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Abstract

In this paper, we study a weakly over-penalized interior penalty method for non-self-
adjoint and indefinite problems. An optimal a priori error estimate in the energy norm
is derived. In addition, we introduce a residual-based a posteriori error estimator, which
is proved to be both reliable and efficient in the energy norm. Some numerical testes are
presented to validate our theoretical analysis.
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1. Introduction

We are devoted to studying a weakly over-penalized interior penalty (WOPIP) method [7]
for the following non-self-adjoint and indefinite problems

—V-(aVu)+b-Vu+cu=f, in £,

(1.1)
u=0, on 0%,

where Q C R? is a bounded polygonal domain with boundary 0. Here we assume that the
data of (1.1), i.e., D = (a, b, ¢) satisfy the following property:

1. There exists ag > 0 such that 0 < ag < a and ¢ > 0;

2. a e WL(Q),be (L2(Q))” and c € L®(Q) with
M = max{[a] =), [blz= @), [c|z=@)};

3. feL*Q).
The WOPIP method belongs to a class of discontinuous Galerkin (DG) methods, which was
first proposed in [7] by Brenner et al. to solve second order elliptic equations. DG methods
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for elliptic problems have been initially proposed in [2,31] in the 1970s-1980s. In recent years
they have gained much interest due to their suitability for hp-adaptive techniques, flexibility
in handling inhomogeneous boundary conditions and curved boundaries, and their flexibility
in handling highly nonuniform and unstructured meshes. The reader is referred to [14] for
applications of these methods for a wide variety of problems, and to [3] for an over review
of these methods for elliptic problems and their a priori error analysis. For more details of
the a priori error estimates for second elliptic problems, please refer to [23]. For the theory
of a posteriori error bounds for DG methods, the residual-based error estimators measured
in mesh-dependent energy norms have been presented in [5,19, 20,22, 24], and further been
studied in [1,33]. Some other work on the a posteriori error estimates of DG methods can be
found in [15,26,28,29]. For the WOPIP method for second order equations, its a priori error
estimate was provided in [7], where some advantages of this method were also discussed, e.g.,
compared with many well-known DG methods presented in [3], the WOPIP method has less
computational complexity and is easy to implement. Subsequently, a residual-based posteriori
error estimator was presented in [8]. More applications of the WOPIP methods are to use them
to solve the biharmonic problem [9] and Stokes equations [4].

The non-self-adjoint and indefinite problems (1.1) often appear in dealing with flow in porous
media. To the best of our knowledge, there exists no work on the a posteriori error estimates of
DG methods for non-self-adjoint and indefinite problems. The main objective of this paper is
to give a residual-based error estimator of the WOPIP DG method for (1.1). In this case, two
main difficulties should be overcome, one arises from the effect of a nonsymmetric and indefinite
bilinear form, the other stems from the nonconformity of the WOPIP DG method.

The rest of our paper is organized as follows. We introduce some notations and recall the
WOPIP method in Section 2. An optimal a priori error estimate of the WOPIP method in
the energy norm is provided in Section 3. A residual-based a posteriori error estimator of the
WOPIP method is presented in Section 4. Moreover, both the upper bound and lower bound of
the error estimator are proved in the energy norm. Finally, some numerical experiments which
validate our theoretical results are given in Section 5.

2. Preliminaries and Notations

For a bounded domain D in R?, we denote by H*(D) the standard Sobolev space of functions
with regularity exponent s > 0, associated with norm |- |s p and seminorm |- | p. When s = 0,
H°(D) can be written by L*(D). When D = Q, the norm | - |5, is simply written by | - |s.
H§ (D) is the subspace of H*(D) with vanishing trace on 9D.

Let Tr be a regular decompositions of €2 into triangles {T'}, hr denotes the diameter of T

and h = max hp. Denote €) by the set of interior edges of elements in 75, and €2 by the set
TET h h

of boundary edges. Set ), = 9 U Eg. The length of any edge e € ¢y, is denoted by h.. Further,
we associate a fixed unit normal n with each edge e € ¢, such that for edges on the boundary
0L, n is the exterior unit normal.

Let e be an interior edge in &) shared by elements 77 and T5. For a scalar piecewise smooth
function ¢, with ¢* = ¢|7,, we define the following jump by

[¢] = ¢' — ¢, on ecel.

For a boundary edge e € Eg, we set
[e] = .
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The weak formulation of (1.1) is to find v € V = H}(2) such that
a(u,v) = / fodz, YveV, (2.1)
Q

with
a(u,v) = / (aVu- Vv + (b Vu)v + cuv)dz. (2.2)
Q
Define the discontinuous Galerkin finite element space by
Vi, = {v e L*Q):vlr € P(T), VT €T} (2.3)

Following [7], we present a weakly over-penalized interior penalty method for the problems
(1.1): find wy, € V3 such that

ap(up,v) = / fvdx, Yv €V, (2.4)
Q
where
ap(up,v) Z / aVuy, - Vo + (b - Vup)v + cupv)de + Z he 2 (T2un]) (M2[0]),  (2-5)
T€Th e€ep

with 1% defined by the mean of v over the e € ey, i.e.,

1
Oy = —/Uds.
he Je

We may note that the WOPIP method above dose not have the Galerkin orthogonality, i.e.,
ap(u—up,v) #0, v €E V.

Define the mesh-dependent norm || - ||, on V' + V}, by

|||v|||h=(z(||vU||3,T+||v||%T S 42 (0[]) ) (2.6)

TeTh ecep

Let V. C H}(Q) be the conforming P, finite element space associated with the triangulation
Tr. We construct an enriching operator E : Vh — V. by average

(Ew ITI T; vlr(p (2.7)

where p is any interior node for 7y, 7, is the set of all triangles sharing the node p, and |7,| is
the number of triangles in 7,.
The enriching operator E above satisfies [6, 8,18, 20]

> (hl - Bl r + 190 - Bz ) <O( D RIEL), YeVh  (28)
TeTh e€ep

We need the following result by using Clément or Scott-Zhang interpolation [13,27].

Lemma 2.1. For any ¢ € H} (), there exists a piecewise linear approzimation (v, = lp1)) €
V. such that
v = Wplor < Chr|Vlo 7, YT € Th, (2.9)

| —Mpbloe < ChE|Viblos Ve €en, (2.10)

where T is the union of all elements in Tj, having nonempty intersection with T, € = Ty U Ty
with e =Ty NTs, and C > 0 is a constant depending only on minimum angle of Tp,.
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3. A Priori Error Analysis

The analysis for the a priori error estimate is largely based on the reference [17]. First, we
have the following lemma which can be immediately derived from Cauchy-Schwarz inequality.

Lemma 3.1. There exists a constant C > 0 independent of h but depending on ag, and M,
such that
lan(,v)| < Cllolnlvlln, Vo, vEV + V. (3.1)

Then, we prove the Garding-type inequality on a(+,-) in the following lemma.

Lemma 3.2. There exist two constants C; > 0 and Cy > 0 independent h but depending on
ag, and M, such that

an(v,v) > Cy|[v||2 — Ca|v]3, Yo €V +Vj. (3.2)

Proof. By the definition of a(-, ), we have

ap(v,v) = Z /T (aVv - Vo + (b Vo)o + cv®)dz + Z h? (Hg[[vﬂ)2. (3.3)

TETh e€ep

By the assumptions on the data D = (a, b, ¢), and using Cauchy-Schwarz inequality and Young’s
inequality, we have

Z / (aVv - Vo + (b Vo) + cv®)dx

TETh
> Y / (a|Vo|? + cv?)da — Z/|b||Vv||v|d:c
TeT, T TeTi T
" (3.4)
>a0 S0 [ (Vo +?)do - aololy - 21 (3 [ 190Pdz) ol
TeTi ' T TeTi T

o M?
w 3 (IVolr + 1oBr)dz - 5 3 1Velr — (5 + ao)lel}.
TET TETh

Y

Choosing a to make ag — § > 0, and substituting (3.4) into (3.3), we obtain the lemma. O

Let Z, be the Crouzeix-Raviart interpolation operator defined in [7]. Similar to Lemma 3.3
in [7], we have the following lemma.

Lemma 3.3. There exists a constant C > 0 independent of h but depending the minimum
angle of Tp, such that

l¢ = Znellin < Chlgla. (3.5)

In particular, in the above lemma, if we choose ¢ be the solution of the problem (1.1), since
the elliptic regularity |u|z < C|f|o holds, then we have

lv = Zhulln < Chlulz < CR|flo- (3.6)

The following lemma will be used in the proof of the a priori error estimates.
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Lemma 3.4. Let ¢ € L?(Q), then for sufficiently small h, there exists a unique ¢p, € Vi
satisfying

ah(vh,qﬁh) = / qupdx, Nvp € Vj,. (3.7)
Q
Furthermore, ¢n satisfy
lorlln < Clalos (3.8)

where C > 0 is independent of h but depending on ag, M and minimum angle of Tp,.

Proof. Since (3.7) leads to a system of linear algebraic equations, it is enough to prove
uniqueness. Setting v, = ¢, in (3.7) and using Lemma 3.2, we obtain

Crllénl2 - Calonl?
< an(dn, dn) = / abnde < lalolénlo-
Q

Therefore, we get
llénlln < Clglo + Clénlo- (3.9)

In order to estimate [¢p[o in terms of [|¢p||n, we apply the standard Aubin-Nitsche duality
argument. For ¢, we consider the following auxiliary problem

-V -(aVp)+b-Vo+cp=¢p, in £,

3.10
=0, on 0N ( )

Then from the assumptions on the problem (1.1) in the introduction, we can see that ¢ satisfies
the following elliptic regularity

lel2 < Clénlo- (3.11)
Multiplying (3.10) by ¢, and integrating over 2, then applying integration by parts, we obtain

onl2 = an(oron) — 3 / (aVe - 0)[dnlds

(&

e (3.12)
= an(p = Tngp, dn) + an(Tnp, o) — Y /(GVSD -n)[¢n]ds.
ecep, V€
For the first term in the above equality, using Lemma 3.3 and (3.11) we have
an(p —ZIne; ¢n) < Cllo = Inelnllonlin < Chlel2llonlln < Chldnlolonlln- (3.13)

For the second term, in view of (3.7), and using the stability of interpolation Z in H?(Q) [7],
we get

an(Tnp bn) = /Q (Tnpdz < JalolZuglo

(3.14)
< lalolZnelz < Clalolel2-
For the third term, recalling the result in Lemma 3.2 in [7], we have
S [V mianlds < it o - el +Hlonko)lonl (319

ecep
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Setting o, = Zp ¢ in the above equality and using Lemma 3.3 and (3.11), we get

S [@Ve-n)lonlds < Chlanlallonll (3.10
ecep €
From (3.13), (3.14), (3.16), and using the elliptic regularity (3.11), we obtain
[#nlo < Chllonlln + lalo- (3.17)
Substituting (3.17) into (3.9), we get the the estimate (3.8) for sufficiently small h. Moreover,
(3.8) implies a unique solution of (3.7), thus the proof is completed. a

Based on the above lemmas, we formulate the main result of this section in the following
theorem.

Theorem 3.1. Let u be the solution of the problem (1.1), and up be the numerical solution
of the WOPIP method in (2.4). Then, for sufficiently small h, there exists a constant C > 0
independent of h but depending on ag, M and minimum angle of Tn, such that

lw = unlln < Ch|flo. (3.18)

Proof. Let e, = u— up, be split into e, = £+ x, where £ = u — Zpu and x = Zpu — up. Using
lemmas 3.1 and 3.2, we have

Cullxll7, = Calx[§ < an(x, x) = an(Znu —u, x) + an(u = un, x)
< Clellnlixlln + anu = un, x)-

For the term ap(u — up, x) in the above inequality, using Lemma 3.2 in [7] we obtain
an(u — up, x) < C(yhig/h llw = valln + h||f||o) Il (3.19)
Noting that |x]o < |lx||%, then we have
Il < Cllell + Clxdo + € (it lu = valls + Bl 7o ). (3.20)

In order to estimate |x|o, we set ¢ = x and v}, = x in Lemma 3.4. Using Lemma 3.1 and (3.19),
we have

IXI§ = an(x, én) = an(Tnu — un, ép)
an(Znu — u, ¢n) + an(u — un, én)

I€lIénli + C( it Ju=vall -+ bl flo ) énln

IN

Using (3.8) in Lemma 3.4, we get ||¢n|ln < C|xo, then we have

Ixlo < Clélln +C( _inf fju=vallu + bl flo). (3.21)
vp €Vh
In view of (3.20) and (3.21), we obtain
Il < Cliglhn +C(_inf flu = valla + kIflo). (3.22)
vp €Vh
Setting v, = Zpu in (3.22), using (3.6) and triangle inequality, we obtain the theorem. a

Furthermore, by similar dual arguments used in [25], we can obtain the a priori error estimate
in L?-norm in the following theorem.
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Theorem 3.2. Let u be the solution of the problem (1.1), and up be the numerical solution
of the WOPIP method in (2.4). Then, for sufficiently small h, there exists a constant C > 0
independent of h but depending on ag, M and minimum angle of Tn, such that

lu—unlo < Ch?|flo. (3.23)

Using Lemma 3.4, we can prove the existece of a unique solution to the problem (2.4). Let

us assume that uj and w3 are two distinct solutions of (2.4) and define § = u} — u?. Since

an(0,v,) = 0 for all vy, € V},, setting ¢ = 0, v, = 6 in (3.7), we get

1013 = an (0, én) = an(u — uj, én) = 0.

Then we have § = 0, i.e., uj, = u7, which leads to a contradiction. Therefore, there exists

a unique solution wuy, for the problem (2.4). Since the problem is finite dimensional, uniquess
implies the existence of up,.

4. A Posteriori Error Analysis

We first introduce our residual-based error estimator as follows:

1. For any T € T}, we define the element residual n7 by
nr = hr|f + V- (aVuy) —b - Vuy, — cup|o.r, (4.1)

where f is the piecewise constant function which takes the mean value of f on T € T},
. 1
flr = —/ fdx, NT €Ty.
7| Jr

2. For any e € €, we define the jump residual 7.1 by
ey = he [ [un]® + At [un] I3 .- (4.2)
3. For any e € ), we define the jump residual 7.2 by

e = hell(aVun) - n][g . (4.3)

Then, the error estimator 7, is defined by

M = Z 7+ Z ey + Z 2 2 (4.4)

TeTh ecep ece)

4.1. Reliability
In this subsection, we shall prove the reliability of the error estimator ny,.

Theorem 4.1. Let u denote the solution of the problem (1.1), and u;, denote the numerical
solution of the WOPIP method in (2.4). Then for sufficiently small h, there exist constants
Cr > 0,Cp > 0 depending on ag, M and the minimum angle of T;, such that

1

b= wnlln < Crm+Cr (Y W31 = FI3r)" (4.5)
T€7—h
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Proof. Following [16,20], we set e, = u—up, = e.+eq4 , with e. = u— Fuyp, and eq = Eup —up,
here F is the enriching operator defined in the section 2. Note that the terms e, = u — Euy,
and eq = Eup — up, are referred as conforming error and nonconforming error. By the triangle
inequality, we get

llerlln < flecln + llealln- (4.6)

First, we bound the second term |leq||n on the right-hand side of the above inequality. Since
H9[Eun] = 0, by the property of enriching operator E in (2.8), the second term |eq||s, can be
bounded by

lleall, = > / IV (Bun = un) Rz + 1Bun —unll r) + Y b (12 un])”

T ecep
<o X n i) + 3 h(M0en])”
ecey eCen
<Ot (4.7)
ecep

Then it leaves us to bound the first term |le.||r on the right-hand side of (4.6). Let II;, denote
the Clément or Scott-Zhang interpolation in Lemma 2.1, then IIze. € V. and we define ( =
ec —Ipec. Denote by (-, -) the inner product in L?(Q2), then (f,e.) = fQ fecdx, thus ap(u,e.) =
(f,ec), we then have

an(er,ec) = an(u,ec) — an(un, ec)
= (f,ec) — an(un, ) — an(un, Myec)
= <f7 C) - ah(uha C)7
which implies

an(ec, ec) = (f,C) — an(un, ¢) — an(eq; ec)- (4.8)

By the definition of a,(-,-), integrating by parts, and using Cauchy-Schwarz inequality, (2.9)
and (2.10) in Lemma 2.1, we obtain

(f, Q) — an(un, Q)
Z/ f+V-(aVuy) —b- Vuh—cuh (d:chZ/f fcda

TETh TETh
=S / (V- m)cds + 3 522 (0 [un]) (TOLCD)
TETh ecep
< Y (hrlf + V- (aVun) = b Vuy — cunlor) (b [¢lo.r)
TET
+ > (hrlf = floa)(hz IClor) + D ( he I[(aVun) - n]fo.e)(he > IClo,e)
TEThH ece)

+ Y he P un]) D)

ecep
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<o( X WF+ V- @) —b-Vuy —culis) (3 1Veclis)
TETh TETh

+ (3 nelli@van) -nlig.) (X 1vedia)”

ece) TeTh

vo( X mir-me) (2 vedia)”

TeTh T€eTh

<o(( )+ (X ma)* + (3 WIS = 1)) lecln (19)

TETh ece) TETh

We note that in the last step of the above inequality we use the fact II2[¢] = 0 on &,
On the other hand, using Cauchy-Schwarz inequality and the property of enriching operator
E in (2.8), and noting that I1%[e.] = 0, we have

an(ed,ec) = Z /aVedVec (b - Veg)e. + ceqecdx
TeTh

<C Y (IVealorIVecloa + IVealorleclor + lealoleclo.r)

TeTh
/ /
<o( X)) (X Iveckie)
ecep TET
/ /
o X Rz (X telds)
ecep TET
/ /
(X heltwli3) (X tea)
ecep, TET,
/
<c( X n2)) e (@.10)
ecen

From the Garding type inequality in Lemma 3.2, we obtain
Culleclli < anlec, ec) + Calec[s- (4.11)

Moreover, using the technique in [12,25], we have the following estimate: for any ¢ > 0 the
exists a eg(€) such that for the meshsize h € (0, €]

leclo < ellecl. (1.12)

Combining (4.8)—(4.12) with Cauchy-Schwarz inequality, we get

_ 1/2
Jeelln < Com +Co( > 1317 = Fl3r) (4.13)
TETh
Then the theorem follows from (4.6), (4.7) and (4.13). O

4.2. Efficiency

In this subsection, we shall prove the efficiency of the error estimator. To obtain the efficiency
bound, we make use of bubble function technique introduced by Verfiirth [30]. Denote by br
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the standard polynomial bubble function on element T, and by b, the standard polynomial
bubble function on an interior edge e, shared by two elements T and 7”. Then we have the
following results [30, 32].

Lemma 4.1. For any polynomial function v, there exists a constant C' > 0 depending on the
minimum angle of T, such that

lbrvlor < Clolo,r, (4.14)
[vlo.r < Clbzvlo,r, (4.15)
IV (bro)lor < Chz [vfo,r- (4.16)

Similarly, for any polynomial function w on interior edge e, there exists a constant C > 0
depending on the minimum angle of Tn such that

[wlo. < Clb¥wlo.. (4.17)
Furthermore, there exists an extension Wy € H& (T U T’) of bew such that Wyle = bew and
1
IWelo,r < Ché|wlo,e, (4.18)
1
IVWelo,r < Che *[w]o,e, (4.19)
where C' > 0 is a constant depending on the minimum angle of Ty, .

To begin, we prove the following local bounds.

Lemma 4.2. Let u be the solution of the problem (1.1), and up be the numerical solution of
the WOPIP method in (2.4). Then the following local bounds hold:
(i) For any T € Ty, we have

nr < C(IV(u—up)lor +hr|V(u —up)lor + hrlu —uplor + helf — flor).  (4.20)

(ii) For any interior edge e € € which belongs to two elements T and T', we have

nea <C Y (190 = un)lor + hrlV(w = un)lor
TeU. (4.21)

+ hrlu—wuplox + hr|f — f_||o,T)

with U, = {T,T"}.
(iii) For any edge e € €}, we have

he?[un]® = he[MI2[u — un]?, (4.22)
he Mlunllf e = he HTu — undlf .- (4.23)

All the constants C > 0 appear in the above inequalities depend on ag, M and the minimum
angle of Tn, and f is the piecewise constant function which takes the mean value of f on T € Ty,

. 1
f|T=m/dex, VT € Tp.



342 Y.P ZENG, J.R. CHEN, F. WANG AND Y.X. MENG

Proof. (i) Set v, = f + V- (aVuy) — b - Vuy, — cup, and vy = brvy. Since —V - (aVu) + b -
Vu + cu = f in L*(T), we have

phonlir = [ (F+9 @) = b Tup — cup)uds
Z/(f-i—V-(aVuh)—b-Vuh—cuh)vbdac—i—/(f—f)vbdac
T T
:/ (—V.(aV(ufuh))+b.V(u—uh)+c(u7uh))vbd:c+/(fff)vbd:c
T T

= / aV(u — up)Vupdx + / b - V(u — up)vpdzr + / c(u — up)vpdx
T T T

+/T(j_‘7f)vbdx7

where in the last step we have used integration by parts and the fact that v, = 0 on 97. Then
by Cauchy-Schwarz inequality we have

lonll§ 7 < C(HV(U = up)lorIVooor + [V(w = un)lo,rlvslo,r
+ lu = unfor|velor +1f - f||o,T||Ub||o,T>-
Moreover, using (4.14) and (4.16), we obtain
lonlor < C(h;1||V(u —un)lor + IV (u—un)lor + [u—unfor +1f - f||0,T)-

Noting that n7 = hr|vs]o,r, the above inequality gives (i).

(ii) For any interior edge e € €9, set w, = [(aVuy) - n], wp = bewp. Defining W), €
H} (T UT’) by the the extension of w;, which satisfies (4.18) and (4.19). Using the fact that
[(aVu) - n] =0, we get

||be%wh||g,e = /[[(aVuh) -nfwpds = /[[(aV(uh — u)) -nfwpds

= Z (/T (V - (aV(up — u)))Wbdm +/TaV(uh - u)VWbdx)

TeU.

Z/T<(f_*f)+v'(av(uh*U))fb-V(uh—u)fc(uh—u))Wbdx

TeU.

+/TaV(uh —u)VWydx — /T(f_f [)Wydx

+ / b - V(up —u)Wydx + / c(up — u)Wydz.
T T
Since —V - (aVu) +b - Vu+ cu = f in L3(T), in view of (4.18) and (4.19), we have

[wnlo.e <C Y- (hZ1F+V - (@Vun) = b+ Vun = cunlo,r + he * |9 (u = wn)lor
TeU.

1 _ 1 1
+BE1F = Flor +hé 19 (u = wn)lor + i | (u = wn)lor)-
Making use of the bound for 77 and the shape-regularity of the mesh, we obtain

hé|[(@Vun) -n]fo. <C Y (IIV(u —up)lo,r + hr|V(w—up)lor
TeU.

+ hellu = unloa +hrlf = flor).
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which yields (ii).
(iii) Since I1%[u] = 0 on interior edges and u = 0 on the boundary edges, we can obtain
(4.22)-(4.23) immediately. O

We further recall a relation between the jumps across edges and the norm ||- ||, from Lemma
3.1 in [7]
Y hIdlGe < Cllvln, Yo €V + Vi (4.24)
ecep
Based on the above lemma and (4.24), we can obtain the main result of this section in the
following theorem.

Theorem 4.2. Let u denote the solution of the problem (1.1), and u;, denote the numerical
solution of the WOPIP method in (2.4). Then there exists a constant Cg > 0 depending on ag,
M and the minimum angle of Ty, such that

M < Cp(lu—will + 3 WIf = FI3r)" (4:25)

TeTh

5. Numerical Experiments

All the numerical experiments in this section are implemented by MATLAB. In each adaptive
finite element procedure, we refine the marked triangles by the bisection algorithm, which
derives from the AF EM@matlab implementation [11]. First, by choosing enough smooth exact
solution « in the following example, we provide some results of the a priori error.

Example 5.1. We set the exact solution u = z(1 — x)y(1 — y) with the corresponding right-
hand side function f and ©Q = (0,1) x (0,1) in problems (1.1), here the data D = (a,b,¢) is
chosen such that a =1, b = (1,1) and ¢ = 1, respectively.

For this test, in Fig. 5.1, we show the energy errors ||u — w5, with respect to the mesh size
h in the logarithmic scale. The order of convergence rate which is also the absolute value of the
slope of line is 1.0262, these results confirm Theorem 3.1. Moreover, in Fig. 5.2 we describe
the error between the exact solution u and its numerical solution uy,.

log(energy error)

. . . . . . . .
0.5 1 15 2 25 3 35 4 4.5 5
~log(h)

Fig. 5.1. The convergence rate for the WOPIP method.
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Fig. 5.2. The error between the exact solution v and its numerical solution u, with h = (%4'
As for the a posteriori error estimates, we present some results by introducing the following

L-shape domain example.

Example 5.2. We consider the problem of (1.1) with the exact solution given by u = ré sin(%@)
(in cylindrical coordinates) defined on the L-shaped domain Q = (—1,1)2\([0, 1] x [-1,0]) , here
the data D = (a, b, ¢) is chosen such that @ = 1, b = (rsinf,r cosf) and ¢ = r'/2, respectively.

First, in Fig. 5.3, in log-log coordinates, we show the true error ||u — up||p and the error

estimator "
m=( T it Tl

TeTh ecep ece)

which are computed on a sequence of adaptive meshes as functions of number of degrees of
freedom. These results validate the theoretical analysis in the Theorem 4.1 and Theorem 4.2.
In Fig. 5.4, we also show the adaptive mesh of 22 level in the computational procedure. From
the convergence history in Fig. 5.3, we observe the quasi-optimality of the adaptive algorithm
in the sense that [|u — up||n = CN~/? asymptotically, here N is the number of degrees of

10

T
—#— True Error

—=&— Error Indicator
Optimal convergence

10" ¢

10+ &

4

10’ L L L
10 10 10° 10 10
Degrees of Freedom

Fig. 5.3. Convergence history of the adaptive algorithm for Example 5.2.



Frror Estimates of a WOPTP Method for Non-Self-Adioint. and Tndefinite Prohlems 345

Fig. 5.4. Adaptive mesh of level 22 for Example 5.2.

10 T T

——8&— Error Indicator
Optimal convergence

10 |

10

10"

2 3 4 5

10 10 10 10
Degrees of Freedom

Fig. 5.5. Convergence history of the adaptive algorithm for Example 5.3.

freedom.

Example 5.3. We consider a convection-dominated diffusion problem of (1.1) on the domain
Q = (0,1)?(cf. experiment 2 in [21] and example 7.2 in [10]), the coefficients are given by

a=¢l, €=10"3 b= (y,07—2xz), c=f=0,
and the boudary condtions are Dirichlet type, i.e., u = g on Q2. The data g is given by
1, {04+7<2<0.7—7,y =0},
glz,y) =< 0, OO\{0.4 <z <0.7,y = 0}, (5.1)
linear, {0.4<x<044+7,y=0}or {0.7—7<xz<0.7,y =0}.
We set the parameter 7 = 0.003. The convergence history showed in Fig. 5.5 also illustrates

the optimal convergence of the adaptive algorithm when the mesh size is small enough.
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