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Abstract

This paper covers the review and some aspects of using Multigrid method for fluid

dynamics problems. The main development stages of multigrid technics are presented.

Some approaches for solving Navier-Stokes equations and convection- diffusion problems

are considered.
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1. Introduction

Fluid dynamics and transport phenomena, such as heat and mass transfer, play an important

role in human life. Gases and liquids surround us, flow inside our bodies have a profound

influence on the environment in which we live. Fluid flows produce winds, rains, floods, and

hurricanes. Convection and diffusion are responsible for temperature fluctuations and transport

of pollutants in air, water or soil.

The ability to understand, predict, and control transport phenomena is essential for many

industrial applications, such as aerodynamic shape design, oil recovery from an underground

reservoir, or multiphase/multicomponent flows in furnaces, heat exchangers, and chemical re-

actors. This ability offers substantial economic benefits and contributes to human well-being.

Heating, air conditioning, and weather forecast have become an integral part of our everyday

life. Most people take such things for granted and hardly ever think about the physics and

mathematics behind them [1]. In physics fluid dynamics is a subdiscipline of fluid mechanics

that deals with fluid flow-the natural science of fluids (liquids and gases) in motion. It has sev-

eral subdisciplines itself, including aerodynamics (the study of air and other gases in motion)

and hydrodynamics (the study of liquids in motion).

Before the twentieth century, hydrodynamics was synonymous with fluid dynamics. This is

still reflected in names of some fluid dynamics topics, like magnetohydrodynamics and hydro-

dynamic stability, both of which can also be applied to gases.

Fluid dynamics has a wide range of applications, including calculating forces and moments

on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather

patterns, understanding nebulae in interstellar space. Some of its principles are even used in

traffic engineering, where traffic is treated as a continuous fluid.

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics

that uses numerical methods and algorithms to solve and analyze problems that involve fluid

flows. The fundamental basis of almost all CFD problems are the Navier-Stokes equations,
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which define any single-phase (gas or liquid, but not both) fluid flow. These equations can be

simplified by removing terms describing viscous actions to yield the Euler equations. Further

simplification, by removing terms describing vorticity yields the full potential equations. Finally,

for small perturbations in subsonic and supersonic flows (not transonic or hypersonic) these

equations can be linearized to yield the linearized potential equations.

The other most common equation in the computational fluid dynamics field is the convection-

diffusion equation. Mathematical models that involve a combination of convective and diffusive

processes are among the most widespread in all the sciences. Research of these processes is

especially important and difficult when convection is dominant. At the same time, convection-

diffusion equations are used as tests in researching iterative methods for solving systems of

strongly nonsymmetric linear equations.

During the simulation of some physical phenomena, in the CFD, the solution of large linear

systems is usually required. With the ongoing increase of the complexity of the problems to

treat, the solution phase may be very costly. It is not sufficient to use the latest technology of

computers. An effort should be put into algorithms for solving such systems. For such systems,

involving several millions of degrees of freedoms, direct methods [2] are not convenient, and

iterative methods [3] usually suffer from a low convergence speed. Hybrid methods, like domain

decomposition methods [4], can be considered. These methods consist to split the global sys-

tem to solve into multiple sub-systems, each subsystem being solved independently by sharing

information along so called interface conditions between neighboring sub-systems. These inter-

face conditions can be optimized for the performance of the algorithm [5]. Unfortunately, these

methods might suffer from convergence problems, and suitable preconditioning techniques lead

to an additional computational cost.

Multigrid methods (MGM) are known to be a viable alternative to the previous solution

strategies especially for elliptic dominated problems [6]. They are the fastest numerical methods

for solving boundary value problems [7]. Multigrid methods were the first to overcome the

complexity barrier connected with that the amount of work does not remain proportional to

the number of unknowns. The starting point of the multigrid and indeed also its ultimate upshot

is the following “golden” rule: The amount of computational work should be proportional to

the amount of real physical changes in the computed system.

The field of multigrid methods has become too large to review in a single article. Therefore,

in this paper, we restrict our attention to the class of problems which is actual one for fluid

dynamics: Navier-Stokes equations and convection- diffusion problems.

2. Multigrid Method: Main Development Stages

First working multigrid method was developed and analyzed by Fedorenko [8] for the Laplace

equation on the unit square. Bachvalov [9] considered the theoretically much more complex

case of variable coefficients.

The main observation of multigrid techniques is based on a Fourier analysis of the residual

(or error) vector of a sequence of iterates that are generated by a scheme such as Jacobi

or Gauss-Seidel (for instance). This means that these residual vectors are analyzed in the

eigen-basis associated with the iteration matrix M - assuming that M has a complete set of

eigenvectors. In the case of Jacobi, the observation is that the components associated with

the largest eigenvalues (in the original matrix) will decrease rapidly. However, those associated

with the smallest eigenvalues will converge much more slowly. As a result after a few steps, the
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“high-frequency” components may have converged while the “low-frequency” components may

have made very little progress in comparison. To correct this situation, researchers developed

methods that used several grids. The simplest idea is to use two meshes one fine and one that

is coarser, where the fine mesh can be viewed as the result of refining the coarse one. The

iteration initially takes place on the fine mesh. After a few steps, the residual is projected onto

the coarse mesh, by some form of restriction. Let A2h be the matrix for the problem on the

coarse mesh and r2h this projected residual. The system A2hδ = r2h is then solved on the

coarse mesh by means of a few steps of relaxation. This is called a correction step. The vector

δ is then extrapolated into the finer mesh and the result is added as a correction to the iterate

on the fine mesh.

Although the basic idea of combining discretization on different grids in an iterative scheme

appears to be very natural, the potential of this idea was not recognized before the middle of

the 1970s. At this time, the multigrid idea began to spread. The report of Hackbusch [10]

and the paper of Brandt [11] were the historical breakthrough. The first big multigrid confer-

ence in 1981 in Koln was a culmination point of the development; the conference proceedings

edited by Hackbusch and Trottenberg [12] are still a basic reference. With Hackbusch’s 1985

monograph [13], the first stage in multigrid theory came to an end.

Russian scientists have made great contribution to the development of the MGM method.

The Russian Federation National Award 2003 was handed over to G. Astahancev, N. Bahvalov,

R. Fedorenko, V. Shaidurov for a cycle of fundamental works on creation and the subsequent

heading highly effective multigrid method for the numerical solution of a wide class of mathe-

matical physics problems.

Today, multigrid methods are used in nearly every field where partial differential equations

are solved by numerical methods. The multigrid method [14] belongs to a group of iterative

solvers, and it is one of the most efficient and widespread methods to solve large systems of

linear equations [15]. Its efficiency is based on the fact that the multigrid method presents a

potential to solve N×N linear systems with only O(N) computational effort.

Two different approaches can be accomplished employing the multigrid method according to

the kind of data and information employed and also how the operators deal with them: the geo-

metric multigrid (GMG) and the algebraic multigrid (AMG). The main difference between AMG

and GMG is related to the manner of constructing the coarser grids [16]: the AMG method

requires no knowledge of the geometry of the problem [17]. The GMG method [14] employ fixed

grid hierarchies and, therefore, an efficient interplay between smoothing and coarse-grid correc-

tion has to be ensured by selecting appropriate smoothing processes [14]. On the other hand,

the AMG method [16, 17] fixes the smoother to some simple relaxation scheme and enforces

an efficient interplay with coarse-grid correction by choosing the suitable coarser levels and the

interpolation [14]. The grid hierarchies in the AMG is generated in the setup phase (which is

an initial or start-up phase), by considering the coefficient matrix, as well as the build inter-

polation, restriction and coarse-grid operators [17, 18]. The application of the AMG method

includes problems in which the use of the GMG method is difficult or even impracticable, such

as: unstructured grids, large matrix equations which are not at all derived from continuous

problems, extreme anisotropic equations and so on. A remarkable use of the AMG method

takes place when there is none information about the problem geometry [18]. Table 1, adapted

from Chang et al. [19], provides a comparison between the AMG and the GMG methods.

Both strategies, GMG and AMG, present similar steps. The first one is the generation

of the coarser grids (levels), which is followed by the transfer of information among different
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Table 2.1: Comparison between the GMG and the AMG methods.

Features GMG AMG

Solved problem Continuous problem Linear systems of algebraic equations

Used information Geometrical structure Only entries of the matrix

of the problem

Program Necessity of composing a Only one program

program for each problem for different problems

Efficiency Very good Good

grids (restriction and prolongation operators). Then linear system in each grid is solved by

an iterative smoother (solver), according to the choice of a multigrid cycle (F-cycle, V-cycle,

W-cycle ) [14]. The decision about choice of iterative method as smoother (solver), operators

restriction and prolongation often involve considerable algorithmic research.

According to Trottenberg et al. [14], a single modification in the algorithm might result in

a significant reduction of the CPU time requirements. The efficiency of the multigrid methods

is also related to the adaptations of the multigrid components, which should be made properly

according to the underlying physical problem and the variational formulation [20]. Unfortu-

nately, the works available in the literature do not present deep studies about the components

of the AMG algorithm and their optimization. More precisely, in such works, new coarsening

algorithms and/or new interpolation operators are introduced, like the work of Xiao et al. [21],

or to papers in which the AMG performance is compared to the GMG one [20,22]. In the latter

case, such comparisons are limited to the CPU time, the number of cycles and the study of the

multigrid efficiency provided by the speedup value.

The CPU time and its growth, according to the number of unknowns, were studied by

Watanabe et al. [22], for both AMG and GMG. Both multigrid methods were also studied

by Langer and Pusch [20], where comparisons for the number of cycles spent by the AMG

and by the GMG, as well as the time requirements for the auxiliary grids generation were

presented. The number of cycles was also revised by Wu and Elman [23], by using as stop

criterion a given tolerance value; it was seen that the GMG convergence was slower than the

AMG for convection-diffusion problems. Campos et al. [24] made a comparison between the

performances of the AMG and the GMG, both with parallelized and preconditioned algorithms

which are suitable for a non-linear system of differential equations. Additionally, simulations

were performed varying the number of grids, for both the AMG and the GMG, and the grid

reduction factor for the AMG, executed by 1, 2, 4 or 6 processors; the performance of the AMG

algorithm was better than the one obtained by the GMG for both CPU time and memory.

Systematic studies about the multigrid parameters where found only for the GMG method.

Gaspar et al. [25] presented theoretical and numerical results for the GMG with triangular

grids, by applying distinct multigrid cycles, different numbers of inner iterations and proposing

a new smoother (solver). On the other hand, Oliveira et al. [26] computed optimum values for

the inner iterations and the levels used in heat diffusion problems with structured square grids.

As it was mentioned above MGM is very actively used in computational fluid dynamics.

Computational fluid dynamics (CFD) gives rise to very large systems requiring efficient

solution method. Not surprisingly, MGM found application in CFD at an early stage. The

compressible potential equation was solved with MGM in 1976, the incompressible Navier-

Stokes equations shortly after [27, 28].
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3. Basic Principles of the MGM

Multigrid method is not a fixed algorithm. There is rather a multigrid technique fixing

only the framework of the algorithm. The efficiency of the multi-grid algorithm depends on

the adjustment of its components to the problem under consideration [13]. Thanks to this fact

the main contemporary study on multigrid methods focuses on “almost” self-adjoint positive-

definite problems in linear case, and on “almost” linear problems in nonlinear case.

There are many variations of multigrid algorithms, but the common feature is that a hierar-

chy of discretizations (grids) is considered. The important steps are: smoothing - reducing high

frequency errors, for example using a few iterations of the Gauss-Seidel method; restriction -

downsampling the residual error to a coarser grid; interpolation or prolongation - interpolating

a correction computed on a coarser grid into a finer grid.

The multigrid idea is based on two principles - error smoothing and coarse grid correction:

• the principle of smoothing - many classical iterative methods similar to the method of

Gauss-Seidel or Jacobi has the effect of smoothing error when applied to discrete problems;

• the principle of coarse-grid correction - smooth components of the error can be well

represented on a coarser grid where the decision is less expensive.

Consider the two-grid cycle for discrete linear boundary value problem

Lhuh = fh (Ωh). (3.1)

• Smoothing procedure

– Compute ūn
h, applying ν1 iterations of the smoothing method

• Coarse-grid correction

– Compute residial dh = fh − Lhū
n
h

– Restrict residial

d2h = R2h
h dh

– Solve coarse grid equation L2hv2h = d2h

– Prolongate coarse grid solution

vh = P h
2hv2h

– Correct the required solution un
h = ūn

h + vh

• Post-smoothing

– Compute un+1
h , using ν2 iterations of the smoothing method

Using this notation, the operator of two-grid method can be written as following

M2h
h = Sν2

h K2h
h Sν1

h , (3.2)

where K2h
h = Ih − P h

2hL
−1
2hR

2h
h Lh - operator of the coarse-grid correction, Sh - smoothing

operator.

Multigrid methods are based on the recursive use of a two-grid scheme. A basic two-grid

method combines the action of a smoother, often a simple iterative method such as Gauss-

Seidel, and a coarse grid correction, which involves solving a smaller problem on a coarser grid.
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A V-cycle multigrid method is obtained when this coarse problem is solved approximately with

1 iteration of the two-grid scheme on that level, and so on, until the coarsest level on which an

exact solve is performed. Other cycles may be defined, for instance the W-cycle based on two

stationary iterations at each level, see, e.g., [14].

4. MGM for Navier-Stokes Equations

Over the last two decades, many methods have been developed to solve the incompressible

unsteady Navier-Stokes equations. Among those, the pressure based method, penalty method,

and pseudo-compressibility method are the most successful approaches [28]. The pressure-

based methods represented by the SIMPLE-family codes developed by Patankar et al. were

the dominant approaches in simulation of incompressible flow and compressible subsonic flow

during the 1970s and 1980s.There are many industrial codes which use this kind of approach.

Some of them have developed to handle transonic and supersonic flows.

The multigrid is one of the most powerful numerical method for improving the efficiency of

computational fluid dynamics solvers. It is broadly used for solving incompressible unsteady

Navier-Stokes equations [29].Classical multigrid method have been proved to be extremely effi-

cient on solving pressure Poisson equation, enabling solution to the level of discretization errors

in just a few minimal work units, so that the total work invested in the solution grows linearly

with the number of variable flow, such as pre-optimization techniques which accelerate the

multigrid process before the coarse grid procedure.

As Reynolds number is high, the numerical calculation of Navier-Stokes equations has the

convergence problem. Michael [30] has solved the Navier-Stokes equation by using pressure-

correction multigrid Newton precondition method. He’s got numerical results that Reynolds

number is just 1.0. Ping [31] has showed that the sequential regularization method can solve

Navier-Stokes equation with high Reynolds number. But, like penalty method, the convergence

is slow when we use sequential regularization method to solve Navier-Stokes equation [31].

A hybrid multigrid method was suggested for the unsteady incompressible Navier-Stokes

equations [32]. This approach is presented for the high Reynolds incompressible flow, based

on multigrid method and sequential regular method. In [32] the velocity-pressure increment

and sequential regular equations are derived from the Navier-Stokes equation. The pressure

increment optimum sweep algorithm is discussed. The numerical results of the close square

flow show that this algorithm improves the convergence rate for high Reynolds unsteady flow.

We propose once more approach for solving the Navier-Stokes equations in hydrodynamics

problems.

Consider classical formulation of the Navier-Stokes equation in domain Ω = (0, 1) × (0, 1)

with boundary ∂Ω

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂P

∂x
−

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

= f1,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

∂P

∂y
−

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

= f2,

∂u

∂x
+

∂v

∂y
= f3,
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u (x, y, t) = g1 (x, y, t) , v (x, y, t) = g2 (x, y, t) on ∂Ω,

u (x, y, 0) = u0 (x, y) , v (x, y, 0) = v0 (x, y) .

where Re is Reynolds’s number, and V = (u(x, y, t), v(x, y, t)) is the velocity, P is the pressure.

The system of Navier-Stokes two-dimensional equations for two components of velocity and

pressure for an incompressible viscous fluid is considered. To approximate the time derivative

and inertial first space derivatives the method of characteristics is used [33]. Space discretization

is carried out by finite element method. This mixed method of approximation was suggested

by O. Pironneau in the 1980-th year and it’s more often used in numerical researches now [34].

It’s used a mixed formulation in the finite element method, when a combination of simple finite

elements - bilinear for velocities and constant elements for pressure is applied. This combination

provides stability of pressure calculation with additional application of a numerical filtration.

After discretization we obtain a linear algebraic equation system with a symmetric matrix

which has a spectrum with alternating signs. We use multigrid method for solving this system.

For the Navier-Stokes equations it has been shown that by mixing the method of characteristics

and the finite element method we are able to derive first and second order accurate conservative

schemes of the upwinding type.

Application of the method of characteristics and the finite element method combination

allows building the effective numerical algorithm. These schemes are numerically better than

the usual upwinding schemes because they require numerical solution of symmetric systems

only. After discretization we obtain a linear algebraic equation system with a symmetric matrix

which has a spectrum with alternating signs [35]. We use multigrid method with simple iteration

method as the smoother for solving this system.

The results of some numerical experiments allow to conclude the efficiency of the suggested

approach for solving the Navier-Stokes equations.

5. MGM for Convection-Diffusion Problems

As mentioned above the other most common equation in the computational fluid dynamics

field is the convection- diffusion equation. Mathematical models that involve a combination of

convective and diffusive processes are among the most widespread in all the sciences. Research

of these processes is especially important and difficult when convection is dominant. At the

same time, convection-diffusion equations are used as tests in researching iterative methods for

solving systems of strongly nonsymmetric linear equations.

Analysis of algebraic multigrid parameters for two-dimensional steady-state heat diffusion

equations was presented in [36]. In this work it is provided a comparison for the algebraic

multigrid (AMG) and the geometric multigrid (GMG) parameters, for Laplace and Poisson

two-dimensional equations in square and triangular grids. The analyzed parameters are the

number of: inner iterations in the solver, grids and unknowns. For the AMG, the effects of

the grid reduction factor and the strong dependence factor in the coarse grid on the necessary

CPU time are studied. For square grids the finite difference method is used, and for the

triangular grids, the finite volume one. The results are obtained with the use of an adapted

AMG1R6 code of Ruge and Stuben. For the AMG the following components are used: standard

coarsening, standard interpolation, correction scheme (CS), lexicographic Gauss-Seidel and V-

cycle. Comparative studies among the CPU time of the GMG, AMG and singlegrid are made.

It was verified that: (1) the optimum inner iterations is independent of the multigrid, however
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it is dependent on the grid; (2) the optimum number of grids is the maximum number; (3)

AMG was shown to be sensitive to both the variation of the grid reduction factor and the

strong dependence factor in the coarse grid; (4) in square grids, the GMG CPU time is 20% of

the AMG one.

Modification of algebraic multigrid for effective GPGPU-based solution of nonstationary

hydrodynamics problems was presented [37]. The modification is easy to implement and allows

us to reduce number of times when the multigrid setup is performed, thus saving up to 50% of

computation time with respect to unmodified algorithm.

As it’s mentioned above algebraic multigrid (AMG) [14] is one the most effective methods for

solution of large sparse unstructured systems of equations, arising, for example, from discretiza-

tions of elliptic differential equations. AMG applies ideas of geometric multigrid (smoothing

and correction on coarse grid) to solution of certain classes of algebraic systems of equations.

The main advantage of AMG (besides robustness and efficiency) is its ability to solve elliptic

partial differential equations discretized on unstructured grids [38]. AMG can be used as a

black-box solver for various computational problems, since it does not require any information

about underlying geometry. This fact makes GPGPU-based implementation of AMG extremely

attractive [39].

The algorithm of AMG has two major stages: setup phase and solution phase. The setup

phase in classic formulation of AMG is very hard to parallelize because of its intrinsic serial

nature.To the contrary, the solution phase allows straightforward parallelization.

When GPGPU technique is applied to the solution phase, tenfold acceleration rate is easily

achieved [40]. However, according to Amdahl’s law, we cannot exceed acceleration rate of 3×

for solution of single system of equations, since about 30% of computational work belongs to

the setup phase. In [37] it was shown that the restriction may be loosened for solution of non

steady problems with constant or slowly changing coefficients.

The improved algorithm was successfully applied to the solution of several hydromechanics

problems. In particular, it was presented substantial acceleration rate for several oil reservoir

simulation problems.

A hybrid multigrid method for convection-diffusion problems is considered in [6]. Presented

approach is an advanced performance study of a multigrid method designed for convection-

diffusion problems developed in Khelifi et al. [41]. The proposed scheme with the separation of

the operators enables an individual treatment for each operator: while the piecewise constant

operator is used for the convective part, each off-diagonal entry of the coarse diffusion operator

is scaled by a geometric factor. Numerical examples illustrate the fast convergence and the

outstanding robustness of the proposed method, compared to other known methods.

The increasing complexity in the geometry and the physical modeling of today’s simula-

tion problems makes the use of geometric multigrid more difficult. Algebraic multigrid (AMG)

applies multigrid principles without requiring any information about the geometry [38]. The

construction of the hierarchy of grids is fully automatic. The levels are created using purely

algebraic entities such as the matrix entries. Algebraic multigrid is well developed especially for

symmetric positive definite problems and diagonally dominant M-matrices arising from the dis-

cretization of second-order scalar elliptic partial differential equations. Nevertheless, they were

successfully used in non symmetric and more general cases without any modification [18], [38].

Hence, the solution of a large class of linear systems arising from the discretization on

unstructured meshes of a scalar PDE became possible thanks to such a procedure. Among

the different AMG approaches we can cite the classical AMG [38] (often referred to as the
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Ruge-Stuben approach), the AMGe (algebraic multigrid for finite elements), the element free

AMGe [42], adaptive methods and aggregation [43]. The latter can be regarded as a limiting

case of the Ruge-Stuben multigrid procedure where every fine point is interpolated from a

unique coarse point [38]. The prolongation operator associated to this approach is simply

the piecewise constant interpolation (P0). This approach is well adapted to the finite volume

discretization widely used in CFD applications as it consists of creating coarse mesh cells by

agglomeration of some fine mesh cells. The finite volume approach copes naturally with the

complex polyhedral cell geometries produced by the aggregation procedure, in contrast to the

finite element methods, which are difficult to apply on arbitrary polyhedral cells, as they require

the definition of shape functions for each element geometry. Aggregation is also consistent with

the finite volume philosophy as the integral of a function on an aggregate is equal to the sum

of the integrals on the cells composing this aggregate. For these reasons, aggregation seems to

be a judicious choice for CFD problems.

However, it is well known that the standard aggregation based algebraic multigrid method

is not suitable for elliptic second order problems. It fails to ensure the condition for the optimal

multigrid efficiency [44]. Many techniques exist to overcome the slow convergence rate of the

straightforward aggregation scheme and recover the theoretical convergence.

The rescaling of the operator can be an effective remedy. The simplest method consists of

the rescaling by a global number. The number is usually simply computed and the method is

quite easy to implement but it is limited to a geometric multigrid procedure. In [45], another

approach called “smoothed aggregation” is developed. It improves the convergence of the

multigrid procedure but the inconvenience is that it increases the number of the off-diagonal

entries of the coarse level matrix.

Suggested method is based on a third approach, studied in the finite volume context, with

a discretization on arbitrary polyhedra.It maintains the simplicity of the P0 interpolation with

a little extra-work consisting of a face based rescaling [41]. This approach produces a coarse

diffusion problem that mimics the direct discretization of the diffusion operator on the coarse

mesh. However, in the presence of the convection operator in addition to the elliptic one,

the optimal use of multilevel techniques is more difficult to establish. Yet, several different

strategies for overcoming these difficulties exist [41, 43, 50]. In [6] the performances of the

multigrid procedure developed in [41] is studying, with a comparison to more well known

Krylov methods in terms of number of iterations and wall clock time (WCT) time.

6. MGM for Convection-Diffusion Problems with Dominant

Convection

We suggest modification of MGM for convection-diffusion problems with dominant convec-

tion.

Consider the model problem in the domain Ω = [0, 1]× [0, 1]:

1

2

2
∑

k=1

(

vk(x)
∂u(x)

∂xk

+
∂ (vk(x)u(x))

∂xk

)

−
1

Pe

2
∑

k=1

∂

∂xk

(

∂u(x)

∂xk

)

= f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

(6.1)

where x = (x1, x2). Eq. (6.1) has a small parameter at the highest derivative. We consider

incompressible environments, so divV =
∑2

k=1
∂vk
∂xk

= 0.
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The finite difference method with central differences is used to discretize (6.1). We obtain

an algebraic system of linear equations with a strongly nonsymmetric matrix:

Lhuh = fh, (6.2)

which is considered on a grid

Gh =

{

(x1, x2) : xk = ih, h =
1

n
, n ∈ N, k = 1, 2, i ∈ Z

}

,

where uh and fh are the grid functions on Gh, and Lh is the linear operator

Lh : E(Gh) → E(Gh),

with E(Gh) being the linear space of grid functions defined on Gh.

Corresponding to the operator Lh, the matrix L is a strongly sparse nonsymmetric one

without diagonal dominance. Split the matrix L as a sum of symmetric and non-symmetric

parts:

L = L0 + L1,

where

L0 =
1

2
(L+ L∗) = L∗

0, L1 =
1

2
(L− L∗) = −L∗

1

being the symmetric part and the skew-symmetric part of the matrix L. In some matrix norm

it holds that

‖L0‖∗ ≪ ‖L1‖∗ .

The matrix L is a real positive one. It means that its symmetric part is positive definite:

L0 =
1

2
(L+ L∗) = L∗

0 > 0.

Split the matrix L1 as

L1 = Kl +Ku and Ku = −K∗

l ,

where Kl and Ku are respectively, the lower and the upper triangular parts of the skew-

symmetric matrix L1.

To solve the linear system (6.2), we suggest to use the MGM, where the triangular iterative

method (TIM) [46–49] will be used as the smoother of the MGM [50].

Consider the structure of the TIM. Any iterative method can be written in the standard

form

B
un+1 − un

τ
+ Lun = f, n = 0, 1, 2, . . . . (6.3)

The choice of the operator B defines the triangular skew-symmetric iterative method. For

a standard TIM, the operator B is constructed as follows:

B = E + 2τKl or B = E + 2τKu. (6.4)

For TIM1,

B = αE + 2Kl or B = αE + 2Ku, (6.5)

and for TIM2,

B = αiE + 2Kℓ or B = αiE + 2Ku, (6.6)
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where τ is a scalar parameter.

Parameters of the offered methods αi, α > 0 get out under formulas:

α = ‖M‖ ,

αi =

n
∑

j=0

|mij |, i = 0, 1, . . . , n,

where M = {mij}
n

0
is a symmetric matrix constructed by the following way:

M = A0 +Ku −Kl,

and n is the dimension of the matrix L.

Any method in this class has the same behavior as the Gauss-Seidel iteration, i.e., it quickly

reduces the high-frequency, but not low-frequency components of error frequencies. This is the

necessary property of the smoother of MGM, that is why we have used these methods as the

smoothers.

The convergence of proposed MGMmodifications with triangular skew-symmetric smoothers

is discussed in [50].

7. Model Problem

We consider the problem (6.1) to research properties of MGM modifications with suggested

smoothers. We research four model problems with different velocity fields, presented in table 7.1.

Table 7.1: Velocity coefficients for test problems.

Problem N v1 v2

1 1 −1

2 1− 2x 2y − 1

3 x+ y x− y

4 sin 2πx −2πy cos 2πx

The different Peclet numbers were considered: Pe=10, 100, 1000, 10000.

The problem (6.1) was solved by multigrid method modifications with three kinds of smoothes:

TIM, TIM1 and TIM2. The number of smoothing iterations in MGM is 15. In table 7.2 the

results of comparison of the suggested MGM modifications with triangular skew-symmetric

methods and Gauss-Seidel method as the smoothers on a grid 33 × 33 are presented. The

symbol D means, that on the given problem a method doesn’t converge.

The numerical results show that: a) the suggested multigrid method modification with

triangular iterative smoothers proved to be effective for solving convection-diffusion problems

with dominant convection; b) the multigrid method with the smoothers TIM1 and TIM2 is

more effective for these problems, than MGM with TIM. Under consideration the most effective

method for convection - diffusion problems with dominant convection is MGM with smoother

TIM2; c) the coefficient of skew-symmetry κ= Pe*h*|v|/2 has the greatest influence on the

behaviour of the method (neither the size of grid nor the coefficients of equation separately).

8. Conclusion

Originally introduced as a way to numerically solve elliptic boundary-value problems, multi-

grid methods, and their various multiscale descendants, have since been developed and applied
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Table 7.2: MGM iteration number and CPU-time on the grid 32× 32.

Pe MGM MGM MGM MGM κ= Pe*h*|v|/2

(Seidel) (TIM) (TIM1) (TIM2)

Problem 1: v1(x) = 1 v2(x) = −1

10 13 35 30 30 0,009765

0:00:31 0:00:94 0:00:93 0:00:109

100 63 7 5 5 0,097656

0:00:188 0:00:16 0:00:15 0:00:15

1000 D 13 9 9 0,976562

0:00:31 0:00:47 0:00:31

10000 D 78 58 58 9,765625

0:00:250 0:00:203 0:00:188

Problem 2: v1(x) = 1− 2x1 v2(x) = 2x2 − 1

10 22 72 53 50 0,009765

0:00:62 0:00:188 0:00:172 0:00:171

100 18 24 19 14 0,097656

0:00:47 0:00:63 0:00:63 0:00:47

1000 D 16 12 6 0,976562

0:00:47 0:00:31 0:00:15

10000 D 59 51 32 9,765625

0:00:187 0:00:171 0:00:109

Problem 3: v1(x) = x1 + x2 v2(x) = x1 − x2

10 16 43 35 34 0,019531

0:00:47 0:00:125 0:00:110 0:00:110

100 23 9 7 5 0,195312

0:00:62 0:00:31 0:00:15 0:00:15

1000 D 17 12 8 1,953125

0:00:47 0:00:31 0:00:31

10000 D 74 55 36 19,53125

0:00:219 0:00:187 0:00:125

Problem 4: v1(x) = sin 2πx1 v2(x) = −2πx2 cos 2πx1

10 17 39 32 27 0,061359

0:00:47 0:00:109 0:00:110 0:00:94

100 D 16 12 7 0,613592

0:00:47 0:00:47 0:00:31

1000 D 29 22 10 6,135923

0:00:94 0:00:78 0:00:31

10000 D 193 159 57 61,35923

0:00:625 0:00:562 0:00:187

to various problems in many disciplines. Two different approaches can be accomplished em-

ploying the multigrid method according to the kind of data and information employed and also

how the operators deal with them: the geometric multigrid (GMG) and the algebraic multigrid

(AMG).

MGM is very actively used in computational fluid dynamics.For the Navier-Stokes equations

it has been shown that by mixing the method of characteristics and the finite element method

we are able to obtain first and second order accurate conservative schemes of the upwinding

type.

The multigrid algorithms are immediately useful for simple linear elliptic problems on simple
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domains. With relatively minor modifications, they can be generalized to handle nonlinear,

anisotropic, or moderately inhomogeneous problems as well as elliptic systems. The perspective

matrix splitting iteration methods, e.g., the Hermitian and skew-Hermitian splitting (HSS)

iteration method [51] and its variuos generalizations and variants [52], [53] can be used as

effective smoothers of the multigrid methods for solving nonself-adjoint positive-definite linear

problems. Still more elaborate modifications are required to obtain efficient solvers for singular

perturbation problems and for problems with discontinuous coefficients, complex domains, or

unstructured grids. These topics have been researched widely over the last 30 years. Researchers

have resolved many of the difficulties, while others remain open and subject to research.
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