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Abstract. In this paper, we prove that a unitary invariant strongly pseudoconvex com-
plex Finsler metric is a complex Landsberg metric if and if only if it comes from a
unitary invariant Hermitian metric. This implies that there does not exist unitary in-
variant complex Landsberg metric unless it comes from a unitary invariant Hermitian
metric.
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1 Introduction

In real Finsler geometry, a Berwald metric is necessary a Landsberg metric. It is still an
open problem that whether there exists a Landsberg metric which does not come from a
Berwald metric [2]. This problem is also called the unicorn problem by D. Bao [3] and M.
Matsumoto [2].

M. Matsumoto conjectured that there does not exist unicorn metric, which implies
that every Landsberg metric comes from a Berwald metric. In 2008, Z. I. Szab6 claimed
that all regular Landsberg metrics are Berwald metrics [4]. A gap, however, was soon
found in the proof by himself [5], thus leaving the problem still open.

On the other hand, in [6,7], G. S. Asnov constructed a family of almost regular unicorn
metrics which come from (a, 8)-metrics. In 2009, Z. Shen [8] characterized almost regular
Landsberg («,)-metrics which generalized G. S. Asanovs results. For the spherically
symmetric real Finsler metrics which are not necessary (&, 8)-metrics, X.-H. Mo and L.-F.
Zhou [9] proved that there does not exist any non-Berwaldian Landsberg metrics among
the regular case.
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In complex Finsler geometry, there are also notions of complex Berwald metric, weakly
complex Berwald metric, and complex Landsberg metric. It was known that every Kdhler-
Berwald metric is necessary a complex Landsberg metric [10]. One may wonder whether
there exists a complex Landsberg metric which does not come from a Kahler-Berwald
metric?

Unlike in real Finsler geometry, there are few explicit examples of strongly pseudo-
convex complex Finsler metrics in literatures. This situation has already been changed
because of the recent work of C.-P. Zhong [12], where unitary invariant strongly pse-
duoconvex complex Finsler metrics were systematically studied and the explicit method
of constructing strongly psuedoconvex or even strongly convex complex Finsler metrics
were given. In [13], H.C. Xia and C.-P. Zhong gave a classification of unitary invariant
weakly complex Berwald metrics which are of constant holomorphic curvatures. It was
proved in [12] that there is neither complex Berwald metric nor Kdhler Finsler metric
which is unitary invariant and does not come from a Hermitian metric. There are, how-
ever, lots of weakly complex Berwald metrics which are unitary invariant and they do not
come from Hermitian metrics. One may wonder whether there exists unitary invariant
complex Landsberg metric which does not come from a Kédhler-Berwald metric.

In this paper, we prove that a unitary invariant strongly pseudoconvex complex Finsler
metric is a complex Landsberg metric if and only if it comes from a unitary invariant Her-
mitian metric. This implies that there does not exist unitary invariant complex Landsberg
metric unless it comes from a unitary invariant Hermitian metric.

2 Preliminary

Let C" be a complex n dimensional linear space, denote by (-,-) the canonical com-
plex Euclidean inner product and ||| the induced norm in C". Let F be a strongly
pseudoconvex complex Finsler metric on a unitary invariant domain D C C". It was
proved in [12] that F is unitary invariant if and only if there exists a smooth function

¢(t,5):]0,400] x [0,4-00] = (0,400) such that F = /r¢(t,s) with

|(z,0)|*
r=|ol?, t=|zl1* s= H;Hz /
where z=(z!,---,z") €D and v= (v},---,0") e T2D.

Lemma 2.1. [12] Let F=/r¢(t,s) be a strongly pseudoconvex complex Finsler metrics defined
on a domain D C C". Then the fundamental tensor of F is

It is known that for a strongly pseudoconvex complex Finsler metric F, there are sev-
eral complex Finsler connections associated to it. The most often used complex Finsler
connections are the Chern-Finsler connection [1], the complex Rund connection and the
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complex Berwald connection [11]. These connections are convenient respectively in con-
sidering different type of problems in complex Finsler geometry. In this paper, we need
the complex Berwald connection associated to F. The connection 1-forms of complex
Berwald connection are given by @g =Gy, dz", where

Bu= 9p(Gj), Gi=0,(G").

Here G” = 1I')jv" are the complex geodesic spray coefficients associated to F, and I}, =
GP7 Gg,, are the Chern-Finsler nonlinear coefficients associated to F.

Lemma 2.2. [12] Let F=/r¢(t,s) be a strongly pseudoconvex complex Finsler metrics defined
on a domain D C C". Then the complex Berwald nonlinear connection coefficients G, associated
to F are given by

2G)=n1z"v" — ; % (z,0)0"0" +ka (z,0) 6] +(m1+ks) (z,0) 272" — ; % ((z,0))%0727, (2.2)
where
ok
M=s== tha, ki =(¢—s)[p+ (t—3)ps] +5(t—5)Ppss, (2.3)

kzzk—ll{[¢+(t—s)¢s+s(t—s>¢ss](q>f+q>s)—s[¢+(t—s>¢s](¢st+¢ss>}f 24)

1
kszk—l{¢(¢st+¢55>—¢s(¢t+¢s>}, 25)
m IS% +ks. (2.6)

Lemma 2.3. Let F=/r¢(t,s) be a strongly pseudoconvex complex Finsler metric defined on a
domain D C C". Then the complex Berwald connection coefficients G, are given by

2G), = r%mz((z,w )V2orovzY — ;m3 (z,0)zF0VZY — ;mg (z,0)zV0Hz"Y

S — s okp ———— s okp ————
= WV 224 vsY __ 2 e wsY
+r2n2(z,v>v vl == (z,0)vvdy s (z,0)0M6)

1 - - s
+;n2(z,v>zi‘zvv7—|—(sm3+m1+k3)zi‘zvz7—;nzzi‘v"v7

S ST e Vo
—;nzzvvi‘v +n16,zF +n16,2", (2.7)

where

ks ks ks ks %k ok

SIPLALCIT Lo RSP LA Lo P LAL) Li )
a2 Sas2+ 9’ B Sasz+3as’ e Sas2+ 0s
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Proof. Note that

ai’ll . 82k2 akz aml . 82k3 8k3
g = (55 1250 Jsw o= (52 1250 )s

Thus differentiating (2.2) with respect to v¥, we get

2GJ, = 20,(G))

— ( %4_2%&)5”2707—1-711275;—%aa%@—wsﬂwvv
iaai2< ) V57+aai <z,v)53+k2ﬁ53
+< a—k23+3aak3) (z, v}suzvz%l-(ml-l-ka)z"zvﬂ
‘§%<W>2sﬁz”-?aaémwz”

from which we have

2G), = ( Ba kzz 2?) (z, v}zi‘zvzﬂ——( %4—2%) votoT
+mZ70), — ; %WU’Y-F . % (z,0)0F 070"
. aakz Tk vv’y_;%zu v ”+—ia;—kav7—;aaiszﬂ T
+s(s aaz_k23+3%> = ”"( aaskf +3?> (2,0) 207" + (1 +ks) 222"
—%%(z v)WzH—i%((Z v)) vVvVZW—I-—%ﬁ((Z v)) ooz
e+ 50 (e - 2% .
The lemma is completed by rearranging terms in the above equality. O

Lemma 2.4. Let F = \/r¢(t,s) be a strongly pseudoconvex complex Finsler metric defined on a
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domain D CC". Then the complex Cartan tensor G,z and Gz, are given respectively by

1 __ S _
Gyta = | —SssOur— (Pss +ssss) (z,0) iz + p (2055 +5¢psss ) vF 0"
1 _ _ 1 _
7 (¢ss +5@Psss ) (2,0) 210" + (s +5Psss ) 22" | sa+ ;%(ZIZ’)Z” 2zt (2.8)

J— e s S s _
- ;qbssz"‘v?‘zT — ;4)552”0”‘27-1- r—chss (z,0)zFv*v" 4+ r—chss (z,0)vlvez"

52 T S J— S2 J—
_r_qussvyv (4 —;¢SS<Z,U>ZV5W+74)55177‘5-(,,‘,

and
G;ﬁ;v = (Qbs +5¢ss)5rvzy + (¢t - Sq)st)(s;ﬁzv - ;Qbss <sz> 5;4?01/ - ;4)55 <Z/U>5vrvy
- SZ - S N
+ (S¢sst +pst)zF 2V 2" + 7¢sstv”zva - (5sss +2¢ss) 20V 0T

1

(2.9)
— ;¢55t (z,0)zFz"0" — ;qbsst (z,0)olzVz" + P (S¢sss +2¢ss) (z,0) zFvVz"

S — 1 S
2 (S¢psss +2¢ss ) (z,0) vF0"0" — 2 (5sss +¢pss) ((z,0) ) *0F072".

Proof. By a simple calculation, we have

[(z,0)2F —s0F], 50 = —%(syﬁ—i—saﬁ), (2.10)

%2}
=
|

©
al
|

1 — _
(z,0)z" —sv"], 520 = . (2827 — 540" —570% —$04), (2.11)

_ 1— 1 S
(z,0)07, 5, = - [zHoV — - (z,0)vF0Y], (2.12)

S|, XlIRPr=R|-

»
<
I

—_

Sty = % [<er>5rv - <Z,U>WZ)T]. (2.13)

<

Differentiating (2.1) with respect to v*, we get

Gﬂ?tx = S‘PSS(SI‘?SIX - (PSSS?UVS“ +‘PSSZVZTSIX + 4)552“275},

_ - T s s (2.14)
PssSuSaV" 1 Pss55,5TSa — PssS STV — 5PssOraSy-

Substituting (2.10)-(2.13) into (2.14), we obtain (2.8).
Next differentiating (2.1) with respect to z", we have
G = (912" — 8¢5tz —5¢s55,1 )07+ T Psst5 572" +1PsssS S50 2.15)
+7PssSpuST+TPssStSy + Pstzt z2Vz + ¢ssz72T5;v + ¢55Tvz7- ‘

Substituting (2.10)-(2.13) into (2.15), we obtain (2.9). O
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Theorem 2.1. ([12]) A strongly pseudoconvex complex Finsler metrics F=+/r¢(t,s) defined on
a domain D C C" is a complex Berwald metric if and only if

¢Pss =0, (2.16)

if and only if ¢(t,s) =ag(t)+ay(t)s for smooth real-valued functions ay(t) and ay (t) satisfying
ag(t) >0 and ag(t)+tay (t) >0.

3 Complex Landersberg metrics

Complex Landsberg metric is an analogue notion in complex Finsler geometry, which
was introduced by M. Aldea and M. Munteanu in [10]. Denote by ¢, = d, — G0, for

v=1,---,n and define
1

L), = EGW(&@#&@;).
A strongly pseudoconvex complex Finsler metric F is called a complex Landsberg metric
if GZ” :]LZV, where GZ” are the complex Berwald connection coefficients. ]LZV are the hor-
izontal connection coefficients of the Rund type complex linear connection in the sense
of M. Munteanu [11].

Among unitary invariant strongly pseudoconvex complex Finsler metrics there exists
no complex Berwald metric which does not come from a unitary invariant Hermitian
metric. One may wonder that among unitary invariant strongly pseudoconvex complex
Finsler metrics, whether there exists a complex Landsberg metric which does not come
from a unitary invariant Hermitian metric? If there exists such a metric, then it implies
that the unicorn metric problem in complex Finsler geometry does not hold.

Theorem 3.1. A strongly pseudoconvex complex Finsler metrics F = /r¢(t,s) defined on a
domain D C C" is a complex Landsberg metric if and only if

¢Pss =0, (3.1)

if and only if ¢(t,s) =ag(t)+aq(t)s for smooth real-valued functions ay(t) and ay (t) satisfying
ag(t) >0 and ay(t)+tay () >0.

Proof. 1f ¢ss =0, then (2.1) gives
Gy =(p—5¢s)0rz+Psz72".

since

9(P—s¢s
@=s0) oy

thus, G,z actually depends only on z= (z'---2"),i.e., F comes from a Hermitian metric.
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Next we shall prove the necessity part of the theorem. Let F = \/r¢(t,s) be a complex
Landsberg metric, then we have

ZG'y?Glr/yy = (Gy?;v + Gv?;y) - (G;'/(Gy?ac +GgGlﬁﬁ) (32)

Using (2.1) and (2.7), after a long calculation, we have

_ _ 1 - _
4Gz Gy =2(p—s¢s) | 116y 2F +110,72" — p (m1—k2)(z,0) (VFdyr —0V,7)

2s -
+ - [52 (t—5)psstms —kana+ (211 — ko )s¢pss)|zF vV 0"

2s -
+ - [52 (t—5)psstmz —kana+ (211 — ko )s¢pss)|zV oF 0"

+ [2ks (smz+my+ks) +2s¢psnp +4keny |zFzV 2"

2 _
+= [—s(t—5)pss (smz+mq+ks) +kanyp —2s¢pssni](z,0) 2 270" (3.3)

2 -
+ r—s [—sz(t—s)cpssmz—l—kmz —25¢ss(n1—k2)|(z,v)vFvVo"

2
- 75 [ksmms +@snz+Pss (211 —k2)|(z,0) 2V vl 2"

2 _
- 75 [ksmmz+@snz+Pss (211 —k2) | (z,0) 20V 2"

2s e
+ 5 lksma + s+ 2955 (my —k2)]((z,0) ) *0F0vz",

where we denote

azkz oko
+3==, k4:¢_5¢s/ k5:¢+(t_5)¢s+5(t_5)¢ss/ k6:¢s+5¢ss‘

N3 =5——
052 0s

Interchanging the indices y and v in (2.9), and then adding the obtained equality to (2.9),
we get
_ _ 2s [ _ _
G]ﬁ;v + Gv?;y = (Qbs +¢r+S¢ss — 5¢st) (571/2’4 +5]EZV) - 7¢ss <Z/U> (5;4701/ +(Svrvy)
+2(s¢sst+ st )zHzVz" + %sk7(szVvT +zVoko")

2 S 1, — _
— 7S¢Sst<z,v)zi‘z"vT — ;k7<z,v) (ZFovz" +2zV0kz")

(3.4)

+ 2 sks (2 OV — 2 (ks — ) (2,00 20,

where we denote

k7 :S(PSSt _S(PSSS _24)55/ k8 :S¢SSS+2¢SS-
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Using (2.7), (2.8), and notice that G,z,v* =0, G,ﬁ,xv?: Guia =T¢ssSuSy, We obtain

2G5G;ﬁu¢ +2G;ﬁ4 Gv?ﬁ :_52 [(t_s) <m1 +k3) +2k2] <<PSSZ_V§1/T+<PSSZ_V§;4?)

i [(t=s)(m1—k3)+2k:] <‘Pssmv_’45vr+4’ssmﬁ5ﬁ)

N

_|__
r

2
—|—S7 [2k8k2—|—2k9k3—|— (kg—i—klo) (1111 —k3)] (ZVUVUT—FZVZ)‘”Z)T)

+2[skgky +skq (17 +k3)]WZT

_¥[(kS_¢55)k2+k10(m1+k3)]<z,v>WvT (3.5)

252 -
- 1’_2 [(kS +¢ss)k2+k9(1’n1 —k3)] <Z,Z)>Z):”Z)V7)T
2s S 2s -

- (kgka+komy ) (z,0)zVvHz" — - (kgka+komy ) (z,0)zFovz"

2s —_—
+r_2 [ksko+ko(m1 —k3)] ((z,v})zvVszT,
where we denote
ko= (2t—35)pss+5(t—5)psss, k1o=(t—25)Pss+5(t—5)Psss- (3.6)

Substituting (3.3), (3.4) and (3.5) into (3.2), and comparing coefficients of the same types
on both sides of the resulted equality, we obtain the following system of equations

( 2kgny = 2(475 +S¢pss+ Pt _54751‘) +52<t _S)CPSS (ml +k3) +252¢ssk2/
2ky(n1—ky) =4spss +5%(t—3) Pss (m1 — k3 ) +25>Psska,
252 (t _5)47557713 —2kyn> —|—2(27’11 —kz)S(I)ss =2ky —2skgky, —2skoks —S(kg —|—k10) (1111 —kg),
ks (smz—+mq+ks) +spsna+2keny =2(S¢sst + Pst) — sksko —sko (my1 +k3),
—5(t—5)¢pss (smz+m1+k3) +kany —25¢pss111 = —25Psst +5(ks — ss ) ko +5kig (m1 +k3),
—82(t—8)Psstmn+katiy — 25¢ss (11 —ka ) = 2kg +5 (ks + Pss ) ko +sko (m1 —k3),
kssmz+s¢psnz+s¢ss(2n1 —ka ) = k7 — skgky — skomy,
k5S1’I’l2—|—S(P57’12—|—254755(1’11 —kz) = —2<k8 —(PSS) —skgky —Skg(ﬂ”ll —k3).

3.7)
The first equation of (3.7) minus the second equation of (3.7) yields
52<t_5)47ssk3 :k4k2_ ((PS_S(PSS +(Pt_s¢st)- (38)
Taking the derivative with respect to the variable s, we obtain
ok ok
52 (t - S)(Pss 8_53 =ky a_sz - S(PsskZ +Spsss +SPsst — skoks. (39)

The third equation of (3.7) plus two times of the sixth equation of (3.7) yields

sz(t—s)cpss% =2(ky+2kg) —2skoks. (3.10)
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Substituting (3.10) into the second equation of (3.7), one gets

ok

By (3.9)-(3.11), it follows that

Now it is easy to see that the Eq. (3.12) holds if and only if either
Pss = 0, (313)
or
ks =0 (3.14)
holds.
If (3.13) holds, we immediately have

¢(t,8)=ap(t)+ai(t)s,

where a¢(t) and a4 (t) are two smooth real-valued functions satisfying ao(t) >0 and ao(t)+
taq (t) >0.
If (3.14) holds, according to (2.5), we have

4755 +47st = @ . (315)

Substituting (3.15) into (2.4), we get

- + +
kp = P00 {(gb—sq)s)[qb-l—(t—s)q)s] +s(t—s)gb4>ss} _ Pty s (3.16)
Pk Pk ¢
Thus 9% . 1
s = g 9Pt 0s) =9u(91+99)) = haks =0 (3.17)
Substituting (3.14) and (3.17) into the second and eighth equations of (3.7), respectively,
we obtain
Skz = —2,
(3.18)
24755 = (Sk2 —|—2)k8,
from which we get (3.13). This completes the proof of the Theorem. O

Remark 3.1. Theorem 3.1 implies as far as that unitary invariant strongly pseudoconvex
complex metrics are concerned, F = \/r¢(t,s) is a complex Landsberg metric if and only
if it comes from a unitary invariant Hermitian metric. Thus there is no unicorn metric
among unitary invariant strongly pseudoconvex complex Finsler metrics.
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