM FOR COMPUTING
THE FIEDLER VECTOR OF GRAPH LAPLACIANS*

John C. Urschel and Jinchao Xu

Department of Mathematics, Penn State University, Pennsylvania, USA

Email: jcurschel@gmail.com, xu@math.psu.edu

Xiaozhe Hu

Department of Mathematics, Tufts University, Medford, MA 02155

Email: xiaozhe.hu@tufts.edu

Ludmil T. Zikatanov

Department of Mathematics, Penn State University, Pennsylvania, USA

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Email: ludmil@psu.edu

Abstract

In this paper, we develop a cascadic multigrid algorithm for fast computation of the

Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second

smallest eigenvalue. This vector has been found to have applications in fields such as graph

partitioning and graph drawing. The algorithm is a purely algebraic approach based on a

heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical

insight, we also consider the related cascadic multigrid method in the geometric setting for

elliptic eigenvalue problems and show its uniform convergence under certain assumptions.

Numerical tests are presented for computing the Fiedler vector of several practical graphs,

and numerical results show the efficiency and optimality of our proposed cascadic multigrid

algorithm.

Mathematics subject classification: 65N55, 65N25.

Key words: Graph Laplacian; Cascadic Multigrid; Fiedler vector; Elliptic eigenvalue prob-

lems.

1. Introduction

Computation of the Fiedler vector of graph Laplacians has proven to be a relevant topic,

and has found applications in areas such as graph partitioning and graph drawing [1]. There

have been a number of techniques implemented for computation of the Fiedler vector, most

notably by Barnard and Simon [2]. They implemented a multilevel coarsening strategy, using

maximal independent sets and created a matching from them. For the refinement procedure,

Rayleigh quotient iteration was used. We note that the term refinement refers to the smoothing

process that occurs, and has a different meaning in the multigrid literature. Although at

the time this was significantly faster than the standard recursive spectral bisection, it leaves

room for improvement. The majority of the improvement has been in the form of coarsening

algorithms. Better coarsening techniques, such as heavy edge matching (HEM), have been used

more frequently, and have exhibited much shorter run times [3, 4].

* Received August 22, 2014 / Revised version received December 11, 2014 / Accepted December 22, 2014 /
Published online March 13, 2015 /

210 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

For more general eigenproblems of symmetric positive definite matrices, techniques such as

Jacobi-Davison [5] and the Locally Optimal Preconditioned Conjugate Gradient Method [6] (see

also [7]) have been used and shown to give good approximations to eigenvalues and eigenvectors.

These techniques can easily be extended to computing a Fiedler vector. Other eigensolvers are

provided by setting an Algebraic MultiGrid (AMG) tuned specifically for graph Laplacians (see,

e.g. Lean AMG [8]) as a preconditioner in the LOPCG Method.

In this paper, we introduce a new and fast coarsening algorithm, based on the conecpt

of heavy edge matching, with a more aggressive coarsening procedure. For refinement, we

implement a form of power iteration. For both our coarsening and refinement procedures we

have created algorithms that are straightforward to implement. While heavy edge matching

is complicated and tough to implement in high level programming languages, since it involves

selecting an edge with heaviest weight between two unmatched vertices, heavy edge coarsening is

significantly easier because we do not need to worry about whether a vertex has been aggregated

or not. For the refinement procedure, power iteration does not require the inversion of a matrix,

making its use much more straightforward than for Rayleigh quotient iteration, which requires

some technique to approximately invert the matrix.

Based on these two improved components, we propose a cascadic multigrid (CMG) method

to compute the Fiedler vector. The CMG method has been treated in the literature, most no-

tably by Bornemann and Deuflhard [9,10], Braess, Deuflhard, and Lipnikov [11], and Shaidurov

[12–14]. However, little has been done with respect to the elliptic eigenvalue problem. Our tech-

nique is a purely algebraic approach which only uses the given graph. Moreover, although the

purely algebraic approach is technically difficult to analyze, we consider the CMG method for

the elliptic eigenvalue problem in the geometric setting. Based on the standard smoothing

property and approximation property, we show that the geometric CMG method converges

uniformly for the model problem, which indirectly provides theoretical justification of the ef-

ficiency of the CMG method. This also shows the potential of our CMG method for solving

other eigenvalue problems from different applications.

The remainder of the paper is organized as follows. In Section 2, we briefly review the Fiedler

vector and introduce our cascadic multigrid method for computing the Fiedler vector of a graph

Laplacian. The cascadic multigrid method for elliptic eigenvalue problems is proposed in Section

3 and its convergence analysis is also provided. Section 4 presents numerical experiments to

support the theoretical results of CMG method for elliptic eigenvalue problems and demonstrate

its efficiency for computing the Fiedler vector of some graph Laplacian problems from real

applications. We conclude the paper in Section 5 by some general remarks on this work and

proposed future work.

2. Cascadic MG Method for Computing the Fiedler Vector

We begin by formally introducing the concept of a graph Laplacian and Fiedler vector. We

start with the concept of a graph. A weighted graph G = (V,E,w) is said to be undirected if

the edges have no orientation. A graph is a multigraph if (i, i) /∈ E for all 1 ≤ i ≤ |V | (|V | is the

number of vertices). For the remainder of this paper, we assume that all graphs are undirected

and multigraphs.

We consider the task of representing a graph in matrix form. One of the most natural

representations is through its Laplacian. The Laplacian of a graph is defined as follows:

Definition 2.1. Let G = (V,E,w) be a weighted graph. We define the Laplacian matrix of G,

Algorithm for Computing the Fiedler Vector of Graph Laplacians 211

denoted L(G) ∈ R
n×n (or just L for short), n = |V |, as follows:

L(G)(i,j) :=

{

dvi , for i = j,

−wi,j , for i 6= j,

where dvi is the degree of vi, and wi,j is the weight of the edge connecting vi and vj .

The Laplacian L(G) is self-adjoint, positive semi-definite, and diagonally dominant. In

addition, the sum of any row (and also, any column) of L is zero. Therefore λ = 0 is an

eigenvalue of L, with corresponding eigenvector 1 = (1, ..., 1)T . Let us order the eigenvalues

of L(G) as follows: 0 = λ1 ≤ λ2 ≤ ... ≤ λn, and denote by ϕ1, ϕ2, ..., ϕn the corresponding

eigenvectors. We have already seen that ϕ1 = α1. We now consider λ2 and ϕ2. This eigenvalue

and eigenvector pair has special significance and, for this reason, are given special names.

Definition 2.2. The algebraic connectivity of a graph G, denoted by a(G), is defined to be

the second smallest eigenvalue of the corresponding Laplacian matrix L(G), with eigenvalues

0 = λ1 ≤ λ2 ≤ ... ≤ λn and eigenvectors ϕ1, ϕ2, ..., ϕn. The eigenvector ϕ2, corresponding to

the eigenvalue a(G), is called the Fiedler vector of G.

The term Fiedler vector comes from the mathematician Miroslav Fiedler, who proved many

results regarding the significance of this eigenvector. His work involving irreducible matrices

and the Fiedler vector can be found in [15, 16].

We now introduce our cascadic MG (CMG) algorithm for computing the Fielder vector.

Our CMG algorithm is a purely algebraic approach, and the multilevel structure is constructed

from the graph directly. Therefore, similar to a standard algebraic MG (AMG) method, the

new algorithm consists of three steps: a setup phase, a solving phase on the coarsest level, and

a cascadic solving phase (also called refinement phase in our paper). The process works as

follows:

• Step 1: Coarsen our graph G0 iteratively to coarse graphs G1, G2, ..., GJ .

Taking inspiration from AMG coarsening and graph matching, we introduce a technique

we call heavy edge coarsening (HEC). At each level i, for the graph Gi with ni vertices,

this coarsening procedure produces aggregates Gm
i , m = 1, 2, · · · , ni+1 and restriction

matrix Ii+1
i ∈ R

ni+1×ni defined by

(Ii+1
i)pq = 1, if q ∈ Gp

i , and (Ii+1
i)pq = 0, if q /∈ Gp

i .

The transpose of the restriction matrix is known as a prolongation. The coarser graph

Gi+1 is defined by designating the aggregates as the vertices of the coarse graph. Two ag-

gregates are connected on this coarse graph if and only if there is an edge from Gi connect-

ing a vertex from one aggregate and with a vertex from the other aggregate. This creates

a multilevel structure of coarse Laplacians L0, L1,, LJ where Li+1 = Ii+1
i Li(Ii+1

i)T . In

general, the choice of aggregates in the coarsening phase of a multilevel algorithm of this

form tends to be the most expensive part of the procedure.

• Step 2: Solve for the Fiedler vector on the coarse graph GJ .

• Step 3: For j = J to j = 1 we prolongate the Fiedler vector from the coarse graph

Gj to the finer graph Gj−1 and use the prolongated vector as an initial guess for a

212 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

simple iterative procedure (such as power iteration). Such steps we call a “refinement”

(or smoothing). We note that since we aim to approximate the Fiedler vector, we need

to keep the iterates orthogonal to the constant vector.

Remark 2.1. In practice the coarse graph tends to be small in size (usually |V | < 100). The

technique implemented on this level is not extremely relevant for single computations of the

vector. However, for applications which may require this eigenvalue computation a large number

of times (such as recursive spectral bisection, for large k), this becomes more of a relevant issue.

The commonly used eigensolver on this coarse level, in the absence of a good intial guess, is

the Lanczos algorithm. However, in our implementation we over-coarsen to |V | < 25 and use

power iteration on a random vector, sampled from a Gaussian distribution.

Traditionally, in the MG method literature, Step 2 and Step 3 together are called the

CMG method. However, in non-spectral methods for graph partitioning, this is not the case,

and for this reason we maintain the three-step structure that is prevalent in the literature. We

present the core of our cascadic eigensolver in Algorithm 2.1.

Algorithm 2.1 Multilevel Cascadic Eigensolver

Input: graph Laplacian matrix L0 ∈ R
n0×n0

Output: approximate Fiedler vector ỹ(0)

Step 1: Setup Phase

set i = 0

while ni > 25

Ii+1
i ← HEC(Li)

Li+1 = Ii+1
i Li(Ii+1

i)T

i = i+ 1

end while

J ← i

Step 2: Coarsest Level Solving Phase

ỹ(J) ← PI(LJ , randn(nJ))

Step 3: Cascadic Refinement Phase

forj = J − 1 to 0 do

ŷ(j) = (Ii+1
i)T ỹ(j+1)

ỹ(j) ← PI(Lj,ŷ(j))

end for

Here, the subroutine HEC and PI are presented later in Algorithms 2.2 and 2.3, respectively.

As mentioned before, because the size of the coarsest graph is very small, and power iteration

is efficient, our focus is on the first and third steps. We will first introduce the heavy edge

coarsening scheme we proposed for the setup phase, and then present our cascadic refinement

scheme.

2.1. Heavy Edge Coarsening

We now consider the coarsening algorithm used for the setup phase. The goal for this step is

to coarsen a graph quickly, while also maintaining some semblance of its structure. In practice,

Algorithm for Computing the Fiedler Vector of Graph Laplacians 213

the coarsening procedure tends to dominate the run time of the multilevel eigensolver. To

increase the efficiency of a coarsening algorithm one needs to make compromises between fast

(with respect to computational time) and optimal (with respect to better representations of the

graph on coarser graphs) coarsening techniques. We propose a new coarsening algorithm which

combines ideas and algorithms described in the literature [1,3,4] and balances between reducing

computational time and providing coarse graphs with good quality. In order to introduce our

coarsening algorithm, we begin by considering matching as a coarsening technique. The formal

concept of a matching is as follows:

Definition 2.3. Let G = (V,E). A matching is a subset E∗ ⊂ E, such that no two elements

of E∗ are incident on the same vertex. A matching E∗ is said to be a maximal matching if

there does not exist an edge ei,j ∈ E\E∗ such that E∗ ∪ {ei,j} is still a matching.

For our purposes, the matching computed at each level is always a maximal matching.

A matching is computed at each level, and the edges in the matching are collapsed to form

the coarser graph. We consider the class of matching algorithms concerned with finding the

matching with the heaviest edge weight. A matching of heavy edges would make an ideal coarse

graph for our multilevel eigenproblem. The reason for this is related to graph partitioning. This

coarsening procedure creates a smaller edge cut on coarse levels for partitions, which results in

smaller edge cuts for the finer graphs. Even though we are not refining partitions, this concept

still applies, due to the close connection between the Fiedler vector and graph partitioning. To

do a matching of heavy edges optimally is rather expensive because it would require searching

for the heaviest weighed edge incident to two unmatched vertices at each step. In practice, the

vertices are usually visited in a random order, and the heaviest weighed incident edge with an

unmatched vertex is chosen. Such a technique produces a less optimal partition, but is much

faster. We adopt a similar procedure in our coarsening algorithm.

However, we choose to perform a more aggressive coarsening procedure, rather than match-

ing, because it reduces the number of levels in the multilevel scheme. In addition, when con-

sidering using heavy edge schemes, an aggressive coarsening procedure (see Algorithm 2.2) is

significantly easier to implement than its matching counterpart because we consider mapping

each vertex to a vertex incident with it with heaviest edge, rather than picking the heaviest

edge with an unmatched vertex.

We visit the vertices in a random order. At each vertex we visit, we check if it has been

mapped to some aggregate. If the vertex is unmapped, we map the vertex to the aggregate

containing the adjacent vertex with the heaviest connecting edge. If the vertex already belongs

to an aggregate, we skip it and continue to the next vertex. We finish when all vertices have

been visited and belong to some aggregate. In general, this will not result in a matching.

We call this technique heavy edge coarsening (HEC) and for the specific details regarding its

implementation, we refer to Algorithm 2.2.

Remark 2.2. As an example, for a graph Laplacian corresponding to an anisotropic problem,

one would end up with aggregates that contains vertices in lines pointing in the “strong”

direction. This procedure would effectively only coarsen in the “strong” direction initially.

The HEC procedure proves to be a fast and efficient means of coarsening. The structure of

the finer graph is well represented, making the refinement process of power iteration converge

quickly. In addition, one of the biggest benefits of HEC is the relatively small number of coarse

levels required. We will introduce this concept, in the form of a lemma.

214 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

Lemma 2.1. Let Gi = (Vi, Ei) be a connected graph with ni vertices. Let nHEC
i+1 be the number

of aggregates formed by heavy edge coarsening, and nM
i+1 be the number of aggregates formed by

matching. Define the coarsening rate kiHEC = nHEC
i+1 /ni and kiM = nM

i+1/ni, respectively, Then

we have 1/ni ≤ kiHEC ≤ 0.5 and 0.5 ≤ kiM ≤ 1.

Proof. From the definition of a matching, we have that nM
i+1 cannot be less than half of ni.

For the bounds on kiHEC , we note that for our HEC algorithm, every node in Vi is mapped

to another node, or has been mapped to, which implies that each aggregation has at least two

vertices, i.e. the average ni/n
HEC
i+1 is bigger than or equal to 2. Therefore, nHEC

i+1 is at most half

of ni. The lower bound results from taking a HEC procedure on a graph Gi such that Gi+1 is

a single node. �

Algorithm 2.2 Heavy Edge Coarsening (HEC)

Input: graph Laplacian matrix Li ∈ R
ni×ni

Output: restriction matrix Ii+1
i

c← 0

p← randperm(ni)

q ← zeros(ni, 1)

for i = 1 to ni do

if q(p(i)) = 0

m← argmin(L(:, p(i)))

if q(m) = 0

c← c+ 1

q(m) = c

q(p(i)) = c

else

q(p(i)) = q(m)

end if

end if

end for

Ii+1
i ← zeros(c, ni)

for i = 1 to ni

Ii+1
i (q(i), i) = 1

end for

We have given a bound for the value of kHEC (we drop the superscript i for simplicity).

Given below in Table 2.1 are samples of what values kHEC takes in practice for different graphs.

As expected, the values taken in practice are significantly below the given bound of 0.5.

What remains to be explored is the properties of the restiction matrix Ii+1
i . The most

important fact that we require is that the coarse matrix created by the restriction matrix is

still a Laplacian matrix of the coarse graph. In addition, we want to inspect whether or not

the constant eigenvector 1 = (1, ..., 1)T is preserved under restrictions and prolongations. We

also consider issues of orthogonal solutions with respect to the refinement procedure. Those

Algorithm for Computing the Fiedler Vector of Graph Laplacians 215

Table 2.1: Sample values of kHEC.

Graph Sample k0HEC Value
144 0.1893
598a 0.2024
auto 0.1742

properties are summarized in the following proposition (see also [17, Theorem 3.6] for such

results).

Proposition 2.1. Let Ii+1
i ∈ R

ni+1×ni be a restriction matrix defined by HEC. Then we have

the following:

1. (Ii+1
i)T1i+1 = 1i. That is, the eigenvector 1 is preserved under refinement.

2. If Li is a Laplacian matrix, then Li+1 = Ii+1
i Li(Ii+1

i)T is also a Lapacian matrix. In

particular, Li+11i+1 = 0.

3. Let u ∈ 1⊥ = {u|(u,1) = 0} ⊂ R
ni . Then Ii+1

i u ∈ 1⊥ ⊂ R
ni+1 . However, in general,

(Iii−1)
Tu /∈ 1⊥ ⊂ R

ni−1 .

Proof. We begin with (1). This follows from the fact that each vertex in Vi is mapped to

only one vertex in Vi+1. However, Ii+1
i 1i 6= 1i+1 . This is expected, as the number of vertices

in Vi mapped to a given vertex vj ∈ Vi+1 varies.

To prove (2), we need to show that Li+1 is still symmetric, with positive diagonal and non-

positive offdiagonal, with Li+11i+1 = 0. We begin by decomposing Li into its degree matrix

Di and adjacency matrix Ai. This gives us

Li+1 = Ii+1
i Di(Ii+1

i)T − Ii+1
i Ai(Ii+1

i)T .

Ii+1
i Di(Ii+1

i)T is still a degree matrix, and Ii+1
i Ai(Ii+1

i)T an adjacency matrix. We show that

Li+1 is a Laplacian by taking

Li+11i+1 = Ii+1
i Li(Ii+1

i)T1i+1 = Ii+1
i Li1i = 0.

Part (3) of the Proposition can be shown as follows. Let u ∈ 1⊥ ⊂ R
ni . We have

(Ii+1
i u,1i+1) = (u, (Ii+1

i)T1i+1) = (u,1i) = 0.

Therefore, Ii+1
i u ∈ 1⊥ ⊂ R

ni+1 . Looking at (Iii−1)
Tu, we see

((Iii−1)
Tu,1i−1) = (u, Iii−11

i−1) 6= (u,1i) = 0,

since Iii−11
i−1 6= 1i. �

2.2. Refinement (Smoothing) Strategies

Given an approximate Fiedler vector y(i+1) on a coarse graph Gi+1, we aim to find an

optimal manner to project this vector back to the finer graph Gi and refine it to an approximate

Fiedler vector y(i) on Gi. We begin by considering the projection problem. The most natural

way to project y(i+1) to Gi is to use the restriction matrix Ii+1
i obtained from coarsening,

216 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

define our prolongation matrix to be (Ii+1
i)T , and let the initial approximation be ỹ(i) =

(Ii+1
i)T y(i+1). However, we have to concern ourselves with orthogonality to the eigenvector

1. From Proposition 2.1, we have that (ỹ(i),1i) 6= 0. Therefore, before we can perform any

sort of eigenvalue refinement procedure, we require our inital vector to be in the subspace

1⊥ = {u|(u,1) = 0}. This can be accomplished by one iteration of Gram-Schmidt. From here,

the orthogonality will be approximately maintained, since 1⊥ is L-invariant.

Given an approximation ỹ(i), we can refine it in a number of ways. We consider power

iteration as a refinement scheme in our CMG algorithm because of its simplicity. In this way

we take advantage of the sparsity of our Laplacian.

Because the Fiedler vector corresponds to the second smallest eigenvalue of the graph Lapla-

cian, we cannot apply the power iteration directly. Therefore, we compute a Gershgorin bound

on the eigenvalues of a Laplacian L by considering g = ‖L‖ℓ1. From the Gershgorin circle The-

orem and properties of the Laplacian, we have that all the eigenvalues of gI − L are positive,

with eigenvalues g−λ1, g−λ2, ..., g−λn. The eigenvectors obviously remain unchanged. In this

way it suffices to perform power iteration on gI − L, coupled with an intial orthogonalization

to 1. We note that 1⊥ is also invariant under gI−L. This variant of power iteration is detailed

in Algorithm 2.3.

We proceed by examining the convergence for power iteration. Let u0 denote our initial

guess, and uk represent the normalized vector resulting from k iterations. For our algorithm,

the stopping criterion is given by (uk, uk−1) > 1− δ, for some given tolerance δ. We note that

this is equivalent to ||uk − uk−1||2 < 2δ. We recall the following result, with respect to power

iteration on an arbitrary symmetric matrix.

Theorem 2.1. Let A be a symmetric matrix with eigenvalues λ1 > λ2 ≥ ... ≥ λn ≥ 0 and

corresponding eigenvectors ϕ1, ϕ2, ..., ϕn. Then power iteration, with intial guess u0, (u0, ϕ1) 6=

0, has convergence rate given by

sin∠(uk, ϕ1) <

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

tan∠(u0, ϕ1),

where ∠(u, v) is the angle between the subspaces spanned by u and v.

A proof of this result can be found in [18]. We see that the number of iterations required

depends on the eigenvalue gap, the quality of the initial guess in our multilevel structure,

as well as the chosen tolerance. For general graphs it is hard to obtain better estimates for

the power iteration portion of the cascadic algorithm. This stems mainly from the fact that

the eigenvalues of a general graph does not follow any set spacing or structure, and that our

aggregation procedure is random in nature, making an estimate of the quality of the initial

approximation extremely tough in practice. This limits our ability to give rigorous theoretical

results for our algorithm in general. In Section 3 we will give results for our cascadic eigenvalue

algorithm for the case of graphs resulting from elliptic PDE discretizations, with geometric

coarsening as the cascadic coarsening procedure and a fixed number of power iteration steps

at each level. These simplifications remove the barriers that we currently face for analysis.

However, we will give numerical justification that these results are robust to general graphs

with HEC as the coarsening procedure.

Algorithm for Computing the Fiedler Vector of Graph Laplacians 217

Algorithm 2.3 Power Iteration (PI)

Input: graph Laplacian matrix L ∈ R
n×n, initial guess ỹ0

Output: approximate Fiedler vector ỹ

g = maxi

∑

1≤j≤n |li,j |

Bg = gI − L

u = ỹ0 − 1
T ỹ0

n ỹ0

u ← u
‖u‖

v ← zeros(n, 1)

while uTv < 1− tol

v ← u

u = Bgv

u ← u
‖u‖

end while

ỹ = u

3. Convergence Analysis of CMG for Elliptic Eigenvalue Problems

In Section 2, we introduced the CMG method for computing the Fiedler vector of a graph

Laplacian. However, we used a purely algebraic coarsening strategy (see Section 2.1) to con-

struct the hierarchical structure; hence, similar to the AMG method for the Poisson problem,

the convergence analysis for a purely algebraic CMG method is difficult. In order to illustrate

and theoretically justify the convergence of the proposed CMG method, we discuss the geo-

metric CMG (GCMG) method for the elliptic eigenvalue problem. As a model which shares

a great deal of properties with the graph Laplacian eigenproblem, we consider the following

elliptic eigenvalue problem with Neumann boundary conditions,

−∆ϕ = λϕ, on Ω,
∂ϕ

∂n
= 0, on ∂Ω (3.1)

where Ω ∈ R
d is a polygonal Lipschitz domain. We only consider the two- and three- dimen-

sional case to illustrate the theoretical bounds that can be obtained for the cascadic multilevel

algorithm. However, the GCMG method we discussed here can be naturally applied for higher

dimentional cases. Using the standard Sobolev space H1(Ω), we consider the weak formulation

of (3.1) as follows: find (λ, ϕ) ∈ R×H1(Ω) such that

a(ϕ, v) = λ(ϕ, v), ∀ v ∈ H1(Ω), (3.2)

where the bilinear form a(u, v) = (∇u,∇v), and (·, ·) is the standard L2 inner product. Here, the

bounded symmetric bilinear form a(·, ·) is coercive on the quotient space H1(Ω), and, therefore,

induces an energy-norm as follows:

‖u‖2a = a(u, u), ∀ u ∈ H1(Ω)\R. (3.3)

Moreover, we denote the L2-norm by ‖ · ‖ as usual. Similar to the eigenvalues for the graph

Laplacian, λ = 0 is also an eigenvalue of the eigenvalue problem (3.2), We can order the

eigenvalues as follows: 0 = λ(1) ≤ λ(2) ≤ ... and denote by ϕ(1), ϕ(2), ... the corresponding

eigenfunctions. Again, we are interested in approximating the second smallest eigenvalue of

218 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

(3.2) and its corresponding eigenfunction space.

Given a nested family of quasi-uniform triangulations {Γj}
J
j=0, namely,

1

c
2j−J ≤ hj = max

T∈Γj

diam(T) ≤ c2j−J ,

the spaces of linear finite elements are

Vj =
{

u ∈ C(Ω) : u|T ∈ P1(T), ∀ T ∈ Γj

}

,

where P1(T) denotes the linear functions on the triangle T . We have

VJ ⊂ VJ−1 ⊂ · · · ⊂ V0 ⊂ H1(Ω).

The finite element approximations of (3.2) on each level are as follows: find (λj , ϕj) ∈ R × Vj

such that

a(ϕj , vj) = λj(ϕj , vj), ∀ vj ∈ Vj . (3.4)

We can order the eigenvalues as follows: 0 = λ
(1)
j ≤ λ

(2)
j ≤ · · · ≤ λ

(Nj)
j and denote by

ϕ(1), ϕ(2), ...ϕ(Nj) the corresponding eigenfunctions. Again, we are interested in approximating

the second smallest eigenpair on the finest level. Moreover, we can define an operator Aj by

a(uj , vj) = (Ajuj , vj), ∀uj , vj ∈ Vj .

We assume the elliptic eigenvalue problem has H1+α-regularity, i.e., the eigenvalue function

ϕ ∈ H1+α for some 0 < α ≤ 1. Then we have the following error estimates regarding the

standard finite element approximation of the elliptic eigenvalue problem, taken from the work

of Babuška and Osborn [19].

Lemma 3.1. Assume that (λh, ϕh) ∈ (R×Vh) is a finite element approximation of (3.2). Then

we have

(i) |λ− λh| ≤ Ch2α,

(ii) there exists an eigenfunction ϕ corresponding to λ, such that

‖ϕ− ϕh‖a ≤ Chα, (3.5)

where C is a constant that does not depend on the mesh size.

Now we introduce the Ritz projection on level j by a(Pju, vj) = a(u, vj), ∀vj ∈ Vj . We

assume the eigenvalue λ(l) we want to approximate has multiplicity k, i.e. λ(l) = λ(l+1) =

· · · = λ(l+k−1) and there are k corresponding eigenfunctions ϕ(l), ϕ(l+1), ϕ(l+k−1), then on level

j, there are k approximate eigenpairs (λ
(l+i)
j , ϕ

(l+i)
j), i = 0, · · · k − 1, such that

λ
(l)
j ≤ λ

(l+1)
j ≤ · · · ≤ λ

(l+k−1)
j .

Let Qj denote the L
2-projection onto span{ϕ

(l)
j , ϕ

(l+1)
j , · · · , ϕ

(l+k−1)
j } and define Λj := Qj ◦Pj .

Then for an eigenfunction ϕ(l+i), i = 0, 1, · · · , k−1, Λjϕ
(l+i) ∈ span{ϕ

(l)
j , ϕ

(l+1)
j , · · · , ϕ

(l+k−1)
j }

is regarded as its approximation. The following best-approximation result of Λjϕ
(l+i) can be

found in [20]. For the simplicity of the presentation, we omit the superscript (l + i).

Algorithm for Computing the Fiedler Vector of Graph Laplacians 219

Lemma 3.2. Assume that hj is sufficiently small and the elliptic eigenvalue problem has H1+α-

regularity, then for any eigenpair (λ, ϕ) with ‖ϕ‖ = 1, we have

‖ϕ− Λjϕ‖a ≤ Chα
j , (3.6)

where C is a constant that does not depend on the mesh size.

Next, we will present several results related to the approximation property of finite element

approximate eigenfunctions between two successive levels j and j+1. For the sake of simplicity,

we will use script h to denote level j and script H to denote level j + 1. Moreover, we denote

the mesh size hj by h and hj+1 by H . Considering the eigenvalue problem on level j + 1 as a

finite element approximation of the eigenvalue problem on level j, we have the following lemma

regarding the approximation in the energy norm.

Lemma 3.3. Let {(λ
(l+i)
h , ϕ

(l+i)
h)}i=k−1

i=0 and {(λ
(l+i)
H , ϕ

(l+i)
H)}i=k−1

i=0 be approximate eigenpairs

of the eigenvalue λ(l) with multiplicity k. For sufficiently small H and for any wh ∈ span{ϕ
(l)
h , ϕ

(l+1)
h ,

· · · , ϕ
(l+k−1)
h } we have

‖wh − ΛHwh‖a ≤ CHα, (3.7)

Proof. Setting wh =
∑k−1

i=0 βiϕ
(l+i)
h we have,

‖wh − ΛHwh‖a

= ‖

k−1
∑

i=0

βi

(

ϕ
(l+i)
h − ΛHϕ

(l+i)
h

)

‖a ≤

k−1
∑

i=0

|βi|‖
(

ϕ
(l+i)
h − ΛHϕ

(l+i)
h

)

‖a

≤ CHα.

This completes the proof. �

The next lemma provides an estimate on the error of approximation (wh−ΛHwh) in the L2

norm. In the proof, we use a separation bound given in Boffi [21], namely, that for sufficiently

small H the following estimate holds:

|λ
(l)
h |

|λ
(l)
h − λ

(i)
H |
≤ dl <∞, for all i 6= l, l+ 1, ..., l+ k − 1. (3.8)

The L2 estimate is then as follows.

Lemma 3.4. Let {(λ
(l+i)
h , ϕ

(l+i)
h)}i=k−1

i=0 and {(λ
(l+i)
H , ϕ

(l+i)
H)}i=k−1

i=0 be approximate eigenpairs

of the eigenvalue λ(l) with multiplicity k. For sufficiently small H and for any wh ∈ span{ϕ
(l)
h , ϕ

(l+1)
h ,

· · · , ϕ
(l+k−1)
h }, we have

‖(I − ΛH)wh‖ ≤ C‖(I − PH)wh‖, (3.9)

where C is a constant that does not depend on the mesh size.

Proof. Let us first set wh =
∑l+k−1

j=l βjϕ
(j)
h . Because PHwh ∈ VH , we have PHwh =

∑NH

i=1 αiϕ
(i)
H where αi = (PHwh, ϕ

(i)
H). Since by the definition of QH we have that QHϕ

(l+i)
H =

ϕ
(l+i)
H for i = 0, . . . , k − 1, it is straightforward to calculate that

PHwh − ΛHwh =
∑

i6=l,l+1,··· ,l+k−1

αiϕ
(i)
H .

220 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

Next, using the relation

λ
(i)
H (PHϕ

(j)
h , ϕ

(i)
H) = a(PHϕ

(j)
h , ϕ

(i)
H) = a(ϕ

(j)
h , ϕ

(i)
H) = λ

(j)
h (ϕ

(j)
h , ϕ

(i)
H),

we obtain that

(λ
(i)
H − λ

(j)
h)(PHϕ

(j)
h , ϕ

(i)
H) = λ

(j)
h (ϕ

(j)
h − PHϕ

(j)
h , ϕ

(i)
H).

Therefore,

‖PHwh − ΛHwh‖
2 = (PHwh, PHwh − ΛHwh) =

∑

i6=l,l+1,··· ,l+k−1

(PHwh, ϕ
(i)
H)2

=
∑

i6=l,l+1,··· ,l+k−1





l+k−1
∑

j=l

βj(PHϕ
(j)
h , ϕ

(i)
H)





2

=
∑

i6=l,l+1,··· ,l+k−1





l+k−1
∑

j=l

βj
λ
(j)
h

λ
(i)
H − λ

(j)
h

(ϕ
(j)
h − PHϕ

(j)
h , ϕ

(i)
H)





2

≤ d2l





∑

i6=l,l+1,··· ,l+k−1

(wh − PHwh, ϕ
(i)
H)2





= d2j‖wh − PHwh‖
2.

Moreover, we have

‖wh − ΛHwh‖ ≤ ‖wh − PHwh‖+ ‖PHwh − ΛHwh‖ ≤ (1 + dl)‖(I − PH)wh‖,

which leads to (3.9) with C = 1 + dl. �

Based on Lemma 3.4 and the interpolation argument [22], we have the following approxi-

mation property for the eigenvalue problem.

Lemma 3.5. Let {(λ
(l+i)
h , ϕ

(l+i)
h)}i=k−1

i=0 and {(λ
(l+i)
H , ϕ

(l+i)
H)}i=k−1

i=0 be approximate eigenpairs

of the eigenvalue λ(l) with multiplicity k. Assuming that H is sufficiently small, for any wh ∈

span{ϕ
(l)
h , ϕ

(l+1)
h , · · · , ϕ

(l+k−1)
h }, we have

‖(I − ΛH)wh‖H1−α ≤ CHα‖(I − ΛH)wh‖a (3.10)

where C is a constant independent of the mesh size.

Proof. From Lemma 3.4, we have

‖(I − ΛH)wh‖ ≤ C‖(I − PH)wh‖ = C‖(I − PH)[(I − PH)wh]‖

≤ CH‖(I − PH)wh‖a ≤ CH‖(I − ΛH)wh‖a,

where the last inequality follows from noting that ‖(I − PH)wh‖a = infv∈VH ‖wh − v‖a. By an

interpolation argument, the desired result follows. �

Based on the nested spaces VJ ⊂ VJ−1 ⊂ · · · ⊂ V0, the GCMG method for eigenvalue

problems seeks to solve the eigenvalue problem exactly on the coarse grid VJ , and interpolate

and smooth the approximation back to the fine grid V0. In this section, we consider the GCMG

Algorithm for Computing the Fiedler Vector of Graph Laplacians 221

method, and therefore, the geometric prolongation and restriction are used in our algorithm,

and will be omitted as usual. Our cascadic Algorithm 2.1 can be framed as follows:

Algorithm 3.1 Geometric Cascadic Multigrid Method for Elliptic Eigenvalue Problem

if j = J (coarsest level)

solve a(ϕJ , vJ) = λ(ϕJ , vJ) exactly, and let uJ := ϕ
(l)
J

else

uj = (I − ωjAj)
kjuj+1, where ωj = ‖Aj‖

−1
∞ . (with appropriate scaling)

λj =
a(uj ,uj)
(uj ,uj)

end if

Remark 3.1. We present the algorithm for just computing one approximate eigenpair. How-

ever, we can easily extend the algorithm to compute several approximate eigenpairs by starting

with k approximate eigenpairs on the coarest level and then, on each level, after smoothing each

approximate eigenfunction, we can orthogonalize them and compute corresponding Rayleigh

quotients.

This procedure is only performed once and results in the approximation u0 ∈ V0. Next,

we consider the uniform convergence of the proposed GCMG method (Algorithm 3.1). Our

analysis will follow the standard convergence analysis for the CMG method for elliptic partial

differential equations. We will first present a two-level error estimate on two successive levels

j + 1 and j, and then generalize it to the multilevel case later. Again, we use h to denote j +1

and H to denote j for the sake of simplicity. We begin by recalling the following lemma.

Lemma 3.6. For any k ∈ Z+, we have maxt∈[0,1] t(1 − t)k < 1
k+1 .

This is a simple result, and is used often in multigrid literature. Denoting by Sh = I−ωhAh

the error propagation operator associated with the Richardson smoother, we have the following

smoothing property.

Lemma 3.7. Let ω = ||Ah||
−1
∞ and k be the number of smoothing steps. Then the following

estimate holds

‖Sk
hvh‖a ≤ C

h−α

kα/2
‖vh‖H1−α , ∀ vh ∈ Vh\R. (3.11)

Proof. Recall that, by the properties of a graph Laplacian, Ah is Hermitian and positive

semi-definite, and, moreover, Ah is positive definite on the subspace {u | (u,1) = 0}. Hence,

||Sν
hu||

2
a =

(

(I − ωAh)
νu, (I − ωAh)

νu
)

a

=
(

Ah(I − ωAh)
νu, (I − ωAh)

νu
)

= ω−1
(

ωAh(I − ωAh)
2νu, u

)

.

Noting that the spectral radius ρ(ωAh) ≤ 1, ω−1
h h−2 and making use of Lemma 3.6, we

obtain

||Sν
hu||

2
a . h−2η0(2ν)||u||

2.

This gives us

‖Sk
hvh‖a ≤ C

h−1

k1/2
‖vh‖, ∀ vh ∈ Vh\R.

222 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

Recalling that Sh is a contraction, and, hence, ‖Sk
hvh‖a ≤ C‖vh‖a, for all vh ∈ Vh, the desired

result follows by an interpolation argument.

We are now able to show the uniform convergence of our GCMG Algorithm 3.1 under

suitable conditions.

Lemma 3.8. Let {(λ
(l+i)
h , ϕ

(l+i)
h)}i=k−1

i=0 and {(λ
(l+i)
H , ϕ

(l+i)
H)}i=k−1

i=0 be approximate eigenpairs

of the eigenvalue λ(l) with multiplicity k and uh be computed by Algorithm 3.1. Assum-

ing that H is sufficiently small, there exist ϕh ∈ span{ϕ
(l)
h , ϕ

(l+1)
h , · · · , ϕ

(l+k−1)
h } and ϕH ∈

span{ϕ
(l)
H , ϕ

(l+1)
H ,

· · · , ϕ
(l+k−1)
H } such that the error of the two-level GCMG Algorithm 3.1 with the Richardson

smoother for the eigenvector can be estimated by

‖uh − ϕh‖a ≤ C
hα

kα/2
+ ‖uH − ϕH‖a, (3.12)

where k is the number of smoothing steps and C is a constant that does not depends on mesh

size.

Proof. Denote eH = uH−ϕ
H , we have uH = ϕH+eH . Let ϕ̄h ∈ span{ϕ

(l)
h , ϕ

(l+1)
h , · · · , ϕ

(l+k−1)
h }

satisfy ϕH = ΛH ϕ̄h, then we have

uH = ϕ̄h + (ϕH − ϕ̄h) + eH .

Let ϕ̄h =
∑l+k−1

i=l βiϕ
(i)
h . We have

uh

= Sk
hϕ̄

h + Sk
h(ϕ

H − ϕ̄h) + Sk
heH

=
l+k−1
∑

i=l

βi

(

ω−1
h − λ

(i)
h

ω−1
h

)k

ϕ
(i)
h + Sk

h(ϕ
H − ϕ̄h) + Sk

heH .

Denote ϕh :=
∑l+k−1

i=l βi

(

ω−1
h −λ

(i)
h

ω−1
h

)k

ϕ
(i)
h ∈ span{ϕ

(l)
h , ϕ

(l+1)
h , · · · , ϕ

(l+k−1)
h }, we have

eh := uh − ϕh = Sk
h(ϕ

H − ϕ̄h) + Sk
heH .

Therefore,

‖eh‖a ≤ ‖S
k
h(ϕ

H − ϕ̄h)‖a + ‖S
k
heH‖a

≤ C
h−α

kα/2
‖ϕH − ϕ̄h‖H1−α + ‖eH‖a (from Lemma 3.7)

≤ C
1

kα/2
‖ΛHϕ̄h − ϕ̄h‖a + ‖eH‖a (from Lemma 3.5)

≤ C
Hα

kα/2
+ ‖eH‖a (from Lemma 3.2).

Finally, (3.12) follows by noting that 2h/c ≤ H ≤ c2h. �

By recursively applying the two-level result Lemma 3.8 on two successive levels j + 1 and

j, we can derive the error estimate of the multilevel GCMG. From now on, we use the script j

Algorithm for Computing the Fiedler Vector of Graph Laplacians 223

again to denote the index of the level. Because 2jh0/C ≤ hj ≤ C2jh0, we consider kj = βjk0
for some fixed β > 0. We have the following error estimate.

Theorem 3.1. Let {λ
(l+i)
0 ϕ

(l+i)
0 }k−1

i=0 be approximate eigenpairs of the eigenvalue λ(l) with mul-

tiplicity k and u0 be computed by Algorithm 3.1. Let the number of smoothing steps on level j be

given by kj = βjk0. If hJ is sufficiently small, then there exists ϕ0 ∈ span{ϕ
(l)
0 , ϕ

(l+1)
0 , · · · , ϕ

(l=k−1)
0 }

such that the error of the GCMG method for the eigenvector can be estimated by

‖u0 − ϕ0‖a ≤







C 1
1−(4/β)α/2

hα
0

k
α/2
0

, if β > 4,

CJ
hα
0

k
α/2
0

, if β = 4.
(3.13)

and for the eigenvalue, by

|λ0 − λ0| ≤







C(1
1−(4/β)α/2)

2 h2α
0

kα
0
, if β > 4,

CJ2 h2α
0

kα
0
, if β = 4,

(3.14)

where C denotes a constant that does not depend on the mesh size.

Proof. Using the two level result from Lemma 3.8,

‖uj+1 − ϕj+1‖a ≤ C
hα
j

k
α/2
j

+ ‖uj − ϕj‖a,

summing from j = J − 1 to 0, and noting that eJ = 0, we have

‖u0 − ϕ0‖a ≤ C

J−1
∑

j=0

hα
j

k
α/2
j

.

Moreover, using the identity

λ0 − λ0 =
a(u0 − ϕ0, u0 − ϕ0)

(u0, u0)
− λ0 (u0 − ϕ0, u0 − ϕ0)

(u0, u0)
,

we have

|λ0 − λ0| ≤ C





J−1
∑

j=0

hα
j

k
α/2
j





2

.

The estimates follow directly from the following estimation

J−1
∑

j=0

hα
j

k
α/2
j

≤ C
hα
0

k
α/2
0

J−1
∑

j=0

(

4

β

)
jα
2

.

This completes the proof of the theorem. �

What remains to be considered is the computational complexity. Assuming still that kj =

βjk0 for some fixed β > 0, we have the following corollary.

Corollary 3.1. Let the number of smoothing steps on level j be given by kj = βjk0, then the

224 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

computational cost of the GCMG method is proportional to

J
∑

j=1

kjnj ≤

{

C 1
1−β/2d

k0n0, if β < 2d,

CJk0n0, if β = 2d,

where d denotes the dimension and C denotes a constant that does not depend on the mesh size.

Proof. The result follows naturally from noting that 2dj/c ≤ nj ≤ c2dj and observing that

J
∑

j=1

kjnj ≤ ck0n0

J−1
∑

j=0

(β

2d
)j

We see that if we set β to be 4 < β < 2d, our results regarding accuracy and complexity do

not contradict. Therefore, we see that for d = 3 our algorithm is optimal, and is sub-optimal

for d = 2.

4. Numerical Results

We now perform numerical tests on a variety of different graphs (listed in Table 4.1), taken

from the University of Florida Sparse Matrix Collection [23]. All of our computations were per-

formed on a MacBook Pro PC with a 2.9 GHz Intel Core i7 Processor with 8 GB RAM. All the

algorithms are implemented in the FiedComp package1) , written in MATLAB. We consider the

performance of our eigensolver against the Locally Optimal Preconditioned Conjugate Gradient

Method (LOPCG), with Lean Algebraic Multigrid (LAMG) as a preconditioner. The LOPCG

Method is part of the MATLAB BLOPEX Package by Knyazev, and is described in [6, Algo-

rithm 5.1]. The LAMG preconditioner is a MATLAB package by Livine, and is described in

Livine and Brandt’s paper [8]. We use a residual tolerance of .05 for the LOPCG, and an .1

tolerance for the LAMG preconditioner. For our Cascadic Eigensolver, we use the tolerance

(uk, uk−1) > 1 − 10−8. In Table 4.1 we report the run times in seconds for each graph, along

with a measure of the error in the approximate eigenvector, given by ‖(L − r̃I)ỹ‖, where ỹ is

the approximate eigenvector, and r̃ is the corresponding approximate eigenvalue. Note that our

eigensolver consistently outperforms the Locally Optimal Preconditioned Conjugate Gradient

Method with LAMG as a preconditioner.

We consider the number of steps of power iteration that we typically require for a given

graph. We use the two dimensional Laplacian with N = 103 as an example. We implement our

eigensolver, with our given tolerance and report the number of subgraphs we have, the size of

each subgraph, and the number of iterations required on each level in Table 4.2.

We note that we observe a similar smoothing structure on each level to the condition kj =

βjk0 we assumed for the proof of Theorem 3.1. Also, we note that the coarsening appears to

occur at roughly the same rate on each level, suggesting that although our heavy edge coarsening

algorithm is random in nature, it typically maintains similar coarsening rates for a given graph

structure. These two observations help give numerical evidence that the theoretical results from

Section 3 are robust to general graphs with heavy edge coarsening as the restriction operator.

Finally, we give an example of the application of the GCMG algorithm to the two-dimensional

Laplacian, to give some numerical results to support the theoretical bounds we obtained in Sec-

tion 3. We choose N = 1025 and take β = 4, k0 = 1. We give the error with respect to the

difference in eigenvalue, taking r̃ = ỹTLỹ. Our results are given in Table 4.3.

1) http://www.personal.psu.edu/jcu5018

Algorithm for Computing the Fiedler Vector of Graph Laplacians 225

Table 4.1: Numerical Tests.

LOPCG w/ LAMG CMG Eigensolver

Graph Vertices Edges Run Time Error Run Time Error

144 144649 1074393 6.254 5.0e-02 1.911 6.9e-03
598a 110971 741934 4.884 1.6e-02 1.414 6.8e-03
auto 448695 3314611 13.34 3.9e-02 6.050 9.2e-03
brack2 62631 366559 2.726 8.7e-03 0.780 8.3e-03
cs4 22499 87716 1.194 2.0e-02 0.271 1.1e-03
cti 16840 96464 1.236 4.5e-02 0.283 1.7e-03
delaunayn15 32768 196548 1.614 9.3e-03 0.389 4.8e-03
m14b 214765 3358036 9.210 2.4e-02 2.848 1.0e-02
PGPgiantc. 10680 48680 0.873 2.4e-02 0.201 5.8e-02
wing 62032 243088 2.232 1.2e-02 0.741 1.1e-03

Table 4.2: Graph Size and Number of Smoothing Steps by Level for 2D Laplacian, N = 100.

i 0 1 2 3 4 5 6

ni 10000 3653 1195 384 137 46 14

ki 3 7 10 17 26 44 -

Table 4.3: Errors on Sublevels for GCMG for 2D Laplacian, N = 1025.

i 0 1 2 3 4

|λ
(2)
i

− r̃0| 3.0369e-09 1.1189e-08 4.0447e-08 1.8336e-07 1.8068e-06

|λ
(2)
i

− r̃ki | 3.0198e-09 1.0826e-08 3.4420e-08 8.1745e-08 8.2292e-08

5. Conclusion

In this paper, we have presented a fast algorithm for approximately computing the Fiedler

vector of a graph Laplacian. We introduced a new coarsening procedure, called heavy edge

coarsening. We note the speed with which the procedure coarsens, and the quality of coarse level

graphs. The main contribution to the speed of the algorithm was a result of the implementation

of the heavy edge coarsening procedure.

In addition to being a fast coarsening procedure, the heavy edge coarsening algorithm is

also easier to implement than other techniques of a similar type, such as heavy edge matching

and its variants (HEM and HEM*) [3, 4]. As a purely algebraic eigensolver, the combination

of heavy edge coarsening and power iteration in a cascadic multigrid method provide a fast

algorithm for finding the Fiedler vector of graph Laplacians. Numerical results show that our

eigensolver is efficient and robust for different graphs.

Similar to the AMG method, the algebraic CMG eigensolver is difficult to analyze. There-

fore, under a standard geometric setting, we consider the GCMG eigensolver and show that

our cascadic eigensolver with power iteration as a smoother to be uniformly convergent for

an elliptic eigenvalue problem discretized by standard linear finite element methods. In the

three-dimensional case, it is optimal in terms of accuracy and computational complexity.

We believe that in future work convergence for the cascadic multigrid eigensolver could be

shown in more general settings. In addition, the use of the heavy edge coarsening procedure

for non-spectral methods is another avenue of research that could be explored in the future.

Acknowledgments. The research of Jinchao Xu is partially supported by NSF DMS-1217142

and NSFC 41230210. The research of Ludmil Zikatanov was supported in part by NSF DMS-

1217142 and NSF DMS-1418843.

226 J.C. URSCHEL, X. HU, J. XU, L.T. ZIKATANOV

References

[1] Y. Koren, L. Carmel and D. Harel, Drawing huge graphs by algebraic multigrid optimization,

Multiscale Model. Simul., 1:4 (2003), 645–673 (electronic).

[2] S.T. Barnard and H.D. Simon, Fast multilevel implementation of recursive spectral bisection for

partitioning unstructured problems, Concurrency: Practice and Experience, 6:2 (1994), 101–117.

[3] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM J. Sci. Comput., 20:1 (1998), 359–392 (electronic).

[4] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of

Parallel and Distributed Computing, 48:1 (1998), 96 – 129.

[5] G.L.G. Sleijpen and H.A.Van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue

problems, SIAM Rev., 42:2 (2000), 267–293 (electronic).

[6] A.V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block precondi-

tioned conjugate gradient method, SIAM J. Sci. Comput., 23:2 (2001), 517–541 (electronic).

[7] I. Lashuk, M. Argentati, E. Ovtchinnikov and A. Knyazev, Preconditioned eigensolver LOBPCG

in hypre and PETSc, Domain decomposition methods in science and engineering XVI, volume 55

of Lect. Notes Comput. Sci. Eng., pages 635–642, Springer, Berlin, 2007.

[8] O.E. Livne and A. Brandt, Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver,

SIAM J. Sci. Comput., 34:4 (2012), B499–B522.

[9] F.A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems, Numer.

Math., 75:2 (1996), 135–152.

[10] F.A. Bornemann and P. Deuflhard, Cascadic multigrid methods, Domain decomposition methods

in sciences and engineering (Beijing, 1995), pages 205–212, Wiley, Chichester, 1997.

[11] D. Braess, P. Deuflhard and K. Lipnikov, A subspace cascadic multigrid method for mortar

elements, Computing, 69:3 (2002), 205–225.

[12] V. Shăıdurov, The convergence of the cascadic conjugate-gradient method under a deficient

regularity, Problems and methods in mathematical physics (Chemnitz, 1993), volume 134 of

Teubner-Texte Math., pages 185–194, Teubner, Stuttgart, 1994.

[13] V.V. Shaidurov, Cascadic algorithm with nested subspaces in domains with curvilinear boundary,

Advanced mathematics: computations and applications (Novosibirsk, 1995), pages 588–595, NCC

Publ., Novosibirsk, 1995.

[14] V.V. Shaidurov, Some estimates of the rate of convergence for the cascadic conjugate-gradient

method, Comput. Math. Appl., 31:4-5 (1996), 161–171, Selected topics in numerical methods

(Miskolc, 1994).

[15] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23(98) (1973), 298–305.

[16] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to

graph theory, Czechoslovak Math. J., 25(100):4 (1975), 619–633.

[17] H. Kim, J. Xu and L. Zikatanov, A multigrid method based on graph matching for convection-

diffusion equations, Numer. Linear Algebra Appl., 10:1-2 (2003), 181–195, Dedicated to the 60th

birthday of Raytcho Lazarov.

[18] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical

Sciences, Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.

[19] I. Babuška and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigen-

vectors of selfadjoint problems, Math. Comp., 52:186 (1989), 275–297.

[20] D. Gallistl, Adaptive Finite Element Computation of Eigenvalues, PhD thesis, der Humboldt-

Universität zu Berlin, 2014.

[21] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numerica, 19 (2010), 1–120.

[22] J. Berg and J. Lofstrom, Interpolation Spaces. An Introduction, Springer, 1976.

[23] T.A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Software, 38:1 (2011), Art. 1, 25.

