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Abstract

In this paper we extend the idea of interpolated coefficients for a semilinear problem to

the triangular finite volume element method. We first introduce triangular finite volume

element method with interpolated coefficients for a boundary value problem of semilin-

ear elliptic equation. We then derive convergence estimate in H
1-norm, L

2-norm and

L
∞-norm, respectively. Finally an example is given to illustrate the effectiveness of the

proposed method.
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1. Introduction

The finite volume element method is a discretization technique for partial differential equa-

tions, especially for those that arise from physical laws including mass, momentum, and energy.

The finite volume element method uses a volume integral formulation of the differential equation

with a finite partitioning set of volume to discretize the equation, then restricts the admissible

functions to a linear finite element space to discretize the solution [2, 5–7, 19, 20, 22, 23, 25, 26,

29, 30, 33–36, 41]. The method has been widely used in computational fluid mechanics as it

preserves the mass conservation. As far as the method is concerned, it is identical to the special

case of the generalized difference method or GDM proposed by Li-Chen-Wu [29].

Many works have been devoted to the analysis of finite element methods. see, e.g., [11-18].

For semi-linear problems, the finite element method with interpolated coefficients is an economic

and graceful method. This method was introduced and analyzed for semilinear parabolic prob-

lems in Zlamal [42]. Later Larsson-Thomee-Zhang [27] studied the semidiscrete linear trian-

gular finite element with interpolated coefficients and Chen-Larsson-Zhang [10] derived almost

optimal order convergence on piecewise uniform triangular meshes by the superconvergence

techniques. Xiong-Chen studied superconvergence of triangular quadratic finite element and

superconvergence of rectangular finite element for semilinear elliptic problem, respectively, and

illustrated the effectiveness of the proposed method in some examples [37–39]. Recently Xiong-

Chen first put the interpolation idea into the finite volume element method and studied the

finite volume element with interpolated coefficients of the two-point boundary problem [40].
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Li [28] considered the finite volume element method for a nonlinear elliptic problem and

obtained the error estimate in H1-norm. Chatzipantelidis-Ginting-Lazarov [8] studied the finite

volume element method for a nonlinear elliptic problem, and established the error estimates

in H1-norm, L2-norm and L∞-norm. Bi [3] obtained the H1 and W 1,∞ superconvergence

estimates between the solution of the finite volume element method and that of the finite

element method for a nonlinear elliptic problem. In this paper, we shall put the excellent

interpolating coefficients idea into the finite volume element method on triangular mesh for a

semilinear elliptic equation.

We shall denote Sobolev space and its norm by Wm,p(Ω) and ‖ · ‖m,p, respectively [1]. If

p = 2, simply use Hm(·) and ‖ · ‖m and ‖ · ‖ = ‖ · ‖0 is L2-norm. Further we shall denote by p′

the adjoint of p, i.e., 1
p +

1
p′

= 1, p ≥ 1. We shall assume that the exact solution u is sufficiently

smooth for our purpose. The constants C,C1, C2, etc. are generic in the paper.

The rest of the paper is organized as follow. First we will introduce the triangular finite

volume element method with interpolated coefficients in Section 2 and give preliminaries and

some lemmas in Section 3. Next we derive optimal order H1-norm, L2-norm and L∞-norm

estimates, respectively, in Section 4. Finally the theoretical results are tested by a numerical

example in Section 5.

2. Finite Volume Element Method with Interpolated Coefficients

Let Ω ⊂ R
2 be a bounded polygonal domain. Consider the second-order semilinear elliptic

boundary value problem:

{

− ∂
∂x

(

a11
∂u
∂x + a12

∂u
∂y

)

− ∂
∂y

(

a21
∂u
∂x + a22

∂u
∂y

)

+ f(u) = g, in Ω,

u = 0, on ∂Ω,
(2.1)

where the coefficients aij(x, y)(i, j = 1, 2) are sufficiently smooth functions satisfying the elliptic

condition, i.e., there exists a constant C > 0 such that

2
∑

i,j=1

aij(x, y)ξiξj ≥ C(ξ21 + ξ22),

holds for any real vector (ξ1, ξ2) ∈ R
2 and (x, y) ∈ Ω. It is also assumed that f ′(s) > 0 for

s ∈ (−∞,+∞) and f ′′(s) is continuous with respect to s.

Let V ⊂ Ω be any control volume with piecewise smooth boundary ∂V . Integrate (2.1) over

control volume V , then by the Green’s formula, the conservative integral of (2.1) reads, finding

u, such that

−

∫

∂V

W (1)dy +

∫

∂V

W (2)dx+

∫

V

f(u)dxdy =

∫

V

gdxdy, V ⊂ Ω, (2.2)

where

W (i) = ai1
∂u

∂x
+ ai2

∂u

∂y
, i = 1, 2.

In this paper, we shall consider triangular partition of Ω and piecewise triangle linear interpo-

lation with interpolated coefficients, for u.

Give a quasi-uniform triangulation Jh for Ω with h = maxhK , where hK is the diameter

of the triangle K ∈ Jh. All control volumes are constructed in the following way. Let QK be
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the barycentre of K ∈ Jh. Connect QK with line segments to the midpoints of the edges of

K, thus partitioning K into three quadrilaterals KP , P ∈ Zh(K), where Zh(K) are the vertices

of K. Then with each vertex P ∈ Zh = ∪K∈Jh
Zh(K) we associate a control volume VP ,

which consists of the subregions KP , sharing the vertex P0 (see Fig. 2.1). Denote the set of

interior vertices of Zh by Z0
h. For boundary nodes, their control volumes should be modified

correspondingly. All the control volumes constitute the dual partition J ∗
h .

P0

P1

P2

P4
P3

P5

P6

M1

M2

M3 M4

M5

M6

Q1

Q2

Q3

Q4

Q5

Q6

Fig. 2.1. Illustration for a dual element VP0
and its modes.

Let Sh ⊂ H1(Ω) and S0h ⊂ H1
0 (Ω) be both the piecewise triangular linear finite element

subspace over the partition Jh, and S
∗
h be the piecewise constant space over the dual partition

J ∗
h . Define interpolation operator Ih : C(Ω) → Sh and interpolation operator I∗h : C(Ω) → S∗

h.

For an arbitrary node P ∈ Z0
h, denote ϕP by nodal basic function of P and χP by characteristic

function over VP , then we have

Ihv =
∑

P∈Z0
h

v(P )ϕP , ∀v ∈ C(Ω), (2.3)

I∗hv =
∑

P∈Z0
h

v(P )χP , ∀v ∈ C(Ω). (2.4)

The standard finite volume element scheme of (2.2) can read, finding ūh ∈ S0h, such that

−

∫

∂VP0

W
(1)

h dy +

∫

∂VP0

W
(2)

h dx+

∫

VP0

f(ūh)dxdy =

∫

VP0

gdxdy, ∀P0 ∈ Z0
h,

where

W
(i)

h = ai1
∂ūh

∂x
+ ai2

∂ūh

∂y
, i = 1, 2.

For the sake of simplicity, we now define triangular linear finite volume element scheme with

interpolated coefficients, finding uh ∈ S0h, such that

−

∫

∂VP0

W
(1)
h dy +

∫

∂VP0

W
(2)
h dx+

∫

VP0

Ihf(uh)dxdy =

∫

VP0

gdxdy, ∀P0 ∈ Z0
h, (2.5)
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where

W
(i)
h = ai1

∂uh

∂x
+ ai2

∂uh

∂y
, i = 1, 2.

Eq. (2.5) can be further written as difference equations which is simpler than that of the

standard finite volume element method. It can be solved by the Newton iteration method in

which its tangent matrix can be calculated in a simple way.

Pi
Pj

Pk

Mi
Mj

Q

Mk

Fig. 2.2. A triangle K partitioned into the three subregions.

Let K = △PiPjPk be any triangle and P (x, y) a point in the triangle. As an example we

take A = −∆, then (2.5) becomes

−

∫

∂VP0

∂uh

∂n
ds+

∫

VP0

Ihf(uh)dxdy =

∫

VP0

gdxdy, ∀P0 ∈ Z0
h.

For a triangle KQi
= △P0PiPi+1, denote ai = Pi+1P0, bi = PiP0 and ci = PiPi+1 (see [29]),

where P7 = P1. Then we can get

6
∑

i=1

1

4SQi

[

(uPi
− uP0

)
b2i − c2i − a2i

2
+ (uPi+1

− uP0
)
a2i − b2i − c2i

2

]

+

6
∑

i=1

SQi

108
(22fP0

+ 7fPi
+ 7fPi+1

) =

∫

VP0

gdxdy, ∀P0 ∈ Z0
h, (2.6)

where SQi
is the area of the triangle KQi

= △P0PiPi+1 and uPi
= uh(Pi), fPi

= f(uh(Pi)).

Obviously (2.6) is a nonlinear system with respect to uPi
. For nonregular inner nodes (xPi

, yPi
),

by boundary condition the above equation should be modified correspondingly.
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3. Preliminaries and Lemmas

In the preceding section, we give the finite volume element scheme with interpolated coeffi-

cients. We will give preliminary work and some lemmas in this section. Let

a(u, I∗hϕh) =
∑

P∈Z0
h

ϕh(P )
(

−

∫

∂VP

W (1)dy +

∫

∂VP

W (2)dx
)

, ∀ϕh ∈ S0h,

(u, I∗hϕh) =
∑

P∈Z0
h

ϕh(P )

∫

VP

udxdy, ∀ϕh ∈ S0h,

and take V = VP . Then (2.2) can be written as, finding u ∈ H1
0 (Ω), such that

a(u, I∗hϕh) + (f(u), I∗hϕh) = (g, I∗hϕh), ∀ϕh ∈ S0h. (3.1)

Analogously, (2.5) is equivalent to finding uh ∈ S0h, such that

a(uh, I
∗
hϕh) + (Ihf(uh), I

∗
hϕh) = (g, I∗hϕh), ∀ϕh ∈ S0h. (3.2)

For the sake of simplicity in our analysis, we still denote the bilinear form by

a(u, v) =

∫

Ω

(

W (1) ∂v

∂x
+W (2) ∂v

∂y

)

dxdy, ∀u, v ∈ H1
0 (Ω).

Depicted as in Fig. 2.2, we convert the integral on the edge of dual partition to the related

element K = △PiPjPk ∈ Jh. Then

a(u, I∗hϕh) =
∑

K∈Jh

∑

l=i,j,k

ϕh(Pl)
(

−

∫

∂VP
l
∩K

W (1)dy +

∫

∂VP
l
∩K

W (2)dx
)

= −
∑

K∈Jh

∑

l=i,j,k

∫

∂VP
l
∩K

(W (1),W (2)) · nI∗hϕhds, ∀ϕh ∈ S0h. (3.3)

Similarly we can obtain

(u, I∗hϕh) =
∑

K∈Jh

∫

K

uI∗hϕhdxdy =
∑

K∈Jh

∑

l=i,j,k

ϕh(Pl)

∫

VP
l
∩K

udxdy, ∀ϕh ∈ S0h. (3.4)

Denote ‖·‖s and | · |s be continuous norm and continuous semi-norm of order s in Sobolev space

Hs(Ω), respectively. Define discrete zero norm, semi-norm and full-norm, respectively, by

‖ϕh‖0,h =

{

∑

K∈Jh

‖ϕh‖
2
0,h,K

}1/2

, (3.5)

|ϕh|1,h =

{

∑

K∈Jh

|ϕh|
2
1,h,K

}1/2

, (3.6)

‖ϕh‖1,h =
(

‖ϕh‖
2
0,h + |ϕh|

2
1,h

)1/2
, (3.7)

for ϕh ∈ S0h, where K = △PiPjPk, shown as in Fig 2.2, and

|ϕh|0,h,K =

[

1

3
(ϕ2

i + ϕ2
j + ϕ2

k)SK

]1/2

,

|ϕh|1,h,K =

{[

(

∂ϕh(Q)

∂x

)2

+

(

∂ϕh(Q)

∂y

)2
]

SK

}1/2

.
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From [29], we have the following lemmas.

Lemma 3.1. For ∀ϕh ∈ S0h, |ϕh|1,h and |ϕh|1 are identical and ‖ϕh‖0,h and ‖ϕh‖1,h are

equivalent with ‖ϕh‖0 and ‖ϕh‖1 respectively, i.e., there exist positive constants C1, C2, C3, C4

independent of S0h such that

C1|ϕh|0,h ≤ |ϕh|0 ≤ C2|ϕh|0,h, ∀ϕh ∈ Sh, (3.8)

C3‖ϕh‖1,h ≤ ‖ϕh‖1 ≤ C4‖ϕh‖1,h ∀ϕh ∈ Sh. (3.9)

From [7, 9, 29], we have the following three lemmas.

Lemma 3.2. ([29]) There exist positive constants C1, C2 such that

a(ϕh, I
∗
hϕh) ≥ C1|ϕh|

2
1, ∀ϕh ∈ S0h, (3.10)

|a(u− Ihu, I
∗
hϕh)| ≤ C2h‖u‖2|ϕh|1, ∀u ∈ H1

0 (Ω), ϕh ∈ S0h. (3.11)

Lemma 3.3. ([29]) The semi-norm | · |1 and the norm ‖ · ‖1 are equivalent in the space H1
0 (Ω),

that is, there exists positive constants C such that

|ϕh|1 ≤ ‖ϕh‖1 ≤ C|ϕh|1, ∀ϕh ∈ S0h. (3.12)

Lemma 3.4. The interpolation operator I∗h has the following properties

∫

K

I∗hvhdxdy =

∫

K

vhdxdy, ∀vh ∈ S0h, for any K ∈ Jh, (3.13)

∫

e

I∗hvhds =

∫

e

vhds, ∀vh ∈ S0h, for any side of K ∈ Jh, (3.14)

‖I∗hvh‖e,∞ ≤ ‖vh‖e,∞, ∀vh ∈ S0h, for any side of K ∈ Jh, (3.15)

‖ϕh − I∗hϕh‖0,p,K ≤ Ch|ϕh|1,p,K , ∀ϕh ∈ S0h, 1 ≤ p ≤ ∞. (3.16)

Proof. For vh ∈ Sh in K ∈ Jh, write vh as

vh = vh(Pi)λi + vh(Pj)λj + vh(Pk)λk.

Then we have
∫

K

I∗hvhdxdy =
∑

l=i,j,k

vh(Pl)

∫

K∩VP
l

dxdy =
1

3
[vh(Pi) + vh(Pj) + vh(Pk)]SK ,

∫

K

vhdxdy =
∑

l=i,j,k

∫

K

vh(Pl)λldxdy =
1

3
[vh(Pi) + vh(Pj) + vh(Pk)]SK .

The desired result (3.13) is derived from the above two formulations. From [9] we also obtain

(3.14)–(3.16). �

For the interpolation operator Ih, we need the following lemma.

Lemma 3.5. ([9]) Assume w, ϕ are sufficiently smooth functions. Let Ihϕ ∈ S0h be the La-

grangian interpolation of ϕ, then

|(w (ϕ− Ihϕ), ψh)| ≤ Ch2‖ϕ‖2,p‖ψh‖1,p′ , ∀ψh ∈ S0h, (3.17)

for 1
p + 1

p′
= 1, 1 < p ≤ ∞.



158 Z.G. XIONG AND Y.P. CHEN

In view of the Schwartz inequality, we can obtain the following result.

Lemma 3.6. Assume w ∈ H1
0 (Ω), then there exists a positive constant C, independent of the

mesh size h, such that

|(w − Ihw, I
∗
hϕh)| ≤ Ch2‖w‖2‖ϕh‖0, ∀ϕh ∈ S0h. (3.18)

Lemma 3.7. ([8]) Let e be a side of a triangle K ∈ Jh. Then for w ∈ H1(K) there exists a

constant C > 0 independent of h such that

∣

∣

∣

∣

∫

e

w(vh − I∗hvh)ds

∣

∣

∣

∣

≤ Ch2‖u‖1,K‖vh‖1,K , ∀vh ∈ Sh. (3.19)

Moreover, for g ∈ H1 and vh ∈ S0h,

(g, vh − I∗hvh) ≤ Ch2‖g‖1‖vh‖1. (3.20)

For our theoretical analysis, we also need the following two lemmas.

Lemma 3.8. Let u ∈ H2. The following identities hold

∑

K∈Jh

∫

∂K

(W (1),W (2)) · nvhds = 0,
∑

K∈Jh

∫

∂K

(W (1),W (2)) · nI∗hvhds = 0, (3.21)

∑

K∈Jh

∫

∂K

(W (1)
e ,W (2)

e ) · nvhds = 0,
∑

K∈Jh

∫

∂K

(W (1)
e ,W (2)

e ) · nI∗hvhds = 0, (3.22)

where W
(i)
e = ai1(e)

∂u
∂x + ai2(e)

∂u
∂y , i = 1, 2 and aij(e) are the value of aij at the midpoint of the

edge e of triangle K ∈ Jh.

Proof. The first identity of (3.21) is obvious by rewriting the sum as integrals of jump

terms over the interior edges of Jh. These jumps obviously vanish because of the continuity of

(W (1),W (2)) · n. A similar argument gives the second identity of (3.21) and two identities of

(3.22). �

Lemma 3.9. Let un be defined by (3.2). For any vn ∈ Sh,

|a(uh, vh)− a(uh, I
∗
hvh)| ≤ C

(

h2‖u‖2 + h‖u− uh‖1

)

‖vh‖1. (3.23)

Proof. Using the Green’s formula, the identity

∫

VP∩K

(

∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

dxdy

=

∫

VP∩∂K

(W
(1)
h ,W

(2)
h ) · nds+

∫

∂VP∩K

(W
(1)
h ,W

(2)
h ) · nds, (3.24)

holds for P ∈ Z0
h and K ∈ Jh. Hence we have

a(uh, I
∗
hvh) = −

∑

K∈Jh

∫

K

(

∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

I∗hvhdxdy

+
∑

K∈Jh

∫

∂K

(W
(1)
h ,W

(2)
h ) · nI∗hvhds. (3.25)
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By the Green’s formula, we also obtain

a(uh, vh) =
∑

K∈Jh

∫

K

(

W
(1)
h

∂vh

∂x
+W

(2)
h

∂vh

∂y

)

dxdy

= −
∑

K∈Jh

∫

K

(

∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

vhdxdy +
∑

K∈Jh

∫

∂K

(W
(1)
h ,W

(2)
h ) · nvhds. (3.26)

Subtracting (3.25) from (3.26) gives

a(uh, vh)− a(uh, I
∗
hvh) = −

∑

K∈Jh

∫

K

(

∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

(vh − I∗hvh)dxdy

+
∑

K∈Jh

∫

∂K

(W
(1)
h ,W

(2)
h ) · n(vh − I∗hv)ds. (3.27)

Lemma 3.8 gives the identity

∑

K∈Jh

∫

∂K

(

−W (1) − (W
(1)
h −W (1))e,−W

(2)
h − (W

(2)
h −W

(2)
h )e

)

· n(vh − I∗hv)ds = 0,

where

(W
(i)
h −W (i))e = ai1(e)

∂uh − u

∂x
+ ai2(e)

∂uh − u

∂y
, i = 1, 2.

Employing this identity, (3.13) in Lemma 3.4, we get

a(uh, vh)− a(uh, I
∗
hvh)

= −
∑

K∈Jh

∫

K

(

∂

∂x
W

(1)
h − ξ1 +

∂

∂y
W

(2)
h − ξ2

)

(vh − I∗hvh)dxdy

+
∑

K∈Jh

∫

∂K

(

(W
(1)
h −W (1))− (W

(1)
h −W (1))e, (W

(2)
h −W

(2)
h )− (W

(2)
h −W

(2)
h )e

)

·n(vh − I∗hv)ds ≡
∑

K∈Jh

(IK + IIK), (3.28)

where ξ1 and ξ2 are the mean values of ∂
∂xW

(1)
h and ∂

∂yW
(2)
h over triangle K, respectively. By

using the Holder’s inequality, we can get

|IK | ≤ Ch(|W
(1)
h |1,K + |W

(2)
h |1,K)h‖vh‖1,K ≤ Ch2‖uh‖1,K‖vh‖1,K

≤ Ch2
(

‖u− uh‖1,K + ‖u‖1,K

)

‖vh‖1,K . (3.29)

To bound IIK , we have

|IIK | ≤ Ch

(

2
∑

i=1

∣

∣

∣

∣

(ai1 − ai1(e))
∂(uh − u)

∂x
+ (ai2 − ai2(e))

∂(uh − u)

∂y

∣

∣

∣

∣

1,K

)

‖vh‖1,K

≤ Chmax |a′ij |(‖u− uh‖1,K + h‖u‖2,K)‖vh‖1,K . (3.30)

Summing up (3.29) and (3.30) over all triangles, we obtain the desired (3.23). �
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4. Error Estimate of the Finite Volume Element

We have given the definition of the finite volume element scheme with interpolated coeffi-

cients. Now we analyze the error of the scheme. To start our analysis, we introduce an auxiliary

bilinear form

A(u;w, I∗hϕh) = a(w, I∗hϕh) + (f ′(u)w, I∗hϕh),

where u is the exact solution in (2.1). For the auxiliary bilinear form A(u; ·, ·), we have following

positive definite properties.

Lemma 4.1. For fixed u ∈ H1
0 (Ω), A(u;wh, I

∗
hwh) is positive definite for sufficiently small h,

i.e., there exists a positive constant α, such that

A(u;wh, I
∗
hwh) ≥ α(u, f)‖wh‖

2
1, ∀wh ∈ S0h. (4.1)

Proof. Rewrite A(u;wh, I
∗
hwh) as

A(u;wh, I
∗
hwh) = a(wh, I

∗
hwh) + (f ′(u)wh, wh)−

(

(f ′(u)wh, wh)− (f ′(u)wh, I
∗
hwh)

)

. (4.2)

Application of Lemma 3.2 and Lemma 3.3 yields

a(wh, I
∗
hwh) ≥ C1‖wh‖

2
1. (4.3)

Note that f ′(s) > 0 and let C2 = inf
P∈Ω

f ′(u(P )) for the fixed u. Then we have

(f ′(u)wh, wh) ≥ C2‖wh‖
2
0 ≥ 0. (4.4)

It follows from (3.13) in Lemma 3.7 that

|(f ′(u)wh, wh)− (f ′(u)wh, I
∗
hwh)|

=

∣

∣

∣

∣

∣

∑

K∈Jh

∫

K

f ′(u)wh(wh − I∗hwh)dxdy

∣

∣

∣

∣

∣

≤
∑

K∈Jh

Ch|f ′(u)wh|1,Kh|wh|1,K

≤ max
Ω

(|f ′′(u)∇u|, |f ′(u)|)
∑

K∈Jh

Ch2‖wh‖
2
1,K ≤ C3h

2‖wh‖
2
1, (4.5)

This, together with (4.3)–(4.5), gives

A(u;wh, I
∗
hwh) ≥ C1‖wh‖

2
1 − C3h

2‖wh‖
2
1 = (C1 − C3h

2)‖wh‖
2
1,

which implies the desired result (4.1) for sufficiently small h. �

Now we state the main result of this section.

Theorem 4.1. Assume f ′(s) > 0, f ∈ C2(R), g ∈ L2(Ω). Let u ∈ H1
0 (Ω) ∩H

2(Ω) is the solu-

tion of (2.1) and Jh is quasi-uniformly triangular partition of domain Ω, then the approximate

solution uh ∈ S0h of finite volume element method (2.5) with interpolated coefficients converges

to the exact solution u with the following estimate

‖u− uh‖1 ≤ C(u, f, g)h, (4.6)

for sufficiently small h.
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Proof. Subtracting (3.2) from (3.1), we obtain the following error equation

a(u− uh, I
∗
hϕh) + (f(u)− Ihf(uh), I

∗
hϕh) = 0. (4.7)

By expansion in an element τ ∈ Jh, we have

Ih(f(u)− f(uh)) =
∑

j

(f(u(Pj))− f(uh(Pj)))

= f ′(u)(Ihu− uh) + δ1 max
τ

|Ihu− uh|+ δ2 max
τ

|Ihu− uh|
2, (4.8)

where

δ1 = C max
P ′,P ′′∈τ

|f ′(u(P ′))− f ′(u(P ′′))| = O(h),

δ2 =
1

2
f ′′(ξ) = O(1), |ξ| ≤ max

P∈Ω
|u(P )|.

Substituting (4.8) into (4.7), we find

A(u;uh − Ihuh, I
∗
hϕh)

= a(u;u− Ihu, I
∗
hϕh) + (f(u)− Ih(u), I

∗
hϕh) +

∑

τ∈Jh

(r, I∗hϕh),

where r = δ1 max
τ

|Ihu− uh|+ δ2 max
τ

|Ihu− uh|
2. Let θ = uh − Ihu ∈ S0h and take ϕh = θ. An

application of Lemmas 4.1, 3.2 and 3.6, and the Hölder inequality yields

α‖θ‖21 ≤ Ch‖θ‖1 + C(h‖θ‖0,∞ + ‖θ‖20,∞)‖θ‖0,1.

Recalling for Bramble [4] that

‖θ‖0,∞ ≤ C| ln h|1/2‖∇θ‖ ≤ C| lnh|1/2‖θ‖1 (4.9)

holds for θ ∈ S0h and by the well known Sobolev inequality

‖v‖0,p ≤ C‖v‖1, 1 ≤ p <∞, (4.10)

we get

α‖θ‖21 ≤ Ch‖θ‖1 + C(h| lnh|1/2‖θ‖1 + | lnh|‖θ‖21)‖θ‖1.

Omitting the common factor ‖θ‖1, gives

α‖θ‖1 ≤ Ch+ Ch| lnh|1/2‖θ‖1 + C| lnh|‖θ‖21. (4.11)

For h ≤ h′, omitting the second term of the right-side implies

‖θ‖1 ≤ C1h+ C2| lnh|‖θ‖
2
1. (4.12)

Now adopting a continuity argument by imitating the method by Frehse-Rannacher [24], yields

‖θ‖1 ≤ ‖Ihu− uh‖1 ≤ 2C1h. (4.13)
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For s ∈ [0, 1] considering the auxiliary semilinear elliptic problems (Ps): Find us such that

{

− ∂
∂x

(

a11
∂us

∂x + a12
∂us

∂y

)

− ∂
∂y

(

a21
∂us

∂x + a22
∂us

∂y

)

+ sf(us) = sg, in Ω,

us = 0, on ∂Ω.
(4.14)

Obviously, for s = 1 this is our original problem (2.1) and for s = 0 we have u0 ≡ 0 on Ω̄. We

shall assume the following condition on Ω. For any s ∈ [0, 1], there is a solution us of problem

(Ps) and there is a constant Γ such that the set

NΓ =
{

ω|ω ∈ H2(Ω) ∩H1
0 (Ω),max

Ω
|u− ω| < Γ

}

is some neighborhood of exact solution u in (2.1).

We approximate problem (Ps) by the discrete problems (Ps
h): Find u

s
h ∈ S0h such that

a(ush, I
∗
hvh) + s(Ihf(u

s
h), I

∗
hvh) = s(g, I∗hvh), ∀vh ∈ S0h. (4.15)

We intend to show that (Ps
h) is solvable. For each h, we define the set Eh ⊂ [0, 1] by

Eh =
{

s ∈ [0, 1]|(Ps
h) has a solution ush ∈ NΓ

and there holds ‖Ihu
s − ush‖1 ≤ 2C1h

}

,

where C1 is the constant appearing in (4.12). Below gives some observations:

(i) Eh is not empty. In fact, for s = 0, us = 0 and ush = 0 are the solutions of continuous

and the discrete problem, respectively.

(ii) Eh is open in [0, 1]. In fact, if s ∈ Eh then (Ps
h) is solvable and using the monotonicity

condition, we obtain the solvability of (Ps
h) for all t in a neighborhood of s via the implicit

function theorem. By the implicit function theorem uth depends continuously on t. Thus

properly shorten the neighborhood such that the strict inequality ‖Ihu
s − ush‖1 < 2C1h and

ush ∈ NΓ is still valid and we have t ∈ Eh for these t.

(iii) Eh is closed. Let s(j) ∈ Eh and s(j) → s, j → ∞. Since u
s(j)
h ∈ NΓ there is a cluster

point ush which is the unique solution of (Ps
h) and satisfies ‖Ihu

s − ush‖1 ≤ 2C1h. Recalling for

(4.12) we conclude

‖Ihu
s − ush‖1 ≤ C1h+ 4C2C

2
1 | lnh|h

2 ≤ C1(1 + 4C1C2| lnh|h)h,

then for h ≤ h′′ = h′′(C1, C2), we have 4C1C2| lnh|h < 1 and ‖Ihu
s − ush‖1 < 2C1h, i.e. the

strict inequality.

From (i)–(iii), we know that for h ≤ min(h′, h′′) the set Eh is not empty, closed and open

with respect to [0, 1] and thus must coincide with [0, 1]. Note that for s = 1, (P1
h) is solvable.

We prove that inequality (4.13) and uh ∈ NΓ hold for appropriately small h.

Finally, the desired estimate (4.6) follows from (4.13) and the interpolation property

‖u− Ihu‖1 ≤ Ch‖u‖2.

This completes the proof of this theorem. �

For the proof of the L2-norm estimate, we shall employ a duality argument as the one used

in [7, 21], Let us consider the another auxiliary problem. Let ϕ ∈ H1
0 be such that

a(ϕ, v) + (f ′(u)ϕ, v) = (u− uh, v), ∀v ∈ H1
0 . (4.16)
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Then the solution of (4.16) satisfies the following elliptic regularity estimate

‖ϕ‖2 ≤ C‖u− uh‖. (4.17)

Theorem 4.2. Assume f ′(s) > 0, f ∈ C2(R), g ∈ H1(Ω). Let u ∈ H1
0 (Ω) ∩ H2(Ω) be the

solution of (2.1) and uh ∈ S0h be the approximate solution of finite volume element method (2.5)

with interpolated coefficients, respectively. Assume Jh is quasi-uniform triangular partition of

domain Ω. Then

‖u− uh‖ ≤ C(u, f, g)h2, (4.18)

holds for sufficiently small h.

Proof. First, in view of (4.16), we have

‖u− uh‖
2 = a(u− uh, ϕ) + (f ′(u)(u − uh), ϕ)

=
(

a(u − uh, ϕ− Ihϕ) + (f ′(u)(u− uh), ϕ− Ihϕ)
)

+
(

a(u− uh, Ihϕ) + (f ′(u)(u− uh), Ihϕ)
)

=: I1 + I2. (4.19)

Using the interpolation property, we can get

|I1| ≤ C(u, f)h‖u− uh‖1‖ϕ‖2. (4.20)

Notice (4.8) and rewrite I2 as

I2 = a(u, Ihϕ)− a(uh, Ihϕ) + (f ′(u)(u− uh), Ihϕ)

− (g, I∗hϕ) + a(uh, I
∗
hϕ) + (Ihf(uh), I

∗
hϕ)

= [(g, Ihϕ)− (g, I∗hϕ)]− [a(uh, Ihϕ)− a(uh, I
∗
hϕ)]− (f(u)− Ihf(u), Ihϕ)

− [(Ihf(u), Ihϕ− I∗hϕ)] + (f ′(u)(u− uh), Ihϕ)− (Ih(f(u)− f(uh)), I
∗
hϕ)

= [(g, Ihϕ)− (g, I∗hϕ)− [a(uh, Ihϕ)− a(uh, Ihϕ)]− (f(u)− Ihf(u), Ihϕ)

− [(Ihf(u), Ihϕ− I∗hϕ)] + (f ′(u)R, Ihϕ)− [(f ′(u)θ, Ihϕ)− (f ′(u)θ, I∗hϕ)] +
∑

τ∈Jh

(r, I∗hϕ).

Applying Lemmas 3.5, 3.7 and 3.9, and (4.9)–(4.10), we get

|I2| ≤ C
(

h2 + h‖u− uh‖1 + h| lnh|1/2‖θ‖1 + h| lnh|‖θ‖21

)

‖ϕ‖1. (4.21)

Therefore, substituting (4.20), (4.21) and (4.17) into (4.19) yields

‖u− uh‖
2 ≤ |I1|+ |I2| ≤ C

(

h2 + h‖u− uh‖1 + h| lnh|1/2‖θ‖1 + h| lnh|‖θ‖21

)

‖u− uh‖.

Omitting the common factor ‖u− uh‖ gives

‖u− uh‖ ≤ C
(

h2 + h‖u− uh‖1 + h| lnh|1/2‖θ‖1 + h| lnh|‖θ‖21

)

.

This, together with (4.6) and (4.13) in Theorem 4.1, gives the desired estimate (4.18). �

Theorem 4.3. Assume f ′(s) > 0, f ∈ C2(R), g ∈ H1(Ω). Let u ∈ H1
0 (Ω) ∩W

2,∞(Ω) be the

solution of (2.1) and uh ∈ S0h be the approximate solution of finite volume element method

(2.5) with interpolated coefficients, respectively. Assume that the coefficients a12, a21 in (2.1)

satisfy a12 = a21 and Jh is quasi-uniform triangular partition of domain Ω. Then

‖u− uh‖0,∞ ≤ Ch2| lnh|, (4.22)

where the constant C is dependent of u, f, g and independent of h.
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Proof. By using the triangle inequality, we have

‖u− uh‖0,∞ ≤ ‖u− ũh‖0,∞ + ‖ũh − uh‖0,∞,

where ũh is the finite element approximation of u satisfying

a(ũh, vh) + (f(ũh), vh) = (g, vh), ∀vh ∈ S0h. (4.23)

It has been shown in [7, 9, 31] that

‖u− ũh‖0,∞ ≤ C(u, f)h2| lnh|, (4.24)

‖u− ũh‖1 ≤ C(u, f)h, (4.25)

‖ũh‖1 ≤ C. (4.26)

Next, we turn our attention to the estimate of ‖ũh − uh‖0,∞. Let P ∗ ∈ K0 ⊂ Jh such that

‖ũh − uh‖0,∞ = |(ũh − uh)(P
∗)| and δP∗ ∈ C∞

0 (Ω) is a regularized Dirac δ-function satisfying

(δ, vh) = vh(P
∗).

Consider the corresponding regularized Green’s function G ∈ H1
0 (Ω), defined by

a(G, v) + (f ′(ũh)G, v) = (δP∗ , v), ∀v ∈ H1
0 (Ω). (4.27)

Let Gh ∈ S0h be the finite element approximation of G, i.e.

a(G−Gh, vh) + (f ′(ũh)(G −Gh), vh) = 0, ∀vh ∈ S0h.

Then, in terms of (3.2) and (4.23), we can get

‖ũh − uh‖0,∞ = (δP∗ , ũh − uh) = a(ũh − uh, Gh) + (f ′(ũh)(ũh − uh), Gh)

= (g,Gh)− (f(ũh), Gh)− a(uh, Gh) + (f ′(ũh)(ũh − uh), Gh)

+ a(uh, I
∗
hG) + (Ihf(uh), I

∗
hGh)− (g, I∗hGh)

=
{

(g,Gh − I∗hGh)− a(uh, Gh − I∗hGh)
}

+
{

(Ihf(uh), I
∗
hGh)

− (f(uh), Gh)
}

+ (f ′(ũh)(ũh − uh)− f(ũh) + f(uh), Gh)

=: I3 + I4 + I5. (4.28)

Using Lemma 3.7, Lemma 3.9 and Theorem 4.1, gives

|I3| ≤ Ch2‖g‖1‖Gh‖1 + C(h‖u− uh‖1 + h2‖u‖2)‖Gh‖1

≤ C(u, g)h2‖Gh‖1. (4.29)

Using Lemma 3.7 and the interpolation property, we have

|I4| = |(f(uh), Gh − I∗hGh)|+ |(f(uh)− Ihf(uh), I
∗
hGh)|

≤ C(u, f)h2‖Gh‖1. (4.30)

Using

f(uh)− f(ũh)− f ′(ũh)(uh − ũh)

= (uh − ũh)
2

∫ 1

0

f ′′(uh − t(uh − ũh))(t− 1)dt,
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and (4.25) and Theorem 4.1, we get

|I5| ≤ |(f ′(ũh)(ũh − uh)− f(ũh) + f(uh), Gh)|

≤ C‖(ũh − uh)
2‖‖Gh‖ ≤ C1h

2‖Gh‖. (4.31)

In addition, it follows from [7, 32] that

‖Gh‖1 ≤ C| ln h|1/2. (4.32)

Combining (4.29)-(4.31) we obtain

‖ũh − uh‖0,∞ ≤ Ch2| lnh|1/2.

From this and (4.24) we get

‖u− uh‖0,∞ ≤ C(1 + | lnh|−1/2)h2| lnh|,

which gives the desired estimate (4.22) for sufficiently small h. �

5. Numerical Example

In this section we present a numerical experiment to verify the theoretical results. We

consider the following semilinear elliptic problem

−∆u+ u3 = g, in Ω = (0, 1)× (0, 1), u = 0, on ∂Ω, (5.1)

where the function g is chosen, such that the known solution is

u(x, y) = y(1− x) sin(x(1 − y)).

Place a right triangular decomposition on the domain Ω = (0, 1)×(0, 1) with the right-angle-side

length h = 1
N , xi =

i
N , yj =

j
N , i, j = 0, 1, . . . , N , see Fig. 5.1.
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Fig. 5.1. The right triangulation of Ω = (0, 1)× (0, 1) with the right-angle-side length h = 1
5 .
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By using the linear triangular finite volume element method with interpolated coefficients,

we obtain the numerical results as listed in Table 5.1. From Table 5.1, one can see that the

triangular linear finite volume element with interpolated coefficients satisfies the results in our

theoretical analysis.

Table 5.1. Errors of FVEM with interpolated coefficients.

H
1-seminorm L

2-norm L
∞-norm

h Error Rate Error Rate Error Rate

0.200 8.4484e − 4 5.1397e − 4 6.0746e − 4

0.100 3.1565e − 4 1.4204 1.2708e − 4 2.0159 1.2431e − 4 2.2888

0.050 9.0075e − 5 1.8091 3.1677e − 5 2.0042 2.8110e − 5 2.1448

0.025 2.3786e − 5 1.9210 7.9135e − 6 2.0011 6.6846e − 6 2.0722
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