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Abstract

This paper presents a strong predictor-corrector method for the numerical solution

of stochastic delay differential equations (SDDEs) of Itô-type. The method is proved to

be mean-square convergent of order min{1/2, p̂} under the Lipschitz condition and the

linear growth condition, where p̂ is the exponent of Hölder condition of the initial function.

Stability criteria for this type of method are derived. It is shown that for certain choices of

the flexible parameter p the derived method can have a better stability property than more

commonly used numerical methods. That is, for some p, the asymptotic MS-stability bound

of the method will be much larger than that of the Euler-Maruyama method. Numerical

results are reported confirming convergence properties and comparing stability properties

of methods with different parameters p. Finally, the vectorised simulation is discussed and

it is shown that this implementation is much more efficient.
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1. Introduction

In many scientific fields, such as biology, economics, medicine and finance, stochastic delay

differential equations (SDDEs) are often used to model complex dynamics. Such equations

generalize both deterministic delay differential equations (DDEs) and stochastic ordinary dif-

ferential equations (SODEs). For the general theory on SDDEs, one can refer to Mao [22] and

Mohammed [24].

Explicit solutions of SDDEs can rarely be obtained. Thus, it has become an important

issue to develop numerical methods for SDDEs. In the last several decades, the research in
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the computational implementation and the numerical analysis for SODEs has made a lot of

advances. An overview of these results can be found in some monographs and survey papers,

see for example [1, 12, 13, 15, 25, 27].

The research into numerical methods for SDDEs is relatively new, compared with that for

DDEs and SODEs. In recent years a number of numerical methods have been developed for

SDDEs. For an introduction to the numerical analysis of SDDEs see Buckwar [7]. Baker &

Buckwar [3] and Buckwar [8] derived several convergence results for one-step methods. Küchler

& Platen [18] proposed the adapted low order Taylor methods for SDDEs. Moreover, for linear

SDDEs, Baker & Buckwar [4], Cao, Liu & Fan [21] and Wang & Zhang [26] studied the stability

properties of Euler-Maruyama method, semi-Euler method and Milstein method, respectively.

As in the deterministic case, using an explicit numerical scheme to solve a stiff system often

results in instability and hence generates an inaccurate numerical solution. However, when

an implicit method is used, the numerical stability and the computational accuracy can be

greatly improved (cf. [14]). Hence, implicit numerical methods are preferred for the effective

computation of numerical solutions to stiff systems. In the references [2,17,23], for solving stiff

SODEs, the authors introduced implicitness into the approximation of the diffusion term and

obtained several classes of the balanced implicit method. Here, an SODE is said to be stiff if it

has widely varying lyapunov exponents. To implement an implicit method, generally speaking,

an algebraic equation has to be solved at each time step, leading to a large computational

cost. In order to resolve this difficulty, in papers [5, 6, 10], authors presented a few predictor-

corrector schemes. Furthermore, Li et al. developed a family of strong predictor-corrector Euler-

Maruyama methods for SODEs with Markovian switching, which were shown to converge with

strong order 0.5 in [20]. But they did not take time delays into account. For SDDE with constant

delay in Stratonovich form, Cao et al. [11] presented a predictor-corrector scheme using the

Wong-Zakai approximation as an intermediate step, and proved the predictor-corrector scheme

is of half-order convergence in the mean-square. This method was derived from the trapezoidal

rule and does not have any free parameters. However, the performance of the predictor-corrector

methods presented in this paper is tunable through the use of a free parameter p that controls

the size of its stability region and hence the step size.

So far, to the best of our knowledge, no strong predictor-corrector scheme has been applied

to SDDEs in Itô form. Hence in this paper we will focus on such a topic. We attempt to avoid

implicit methods by using explicit methods with larger stability regions to deal with moderately

stiff problems. The strong Euler predictor-corrector methods will be extended to solve SDDEs

of Itô-type. The adapted method will be proved to be convergent of order min{1/2, p̂} under

the Lipschitz condition and the linear growth condition, where p̂ is the exponent of Hölder

condition of the initial function. We also investigate the asymptotic mean-square stability of

the extended predictor-corrector method. Numerical stability criterion is derived which shows

that this type of method preserves the asymptotic MS-stability of the underlying equation.

Numerical examples will be given to illustrate these theoretical results. It is shown that for

certain choices of the flexible parameter p the method presented here can have a larger stability

bound than the Euler-Maruyama method. We also demonstrate that substantial speed-ups are

possible by vectorising across the simulations the implementation of the numerical method.

2. The Strong Predictor-corrector Method

Let W (t) be a one-dimensional standard Wiener process defined on the filtered probability

space (Ω,A , P ), and C([−τ, 0];R) denote the Banach space consisting of all continuous paths
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from [−τ, 0] to R, equipped with the norm ‖µ‖ = sups∈[−τ,0] |µ(s)|. Consider the following

Itô-type scalar SDDEs with delay τ > 0:

{
dX(t) = f(X(t), X(t− τ))dt + g(X(t), X(t− τ))dW (t), t ∈ [0, T ],

X(t) = ψ(t), t ∈ [−τ, 0],
(2.1)

where ψ(t) is an At0-measurable C([−τ, 0];R)-valued random variable with E‖ψ‖2 < ∞, and

functions f, g : R × R → R are continuous. The unique solvability of equation (2.1) can be

judged by the following proposition.

Proposition 2.1. ([22]) Assume that there exist positive constants L,K such that for all

ξ1, ξ2, η1, η2 ∈ C([−τ, 0];R) and t ∈ [0, T ],

|f(ξ1, η1)− f(ξ2, η2)| ∨ |g(ξ1, η1)− g(ξ2, η2)| ≤ L(|ξ1 − ξ2|+ |η1 − η2|) (2.2)

and

|f(ξ, η)|2 ∨ |g(ξ, η)|2 ≤ K(1 + |ξ|
2
+ |η|

2
). (2.3)

Then equation (2.1) has a unique strong solution X(t). Here, ∨ means the maximum of two

values.

For numerically solving SDDEs (2.1), we take a uniform mesh on [0, T ]:

0 = t0 < t1 < t2 < . . . < tN ≤ T,

where tn = t0 + nh, h = τ/m (m ∈ N), Xn denotes a strong approximation to X(tn), and

it is assumed that the increment of the driving Wiener process: △Wn := W (tn+1) −W (tn)

is an N(0, h)-distributed Gaussian random variable. With these settings, the strong Euler

predictor-corrector method can be applied to SDDEs (2.1). The predictor is given by

Xn+1 = Xn + f(Xn, Xn−m)h+ g(Xn, Xn−m)△Wn, (2.4)

and the corrector is given by

Xn+1 = Xn + {pf(Xn+1, Xn+1−m) + (1− p)f(Xn, Xn−m)}h+ g(Xn, Xn−m)△Wn, (2.5)

where the parameter p ∈ [0, 1] is called the degree of implicitness in the drift coefficient. When

substituting (2.4) into (2.5), method {(2.4), (2.5)} can be written in a compact form:

Xn+1 = Xn + f(Xn, Xn−m)h+ g(Xn, Xn−m)△Wn + p{f(Xn + f(Xn, Xn−m)h

+g(Xn, Xn−m)△Wn, Xn+1−m)− f(Xn, Xn−m)}h. (2.6)

Throughout this paper, we define that, when a meshpoint tn falls in the initial interval

[−τ, 0], the corresponding approximation solution equals its explicit solution. The predictor-

corrector method {(2.4), (2.5)} have some potential advantages. Firstly, the use of the implicit

scheme as a corrector can improve numerical stability, while avoiding to solve a nonlinear

equation at each time step. Secondly, for certain choices of parameter p the stability bound of

the method will be much larger than that of the Euler-Maruyama method.
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3. Some Basic Lemmas

In order to derive the convergence result of the method, we first introduce some basic lemmas

in this section. The following notations and concepts will be used. Write

R(h,Xn, Xn−m, Xn−m+1,△Wn)

:= {f(Xn + f(Xn, Xn−m)h+ g(Xn, Xn−m)△Wn, Xn+1−m)− f(Xn, Xn−m)}h,

and

Φ(h,Xn, Xn−m, Xn−m+1,△Wn)

:= f(Xn, Xn−m)h+ g(Xn, Xn−m)△Wn + pR(h,Xn, Xn−m, Xn−m+1,△Wn),

X̂(tn+1) := X(tn) + Φ(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn).

Definition 3.1. A function ϕ is called Hölder-continuous with exponent p̂ if there exists a

positive constant M such that

E|ϕ(t)− ϕ(s)|2 ≤M |t− s|2p̂, ∀t, s ∈ [−τ, 0]. (3.1)

Definition 3.2. Method {(2.4), (2.5)} is called consistent of order q̂ in the mean-square sense

if its local error δn := X(tn)− X̂(tn) satisfies

max
1≤n≤N

(E|δn|
2)1/2 = O(hq̂+1/2) as h→ 0 (3.2)

and

max
1≤n≤N

(E|E(δn|Atn−1
)|2)1/2 = O(hq̂+1) as h→ 0. (3.3)

Lemma 3.1. Suppose that functions f, g satisfy the conditions (2.2)-(2.3). Then, there exist

constants C1, C2, h1 > 0 such that, when 0 < h ≤ h1,

E(|Φ(h, ξ1, η1, r1,△Wn)− Φ(h, ξ2, η2, r2,△Wn)|
2)

≤ C1h(|ξ1 − ξ2|
2 + |η1 − η2|

2 + |r1 − r2|
2), ∀ξ1, ξ2, η1, η2, r1, r2 ∈ R

(3.4)

and

|E(Φ(h, ξ1, η1, r1,△Wn)− Φ(h, ξ2, η2, r2,△Wn))|

≤ C2h(|ξ1 − ξ2|+ |η1 − η2|+ |r1 − r2|), ∀ξ1, ξ2, η1, η2, r1, r2 ∈ R. (3.5)

Proof. It follows from condition (2.2) and the Hölder inequality

(
n∑

i=1

xi

)j

≤ nj−1
n∑

i=1

xji , xi ∈ R, j ≥ 1
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that

E(|Φ(h, ξ1, η1, r1,△Wn)− Φ(h, ξ2, η2, r2,△Wn)|
2)

≤ 6E
[
h2|f(ξ1, η1)− f(ξ2, η2)|

2 + h|g(ξ1, η1)− g(ξ2, η2)|
2 + p2h2|f(ξ1 + f(ξ1, η1)h

+g(ξ1, η1)△Wn, r1)− f(ξ2 + f(ξ2, η2)h+ g(ξ2, η2)△Wn, r2)|
2 + p2h2|f(ξ1, η1)− f(ξ2, η2)|

2]

≤ 6E
[
h2(1 + p2)|f(ξ1, η1)− f(ξ2, η2)|

2 + h|g(ξ1, η1)− g(ξ2, η2)|
2 + 2p2h2L2(|ξ1 + f(ξ1, η1)h

+g(ξ1, η1)△Wn − ξ2 − f(ξ2, η2)h− g(ξ2, η2)△Wn|
2 + |r1 − r2|

2)]

≤ 6[2L2h(1 + p2) + 2L2 + 6L2(1 + 2h2L2 + 2hL2)p2h]h|ξ1 − ξ2|
2 + 6[2L2h(1 + p2) + 2L2

+6L2(2h2L2 + 2hL2)p2h]h|η1 − η2|
2 + 12L2p2h2|r1 − r2|

2]

≤ C1h(|ξ1 − ξ2|
2 + |η1 − η2|

2 + |r1 − r2|
2), 0 < h ≤ h1,

where

C1 = 6L2max{2h1(1 + p2) + 2 + 6(1 + 2h21L
2 + 2h1L

2)p2h1,

2h1(1 + p2) + 2 + 6(2h21L
2 + 2h1L

2)p2h1, 2p
2h1}.

Similarly, by condition (2.2) we have

|E(Φ(h, ξ1, η1, r1,△Wn)− Φ(h, ξ2, η2, r2,△Wn))|

≤ C2h(|ξ1 − ξ2|+ |η1 − η2|+ |r1 − r2|), 0 < h ≤ h1,

where C2 = Lmax{1 + pLh
1/2
1 + pLh1, 1− p+ ph

1/2
1 + ph1, p}. This completes the proof.

Lemma 3.2. ([16]) Assume that the condition (2.3) holds. Then for any given T > 0, there

exist constants C3, C4 > 0 such that the solution of equation (2.1) satisfies

E
(
|X(t)−X(s)|2

)
≤ C3|t− s|, for t, s : 0 ≤ s ≤ t ≤ T, (3.6)

and

E

(
sup

−τ≤t≤T
|X(t)|2

)
≤ C4

(
1 + E‖ψ‖2

)
, ∀t ∈ [−τ, T ]. (3.7)

Lemma 3.3. Suppose that initial function ψ is Hölder-continuous with exponent p̂. Then the

following inequality holds:
∫ tn+1

tn

[E|X(s)−X(tn)|
2 + E|X(s− τ)−X(tn − τ)|2]ds

≤ C3h
2 +Mh1+2p̂, 0 ≤ n ≤ N − 1. (3.8)

Proof. The conclusion can be followed by discussion in two cases. When tn+1 ≤ τ , by

Lemma 3.2 and Definition 3.1, it holds that
∫ tn+1

tn

[E|X(s)−X(tn)|
2 + E|X(s− τ)−X(tn − τ)|2]ds

=

∫ tn+1

tn

[E|X(s)−X(tn)|
2 + E|ψ(s− τ) − ψ(tn − τ)|2]ds

≤

∫ tn+1

tn

[C3(s− tn) +M(s− tn)
2p̂]ds

≤ C3h
2 +Mh1+2p̂.
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When τ ≤ tn, Lemma 3.2 implies that
∫ tn+1

tn

[E|X(s)−X(tn)|
2 + E|X(s− τ)−X(tn − τ)|2]ds

≤ 2

∫ tn+1

tn

C3(s− tn)ds = C3h
2.

This shows that (3.8) always holds for 0 ≤ n ≤ N − 1. Hence the conclusion is proven.

Lemma 3.4. Suppose that functions f, g satisfy the conditions (2.2)-(2.3), and the initial

function ψ is Hölder-continuous with exponent p̂. Then method {(2.4), (2.5)} is consistent of

order min{1/2, p̂} in the mean-square sense.

Proof. Let

I1,n =

∫ tn+1

tn

f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))ds,

I2,n =

∫ tn+1

tn

g(X(s), X(s− τ)) − g(X(tn), X(tn − τ))dW (s).

Then

δn+1 = I1, n + I2, n − pR(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn), (3.9)

which gives

E|δn+1|
2

≤ 4(p2E|R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|
2 + E|I1,n|

2 + E|I2,n|
2). (3.10)

In the following, we further estimate the various items of the right-hand side in (3.10). Using

the Hölder inequality and the condition (2.2), we obtain

E|I1,n|
2 ≤ E

[∫ tn+1

tn

|f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))|ds

]2

≤ h

∫ tn+1

tn

E|f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))|2ds

≤ 2hL2

∫ tn+1

tn

[E|X(s)−X(tn)|
2 + E|X(s− τ)−X(tn − τ)|2]ds. (3.11)

Inserting (3.8) into (3.11) yields

E|I1,n|
2 ≤ 2C3L

2h3 + 2ML2h2+2p̂, for 0 ≤ n ≤ N − 1. (3.12)

It follows from the Itô isometry and the inequality (2.2) that

E|I2,n|
2 = E

∣∣∣∣
∫ tn+1

tn

g(X(s), X(s−τ))−g(X(tn), X(tn−τ))dW (s)

∣∣∣∣
2

=

∫ tn+1

tn

E|g(X(s), X(s− τ)) − g(X(tn), X(tn − τ))|2ds

≤2L2

∫ tn+1

tn

[E|X(s)−X(tn)|
2+E|X(s− τ)−X(tn − τ)|2]ds. (3.13)
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This, together with (3.8) gives

E|I2,n|
2 ≤ 2C3L

2h2 + 2ML2h1+2p̂, 0 ≤ n ≤ N − 1. (3.14)

Moreover, we have

E|R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|
2

= E
∣∣∣
[
f(X(tn)+f(X(tn), X(tn−τ))h+ g(X(tn), X(tn−τ))△Wn, X(tn+1−τ))h

−

∫ tn+1

tn

f(X(s), X(s− τ))ds
]
−
[
f(X(tn), X(tn − τ))h−

∫ tn+1

tn

f(X(s), X(s− τ))ds
]∣∣∣

2

≤ 2E
∣∣∣
∫ tn+1

tn

[f(X(tn) + f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn, X(tn+1 − τ))

−f(X(s), X(s− τ))]ds
∣∣∣
2

+ 2EI21,n (3.15)

and

E
∣∣∣
∫ tn+1

tn

|f(X(tn) + f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn, X(tn+1 − τ))

−f(X(s), X(s− τ))|ds
∣∣∣
2

≤ hE

∫ tn+1

tn

|f(X(tn) + f(X(tn), X(tn − τ))h+ g(X(tn), X(tn − τ))△Wn, X(tn+1 − τ))

−f(X(s), X(s− τ))|2ds

≤ 2L2hE

∫ tn+1

tn

[|X(tn) + f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn −X(s)|2

+|X(tn+1 − τ)−X(s− τ)|2]ds

≤ 2L2h

∫ tn+1

tn

[2E|X(s)−X(tn)|
2 + E|X(s− τ) −X(tn+1 − τ)|2]ds

+4L2h

∫ tn+1

tn

E|f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn|
2ds,

≤ 4L2h

∫ tn+1

tn

E|f(X(tn), X(tn − τ))h+ g(X(tn), X(tn − τ))△Wn|
2ds

≤ +4C3L
2h3 + 2ML2h2+2p̂ (3.16)

where the Hölder inequality, condition (2.2) and the similar arguments for Lemma 3.3 have

been used. With the Hölder inequality, the Itô isometry and conditions (2.3) and (3.7), the
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final integral item in (3.16) can be bounded by

∫ tn+1

tn

E|f(X(tn), X(tn − τ))h+ g(X(tn), X(tn − τ))△Wn|
2ds

=

∫ tn+1

tn

E

∣∣∣∣
∫ tn+1

tn

[f(X(tn), X(tn−τ))dµ+g(X(tn), X(tn−τ))dW (µ)]

∣∣∣∣
2

ds

≤ 2

∫ tn+1

tn

E

∣∣∣∣
∫ tn+1

tn

f(X(tn), X(tn − τ))dµ

∣∣∣∣
2

ds

+2

∫ tn+1

tn

E

∣∣∣∣
∫ tn+1

tn

g(X(tn), X(tn − τ))dW (µ)

∣∣∣∣
2

ds

≤ 2hE

∫ tn+1

tn

∫ tn+1

tn

|f(X(tn), X(tn − τ))|2dµds

+2E

∫ tn+1

tn

∫ tn+1

tn

|g(X(tn), X(tn − τ))|2dµds

≤ 2KhE

∫ tn+1

tn

∫ tn+1

tn

|1 +X(tn)
2 +X(tn+1)

2|dµds

+2KE

∫ tn+1

tn

∫ tn+1

tn

|1 +X(tn)
2 +X(tn+1)

2|dµds

≤ 2K[1 + 2C4

(
1 + E‖ψ‖2

)
]h2(1 + h). (3.17)

A combination of (3.12), (3.15), (3.16) and (3.17) yields

E|R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|
2

≤ 4L2[3C3 + 4K[1 + 2C4

(
1 + E‖ψ‖2

)
](1 + h)]h3 + 8ML2h2+2p̂, (3.18)

which shows that there is a constant h2 > 0 such that

E|R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|
2 ≤ C5h

3 + C̃5h
2+2p̂, 0 < h ≤ h2, (3.19)

where

C5 = 4L2{3C3 + 4K[1 + 2C4

(
1 + E‖ψ‖2

)
](1 + h2)}, C̃5 = 8ML2.

Therefore, substituting (3.12), (3.14) and (3.19) into (3.10) concludes

max
1≤n≤N

(E|δn+1|
2)1/2 = O(hmin{1/2+p̂,1}) as h→ 0.

Next, we begin to prove that

max
1≤n≤N

(E|E(δn+1|Atn)|
2)1/2 = O(hmin{p̂, 1/2}+1) as h→ 0. (3.20)

It follows from

E(I2,n|Atn) = 0,

and (3.9) that

E(E(δn+1|Atn))

= E(E(I1,n|Atn))− PE(E(R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|Atn)). (3.21)
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Applying the inequality (a+ b)2 ≤ 2(a2 + b2) (∀a, b ∈ R) to (3.21) yields

E|E(δn+1|Atn)|
2

≤ 2E|E(I1,n|Atn)|
2 + 2p2E|E(R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|Atn)|

2. (3.22)

By the Jensen inequality, the Hölder inequality, the properties of conditional expectation and

the condition (2.2), the following estimation for E|E(I1,n|Atn)|
2 holds:

E|E(I1,n|Atn)|
2

≤ E

[
E

(∫ tn+1

tn

|f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))|ds)2|Atn

)]

≤ hE

[
E

(∫ tn+1

tn

|f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))|2ds|Atn

)]

= hE

[∫ tn+1

tn

|f(X(s), X(s− τ)) − f(X(tn), X(tn − τ))|2ds

]

≤ 2hL2E

[∫ tn+1

tn

[|X(s)−X(tn)|
2 + |X(s− τ) −X(tn − τ)|2]ds

]
. (3.23)

With (3.8), we further have for 0 ≤ n ≤ N − 1:

E|E(I1,n|Atn)|
2 ≤ 2C3L

2h3 + 2ML2h2+2p̂. (3.24)

Moreover, it derives from the similar arguments for (3.23) that

E|E(R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|Atn)|
2

≤ 4hL2E

(∫ tn+1

tn

[|X(tn) + f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn

−X(s)|2 + |X(tn+1 − τ)−X(s− τ)|2]ds

)

+4hL2E

(∫ tn+1

tn

[|X(tn)−X(s)|2 + |X(tn − τ) −X(s− τ)|2]ds

)
. (3.25)

Also, from (3.16) we can find the following inequality

E

∫ tn+1

tn

[|X(tn) + f(X(tn), X(tn − τ))h+ g(X(tn), X(tn − τ))△Wn −X(s)|2

+|X(tn+1 − τ)−X(s− τ)|2]ds

≤ 2

∫ tn+1

tn

E|f(X(tn), X(tn − τ))h+ g(X(tn), X(tn − τ))△Wn|
2ds+ 2C3h

2

+Mh1+2p̂. (3.26)

Inserting (3.17) into (3.26) yields

E(

∫ tn+1

tn

[|X(tn) + f(X(tn), X(tn − τ))h + g(X(tn), X(tn − τ))△Wn −X(s)|2

+|X(tn+1 − τ)−X(s− τ)|2]ds)

≤ 2C3h
2 +Mh1+2p̂ + 4K[1 + 2C4(1 + E‖ψ‖2)]h2(1 + h). (3.27)
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This, as well as (3.8), leads to a further estimation of (3.25)

E|E(R(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)|Atn)|
2

≤ 4h3L2{3C3 + 2Mh2p̂−1 + 4K[1 + 2C4(1 + E‖ψ‖2)](1 + h)}. (3.28)

A combination of (3.22), (3.24) and (3.28) shows that there exist constants h3, C6 > 0 such

that

E|E(δn+1|Atn)|
2 ≤ C6h

min{2+2p̂, 3}

for 0 < h ≤ h3 and 0 ≤ n ≤ N − 1, which implies (3.20). This completes the proof.

4. Mean-Square Convergence of the Method

In this section, we will deal with mean-square convergence of the method {(2.4), (2.5)}.

Definition 4.1. Method {(2.4), (2.5)} is called convergent of order q in the mean-square sense

if its global error εn := X(tn)−Xn satisfies

max
1≤n≤N

(E|εn|
2)1/2 = O(hq) as h→ 0. (4.1)

Theorem 4.1. Suppose that functions f, g satisfy the conditions (2.2)-(2.3), and the initial

function ψ is Hölder-continuous with exponent p̂. Then method {(2.4), (2.5)} is convergent of

order min{1/2, p̂} in the mean-square sense.

Proof. Let

un=Φ(h,X(tn), X(tn − τ), X(tn+1 − τ),△Wn)−Φ(h,Xn, Xn−m, Xn+1−m,△Wn). (4.2)

Then, by the definitions of δn and εn,

εn+1 = δn+1 + εn + un.

Hence, we have

E(|εn+1|
2|At0)

≤ E(|εn|
2|At0) + E(|δn+1|

2|At0) + E(|un|
2|At0)||

+2|E(εn · δn+1|At0) + 2|E(δn+1 · un|At0) + 2|E(εn · un|At0)|. (4.3)

Since by Lemma 3.4 method {(2.4), (2.5)} is consistent of order min{1/2, p̂} in the mean-square

sense, there exist constants ĥ1, Ĉ1, Ĉ2 > 0 such that

E(|δn+1|
2|At0) ≤ Ĉ1 h

min{2,1+2p̂}, 0 < h ≤ ĥ1 (4.4)

and

2|E(εn · δn+1|At0)|

≤ 2E(|εn| · |E(δn+1|Atn)||At0)

≤ 2[E(|εn|
2|At0)]

1/2[E|E(δn+1|Atn)|
2]1/2

≤ 2[E(|εn|
2|At0)]

1/2 · [Ĉ2h
min{3,2+2p̂}]1/2

≤ hE[|εn|
2|At0 ] + Ĉ2h

min{2,1+2p̂}, 0 < h ≤ ĥ1, (4.5)
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where some common properties of conditional expectation have been used. Also, it follows from

Lemma 3.1 that there exist constants ĥ2, Ĉ3, Ĉ4 > 0 such that, for 0 < h ≤ ĥ2, the following

inequalities hold:

E(|un|
2|At0) ≤ Ĉ3h[E(|εn|

2|At0) + E(|εn−m|2|At0) + E(|εn−m+1|
2|At0)] (4.6)

and

2|E(εn · un|At0)|

≤ 2E(|εn| · |E(un|Atn)||At0)

≤ 2Ĉ4h[E(|εn|
2|At0) + E(|εn||εn−m||At0) + E(|εn||εn−m+1||At0)]

≤ 2Ĉ4h[E(|εn|
2|At0) + (E(|εn|

2|At0))
1/2 · (E(|εn−m|2|At0))

1/2

+(E(|εn|
2|At0))

1/2 · (E(|εn−m+1|
2|At0))

1/2]

≤ Ĉ4h[4E(|εn|
2|At0) + E(|εn−m|2|At0) + E(|εn−m+1|

2|At0)]. (4.7)

Let h0 = min{ĥ1, ĥ2}. Then, when 0 < h ≤ h0, (4.4) and (4.6) implies

2|E(δn+1 · un|At0)|

≤ 2(E(|δn+1|
2|At0))

1/2 · (E(|un|
2|At0))

1/2

≤ E(|δn+1|
2|At0) + E(|un|

2|At0)

≤ Ĉ3h[E(|εn|
2|At0) + E(|εn−m|2|At0) + E(|εn−m+1|

2|At0)] + Ĉ1h
min{2,1+2p̂}. (4.8)

Substituting (4.4)-(4.8) into (4.3), yields

E(|εn+1|
2|At0)

≤ E(|εn|
2
At0 |)+d1hE(|εn|

2
At0 |)+d2hE(|εn−m|2|At0)+d2hE(|εn−m+1|

2|At0)

+d3h
min{2,1+2p̂}, 0 < h ≤ h0, (4.9)

where d1 = 1+2Ĉ3 +4Ĉ4, d2 = 2Ĉ3 + Ĉ4, d3 = 2Ĉ1 + Ĉ2. An induction to the inequality (4.9)

generates

E(|εn+1|
2|At0)

≤ E(|ε0|
2|At0) + d1h

n∑

i=0

E(|εi|
2|At0) + d2h

n∑

i=0

E(|εi−m|2|At0)

+d2h
n∑

i=0

E(|εi−m+1|
2|At0)+(n+1)d3h

min{2,1+2p̂}, 0 < h ≤ h0. (4.10)

The right-hand side of (4.10) can be further bounded by

E(|ε0|
2|At0) + 2d2h

−1∑

i=−m

E(|εi|
2|At0) + d3Th

min{1,2p̂} + (d1 + 2d2)h

n∑

i=0

E(|εi|
2|At0)

= d3Th
min{1,2p̂} + (d1 + 2d2)h

n∑

i=0

E(|εi|
2|At0), 0 < h ≤ h0.
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Hence

E(|εn+1|
2|At0) ≤ d3Th

min{1,2p̂} + (d1 + 2d2)h

n∑

i=0

E(|εi|
2|At0), 0 < h ≤ h0. (4.11)

Applying the discrete Bellman inequality (cf. [19]) to (4.11) yields

E(|εn+1|
2|At0) ≤ d3Th

min{1,2p̂} exp[(d1 + 2d2)(n+ 1)h]

≤ {d3T exp[(d1 + 2d2)T ]}h
min{1,2p̂}, 0 < h ≤ h0, (4.12)

which implies

max
1≤n≤N

(E|εn|
2)1/2 = O(hmin{1/2,p̂}), as h→ 0.

Therefore, the theorem is proven.

5. Asymptotic MS-stability of the Method

The subsequent investigation will focus on the asymptotic MS-stability of the method

{(2.4), (2.5)}. It is common to consider stability results for the analytical and numerical so-

lutions of simple test equations in numerical analysis. Thus we choose as a test equation the

following linear scalar SDDE

{
dX(t) = [aX(t) + bX(t− τ)]dt + [cX(t) + dX(t− τ)]dW (t), t ∈ [0,+∞),

X(t) = ψ(t), t ∈ [−τ, 0],
(5.1)

where a, b, c, d ∈ R.

Definition 5.1. A numerical method is called asymptotic MS-stable for (5.1) if there exists an

h0(a, b, c, d, p) > 0 such that the generated numerical solution Xn satisfies

lim
n→∞

EX2
n = 0, ∀h ∈ (0, h0(a, b, c, d, p)). (5.2)

Proposition 5.1. ([21]) Suppose that the condition

a < −|b| −
1

2
(|c|+ |d|)2, (5.3)

holds. Then the solution of equation (5.1) is mean square stable, i.e.

lim
t→∞

E|X(t)|2 = 0.

Theorem 5.1. Assume that the condition (5.3) holds. Then the strong predictor-corrector

method {(2.4), (2.5)} is asymptotic MS-stable for (5.1) with stepsize h < h0(a, b, c, d, p), where

h0(a, b, c, d, p) is a positive constant that can be computed through the proof of this theorem.

Proof. Applying the strong predictor-corrector method {(2.4), (2.5)} to (5.1) follows that

Xn+1 = (1 + ah+ c△Wn + a2ph2 + acp△Wnh)Xn + [bh+ d△Wn

+p (abh+ ad△Wn − b)h]Xn−m + pbhXn+1−m. (5.4)
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Using inequality 2xy ≤ x2 + y2 (∀x, y ∈ R), the quantity X2
n+1 can be bounded by

[(1 + ah+ c△Wn + a2ph2 + acp△Wnh)
2 + (1 + ah+ c△Wn + a2ph2 + acp△Wnh)

×(bh+ d△Wn + p(abh+ ad△Wn − b)h) + (1 + ah+ c△Wn + a2ph2 + acp△Wnh)pbh]X
2
n

+[(bh+ d△Wn + p(abh+ ad△Wn − b)h)2 + (1 + ah+ c△Wn + a2ph2 + acp△Wnh)

×(bh+ d△Wn + p(abh+ ad△Wn − b)h) + (bh+ d△Wn

+p(abh+ ad△Wn − b)h)pbh]X2
n−m + [p2b2h2 + (1 + ah+ c△Wn + a2ph2 + acp△Wnh)pbh

+(bh+ d△Wn + p(abh+ ad△Wn − b)h)pbh]X2
n+1−m. (5.5)

Further, the following equalities hold for all i ∈ {n, n−m,n+ 1−m}:

E(△WnX
2
i ) = E[X2

i E(△Wn|Atn)] = 0,

E[(△Wn)
2X2

i ] = E[X2
i E
(
(△Wn)

2|Atn

)
] = hE(X2

i ),

since Xn, Xn−m, Xn+1−m are all Atn -measurable and

E(△Wn) = 0, E(△W 2
n) = h.

Taking expectation on both sides of equality (5.5) and setting Yn = EX2
n, We obtain

Yn+1 ≤ P (a, b, c, d, p, h)Yn +Q(a, b, c, d, p, h)Yn−m +R(a, b, c, d, p, h)Yn+1−m,

with

P (a, b, c, d, p, h) =1 + p2a3(a+ b)h4 + pa2(pcd+ pc2 + 2a+ 2b)h3

+a(2pcd+ 2pc2 + 2ap+ a+ b+ pb)h2 + (cd+ c2 + 2a+ b)h,

Q(a, b, c, d, p, h) =p2a2b(a+ b)h4 + a(p2acd+ p2ad2 + p2b2 + 2p(1− p)b2 + 2pab− p2ab)h3

+(2pacd+ 2pad2 − pb2 + b2 + ab)h2 + (cd+ d2 + b− pb)h,

R(a, b, c, d, p, h) =p2ab(a+ b)h3 + pb(a+ b)h2 + pbh.

If

P (a, b, c, d, p, h) ≥ 0, Q(a, b, c, d, p, h) ≥ 0, R(a, b, c, d, p, h) ≥ 0, (5.6)

then

Yn+1 ≤ S(h)max{Yn, Yn−m, Yn+1−m}, n ≥ 0, (5.7)

where

S(h) = P (a, b, c, d, p, h) +Q(a, b, c, d, p, h) +R(a, b, c, d, p, h)

= p2a2(a+ b)2h4 + pa(pa(c+ d)2 + 2(a+ b)2)h3

+(2pa(c+ d)2 + (a+ b)2 + 2pa(a+ b))h2 + 2(a+ b+
1

2
(c+ d)2)h+ 1.

Let: pa = Θ1, a+ b = Θ2, c+ d = Θ3 and write:

C1 := (Θ1Θ2)
2, C2 := Θ1(Θ1Θ

2
3 + 2Θ2

2),

C3 := 2Θ1Θ
2
3 +Θ2

2 + 2Θ1Θ2, C4 := 2(Θ2 +
1

2
Θ2

3).
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Table 5.1: Stability bounds for system (5.1).

hhhhhhhhhhhhhhhStability bounds

p
0 0.1 1/7 0.2 1/4 1/2 3/4 1

h0(−4, 1/5, 1/10, 1, p) 0.2632 0.2989 0.3226 0.3767 0.8806 0.4017 0.2468 0.1713

h0(−4, 1, 1/2, 1, p) 0.3333 0.3961 0.4480 1.0711 0.8278 0.3494 0.1958 0.1216

h0(−4, 1/10, 1/5, 1, p) 0.2564 0.2900 0.3120 0.3602 0.9065 0.4257 0.2692 0.1924

h0(−5, 3/2, 1/2, 1, p) 0.2857 0.3453 0.4000 0.8446 0.6495 0.2656 0.1423 0.0828

h0(−6, 1/2, 1/5, 1/2, p) 0.1818 0.2077 0.2253 0.2680 0.5393 0.2162 0.1113 0.0603

h0(−7, 1/3, 1/6, 1, p) 0.1500 0.1703 0.1838 0.2143 0.4943 0.2207 0.1324 0.0896

h0(−8, 1, 1/5, 1/2, p) 0.1429 0.1645 0.1798 0.2210 0.3940 0.1494 0.1667 0.1250

h0(−9, 2, 1, 1/2, p) 0.1429 0.1684 0.1886 0.5556 0.3493 0.1327 0.0621 0.0276

h0(−10, 5, 1/5, 1, p) 0.1053 0.1187 0.1275 0.1467 0.3079 0.1123 0.0486 0.0176

By recursive calculation we conclude that lim
n→∞

Yn = 0 whenever

S(h) = C1h
4 + C2h

3 + C3h
2 + C4h+ 1 < 1. (5.8)

That is,

C1h
3 + C2h

2 + C3h+ C4 < 0. (5.9)

Condition (5.3) implies that

C1h
3 + C2h

2 + C3h+ C4 = 0 (5.10)

has at least one positive real root. Furthermore, note that P (a, b, c, d, p, h), Q(a, b, c, d, p, h)

and R(a, b, c, d, p, h) are required to be nonnegative, we have b ≥ 0, cd+ d2 + b − pb ≥ 0 and

h ≤ h4, where h4 := min{hP , hQ, hR}, and

hP :=

{
min{h > 0 : P (a, b, c, d, p, h) = 0}, when P (a, b, c, d, p, h) has positive roots;

∞, when P (a, b, c, d, p, h) has no positive roots.

Similarly, we can define hQ and hR. Moreover, we write

h5 := The minimum positive real root of (5.10).

Then, min{h4, h5} is the stability bound h0(a, b, c, d, p) of the underlying method. Thus, we

obtain easily from condition (5.3) that, there exists an h0(a, b, c, d, p) > 0 such that (5.8) holds

for h ∈ (0, h0(a, b, c, d, p)).

Remark 5.1. Although we have an approach for calculating h0(a, b, c, d, p) as a function of

the parameters, there is no explicit representation and so we attempt to maximize the stability

region by computing h0(a, b, c, d, p) for a number of parameter values.

From the theorem one can see that the asymptotic MS-stability condition of the numerical

method {(2.4), (2.5)} and that of equation (5.1) keep uniform. With stability condition (5.9),

we can present the stability bound for a given concrete method, which is illustrated in Table

5.1. It is shown that the derived method can have better stability property because of the

flexible parameter p. When p ∈ [1/7, 1/4], the stability bounds are about 3 times larger than

that of Euler-Maruyama method for a wide range of parameter values for problem 5.1.
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6. Numerical illustration

6.1. Numerical examples

In order to illustrate the convergence result obtained in section 4, we consider the following

stochastic system with delay τ = 1:
{

dX(t) = [−4X(t) + 1
5X(t− 1)]dt+ [ 1

10X(t) +X(t− 1)]dW (t), t ∈ [0, 10]

ψ(t) = t+ 1, t ∈ [−1, 0).
(6.1)

Obviously, ψ(t) = t+ 1 in (6.1) is Hölder-continuous with exponent p̂ = 1. Moreover, it is easy

to check that this system satisfies the Lipschitz condition (2.2) and the linear growth condition

(2.3), which shows that a unique solution exists. By Proposition (5.1), we know that the system

(6.1) is mean-square stable. In fact, the explicit solution of the above system on [0, 1] can be

given by

X(t) =

[
1 +

1

10

∫ t

0

s exp

(
801

200
s−

1

10

∫ s

0

dW (r)

)
ds+

∫ t

0

s exp

(
801

200
s−

1

10

∫ s

0

dW (r)

)
dW (s)

]

× exp

[
−

801

200
t+

1

10

∫ t

0

dW (s)

]
, (6.2)

and the explicit solutions on the subsequent intervals can be obtained with the so-called step

method.

For a given stepsize h, when applying a strong predictor-corrector method with parameters

p = 0, p = 1/4, p = 1/2, p = 3/4, p = 1 and p = 1/7 to the system (6.1) we obtain the

corresponding numerical solutions. Obviously, when p = 0, method {(2.4), (2.5)} is the Euler-

Maruyama method. It follows from Theorem 4.1 that the mean-square convergent order of

these six methods equals 1/2.

Table 6.1: Mean-square errors for solving system (6.1).

@
@@p

h
1 1/2 1/22 1/23 1/24 1/25 1/26 1/27

0 1.76e + 002 8.28e − 0037.60e − 003 1.86e − 0031.40e − 003 1.00e − 003 4.80e − 004 2.55e − 004

1/7 5.94e − 0032.95e − 003 5.65e − 0031.36e − 0031.48e − 003 9.23e − 004 4.42e − 004 2.40e − 004

1/4 1.02e − 0023.34e − 0034.44e − 003 1.50e − 0031.54e − 003 9.20e − 004 4.13e − 004 2.38e − 004

1/2 2.18e + 0041.15e − 0024.28e − 003 2.00e − 0031.67e − 003 9.56e − 004 3.78e − 004 2.33e − 004

3/4 4.25e + 0065.57e + 0037.67e − 003 2.73e − 0031.81e − 003 9.91e − 004 3.89e − 004 2.29e − 004

1 1.16e + 0081.16e + 0071.38e − 002 3.92e − 0031.95e − 003 1.03e − 003 4.01e − 004 2.24e − 004

For numerically verifying the convergence, we use the approximation formula

err ≈ max
1≤n≤N


 1

10000

10000∑

j=1

|X(tn, ωj)−Xn(ωj)|
2




1/2

to characterize the mean-square errors

err := max
1≤n≤N

(E|εn|
2)1/2

of the methods on [0, 10]. When taking stepsizes h = 1, 1/2, 1/22, 1/23, 1/24, 1/25, 1/26, 1/27,

respectively, the mean-square errors of the six methods for (6.1) are displayed in Table 6.1,
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Fig. 6.1. Mean-square errors for solving test equation (6.1) . (h=1/27, 1/26, ...1/2, 1)

Table 6.2: Mean-square errors for solving system (6.3).

HHHHHp

h
1/2 1/22 1/23 1/24 1/25 1/26 1/27

0 1.62e + 009 1.35e + 005 1.57e − 002 2.73e − 003 1.73e − 003 1.60e − 003 7.30e − 004

1/4 3.97e + 004 4.33e − 003 4.07e − 003 2.38e − 003 1.58e − 003 1.41e − 003 6.84e − 004

1/2 3.21e + 015 1.73e + 006 3.83e − 003 3.00e − 003 1.75e − 003 1.24e − 003 6.39e − 004

3/4 1.10e + 020 5.87e + 017 1.03e − 002 3.68e − 003 1.93e − 003 1.07e − 003 5.94e − 004

1 9.04e + 022 3.28e + 024 2.33e + 007 4.45e − 003 2.11e − 003 9.77e − 004 6.45e − 004

1/7 3.57e − 003 1.16e − 002 5.91e − 003 2.51e − 003 1.54e − 003 1.49e − 003 7.04e − 004

which indicate that the strong predictor-corrector method {(2.4),(2.5)} is effective. We can see

the accuracy of method with p ∈ [1/7, 1/4] is much better than that of the Euler-Maruyama

method when using larger stepsizes.

In figure 6.1, mean-square errors are plotted against stepsizes on a log-log scale. It illustrates

that the method is convergent of order 1/2 in the mean-square sense when stepsizes are small

enough. This further confirms Theorem 4.1.

Next, we show what happens when applying the underlying method to nonlinear systems.

Consider the following nonlinear SDDE:




dX(t) = [−10X(t) +X(t− 1) cos(X(t− 1))]dt

+[sin(X(t)) + 2 sin(X(t− 1))]dW (t), t ∈ [0, 10]

ψ(t) = t+ 1, t ∈ [−1, 0).

(6.3)

The nonlinear test equation is solved by the above 6 methods with stepsizes h=1/27, 1/26, ...

1/2, respectively. We can see that the strong predictor-corrector method is also effective for the

nonlinear case. Table 6.2 and Figure 6.2 show that the stability property of the strong predictor-

corrector method is much better than that of the Euler-Maruyama method for solving (6.3). All

of the data used here are based on 10000 simulated trajectories just as the linear test equation.

6.2. Implementation via Vectorisation

In subsection 6.1, numerical results were obtained step by step, for each trajectory. The

procedure can be terrifically time consuming and this has provided the motivation to develop a
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Fig. 6.2. Mean-square errors for solving test equation (6.3) .(h=1/27, 1/26, ...1/2)

vectorised implementation for stochastic numerical methods. Just like the sequential approach,

we still implement the method step by step but we do this for all trajectories simultaneously in

the vectorised approach. This is a vectorisation across the simulations and works effectively for

explicit as well as implicit methods. Similar technique arose in [9]. Applying both the vectorised

implementation and sequential implementation to system (6.1) and (6.3) in the interval of [0, 1],

we see in Table 6.3 and Table 6.4 speed-ups are substantial. Actual solutions of system (6.1)

and (6.3) are unknown, they are approximated by using the Euler-Maruyama method with

stepsize h = 2−8. Stepsizes used in this section were h = 2−6, 2−5, 2−4 and 2−3 with 200000

simulations each.

Table 6.3: Times with Euler-Maruyama method (p = 0).

vectorised sequential speed-up factor

System (6.1) 7.4117 314.2920 42.4048

System (6.3) 15.3660 327.5115 21.3140

Table 6.4: Times with Predictor-Corrector method(p = 1

7
).

vectorised sequential speed-up factor

System (6.1) 7.0318 290.7650 41.3500

System (6.3) 16.3485 338.9233 20.7312

7. Conclusions

In this paper, we have constructed a strong predictor-corrector method with a parameter p

that can be varied as appropriate. It is shown that for all values of p ∈ [0, 1], this method has

strong order 1/2 for SDDEs. Furthermore, we have explored the asymptotic MS-stability of

this method and shown that a value of p = 1/7 gives much superior stability properties than the

Euler-Maruyama method (p = 0). This theoretical analysis and two numerical simulations (a

linear and a nonlinear scalar problem) demonstrate that the predictor-corrector method is very

promising for problems that are moderately stiff, thus avoiding the use of implicit methods.
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Finally, we discussed a way to vectorise the calculations across the simulations and hence

produced an efficient implementation that is a useful tool for generating many simulations of

the numerical solution of any SDDE efficiently.
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tegrators of weak second order for stiff Itô stochastic differential equations, BIT., 53 (2013),

827-840.

[2] J. Alcock and K. Burrage, A note on the balanced method, BIT., 46 (2006), 689-710.

[3] C.T.H. Baker and E. Buckwar, Numerical analysis of explicit one-step methods for stochastic

delay differential equations, LMS J. Comput. Math., 3 (2000), 315-335.

[4] C.T.H. Baker and E. Buckwar, Exponential stability in p-th mean of solutions, and of conver-

gent Euler-type solutions, of stochastic delay differential equations, J. Comput. Appl. Math., 184

(2005), 404-427.

[5] L. Brugnano, K. Burrage and P.M. Burrage, Adams-Type methods for the numerical solution of

stochastic ordinary differential equations, BIT., 40 (2000), 451-470.

[6] N. Bruti-Liberati and E. Platen, Strong predictor-corrector Euler methods for stochastic differen-

tial equations, Stoch. Dynam., 8 (2008), 561-581.

[7] E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J.

Comput. Appl. Math., 125 (2000), 297-307.

[8] E. Buckwar, One-step approximations for stochastic functional differential equations, Appl. Nu-

mer. Math., 56 (2006), 667-681.

[9] P.M. Burrage, Vectorised simulations for stochastic differential equations, ANZIAM J., 45

(E)(2004), C350-C363.

[10] K. Burrage and T. Tian, Predictor-corrector methods of Runge-Kutta type for stochastic differ-

ential equations, SIAM J. Numer. Anal., 40 (2002), 1516-1537.

[11] W. Cao, Z. Zhang and G E. Karniadakis, Numerical Methods for Stochastic Delay Differential

Equations Via the Wong–Zakai Approximation, SIAM J. Sci. Comput., 37: 1 (2015), A295-A318.

[12] X. Ding, Q. Ma and L. Zhang, Convergence and stability of the split-step θ-method for stochastic

differential equations, Comput. Math. Appl., 60:5 (2010), 1310-1321.

[13] Q. Guo, H. Li and Y. Zhu, The improved split-step θ methods for stochastic differential equation,

Math. Meth. Appl. Sci., (2013), doi:10.1002/mma.2972.

[14] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-

Algebraic Problems, Springer-Verlag, Berlin, 1996.

[15] D.J. Higham, X. Mao and L. Szpruch, Convergence, non-negativity and stability of a new milstein

scheme with applications to finance, Discrete Cont. Dyn. - B., 18 (2013), 2083-2100.

[16] S. Hu, C. Huang and F. Wu, Stochastic differential equations, Science Press, Beijing, 2008.

[17] P.E. Kloeden and E. Platen, Higher-order implicit strong numerical scheme for stochastic differ-

ential equations, J. Stat. Phys., 66 (2001), 283-314.
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