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Abstract

In this paper, we formulate interface problem and Neumann elliptic boundary value

problem into a form of linear operator equations with self-adjoint positive definite op-

erators. We prove that in the discrete level the condition number of these operators is

independent of the mesh size. Therefore, given a prescribed error tolerance, the classical

conjugate gradient algorithm converges within a fixed number of iterations. The main

computation task at each iteration is to solve a Dirichlet Poisson boundary value problem

in a rectangular domain, which can be furnished with fast Poisson solver. The overall

computational complexity is essentially of linear scaling.

Mathematics subject classification: 65N30, 65T50.

Key words: Fast Poisson solver, Interface problem, Self-adjoint elliptic problem, Conjugate
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1. Introduction

Self-adjoint elliptic problem can be reformulated as some Riesz representation in an ap-

propriate Hilbert space. To clarify this point, let us consider the Dirichlet boundary value

problem

−∇ · (β(x)∇u) + c(x)u = f, ∀x ∈ Ω,

u = 0, ∀x ∈ ∂Ω.

where Ω is a bounded domain of dimension d, and β(x), c(x) and f are given functions in Ω.

The associated variational problem is to find a distribution u ∈ H1
0 (Ω) such that

avar,Ω(u, v)
def
= (β(x)∇u,∇v)Ω + (c(x)u, v)Ω = (f, v)Ω, ∀ v ∈ H1

0 (Ω). (1.1)

Here (·, ·)Ω denotes the standard L2-inner product in the domain Ω. If the coefficient functions

β(x) and c(x) satisfy

0 < β0 ≤ β(x) ≤ β1 <∞, 0 ≤ c(x) ≤ cmax <∞, ∀x ∈ Ω, (1.2)

where β0, β1 and cmax are three constants, then the bilinear form avar,Ω(·, ·) defines an inner

product in H1
0 (Ω). The weak solution u is simply the Riesz representation of functional (f, v)Ω

with respect to the inner product avar,Ω(·, ·) in H
1
0 (Ω).
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There might be different inner products in a same vector space. In some cases, it is possible

to choose an equivalent reference inner product, such that the Riesz representation with respect

to this reference inner product is simpler. For example, the bilinear form

a0,Ω(u, v) = (∇u,∇v)Ω

gives an equivalent inner product as avar,Ω(·, ·) in H1
0 (Ω), but the Riesz representation with

respect to a0,Ω(·, ·) is simpler since this corresponds to a Dirichlet Poisson problem. By intro-

ducing the representation operator T as

avar,Ω(u, v) = a0,Ω(Tu, v), ∀u, v ∈ H1
0 (Ω),

the variational problem (1.1) can be rewritten into a form of operator equation

Tu = Rf . (1.3)

In the above, Rf denotes the Riesz representation of functional (f, v)Ω with respect to the

reference inner product a0,Ω(·, ·). Since a0,Ω(·, ·) is equivalent to avar,Ω(·, ·), T is both self-adjoint

and positive definite. Obviously, these properties are inherited automatically in the discrete

level, and the bounds of operator T are independent of the mesh size when a conforming

finite element method is used. This implies that the operator Eq. (1.3), thus the original

problem (1.1), can be solved by the Conjugate Gradient (CG) method within a fixed number of

iterations. At each iteration, one needs to determine a Riesz representation of some functional

with respect to the reference inner product. If this can be achieved with an essentially linear

scaling algorithm, such as the fast Poisson solver for the model problem when the domain is

rectangular, the overall scheme based on CG iterations is then essentially of linear scaling.

There are two ingredients involved in the above solution strategy. The first one is how to

formulate a self-adjoint elliptic problem into a Riesz representation problem. The second one is

how to determine an equivalent reference inner product such that the Riesz representation can

be derived with a linear scaling algorithm. Needless to say, these issues are coupled together

and problem dependent. We need to study them case by case.

Interface problem is ubiquitous in fluid dynamics and material science. It has been a hot

research subject for many years. The main difficulty for solving interface problem is due to

the fact that the solution is generally not smooth globally, thus the traditional finite difference

method (FDM) works poorly near the interface. As early as in 1977, Peskin [9] proposed the

immersed boundary (IB) method to handle the singular interface force in his blood flow model

for heart. His basic idea is to approximate the singular delta function with a smoother delta

series. In this way, the singular force is smeared out, and the standard FDM is then applicable.

The IB method has been extended in a great deal, and become very popular in the simulation

of interface-related problems. The readers are referred to [10] for more detailed information.

Despite the overwhelming success, the IB method is criticized due to the less satisfying

accuracy. This motivated Leveque and Li [5,6] to develop the immersed interface method (IIM).

The original version of IIM is formally second order accurate but results in a linear system with

non-symmetric coefficient matrix. This unpleasant fact has a subtle influence on the convergence

of their proposed iterative scheme [4]. Later, Li and Ito [7] proposed some maximum principle

preserving schemes to avoid this convergence problem. In more recent years, the finite element

version of IIM [2,3,13] has been studied more extensively. In comparison to the FDM, the finite

element method (FEM) has two remarkable features. First, the FEM can handle complicated
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geometries without too many additional efforts. Second, the FEM maintain the variational

structure of the original problem, so that the self-adjointness (if existing) is inherited naturally

after discretization and the error analysis is generally easier.

In some cases, the solution of interface problem is at least piecewise smooth, though not

globally. However, as pointed out and analyzed in [1], this is already sufficient to ensure a

numerical solution with nearly optimal accuracy if an interface-fitted mesh is used. Besides,

the coefficient matrix of the resulting linear system is maintained symmetric. Therefore, for

those satisfied with the approximating accuracy and the symmetric feature of the resulting

linear system, the interface problem is largely solved. In the authors’ opinion, the key issue

related to interface problem is the designing of fast algorithm based on a rigorous numerical

analysis.

This was our original motivation to initiate this research. Inspired by the abstract solution

strategy described at the beginning of this section, we develop a CG iteration algorithm based

on the fast Poisson solver for the elliptic interface problem. In the language of preconditioning,

we use constant coefficient Poisson equation to precondition the variable coefficient interface

problem. We stick to the fast Poisson solver because it is essentially of linear scaling, and

more importantly easy to be implemented. We prove that given a prescribed error tolerance,

the CG method terminate after a fixed number of iterations. This ensures that the overall

scheme is essentially of linear scaling. As an extension, the Neumann boundary value problem

is also considered in this paper. Following the analogous idea, we formulate the boundary value

problem into a variational problem such that the Poisson equation can be taken as a uniform

preconditioner.

The rest of this paper is organized as follows. In Section 2, we recall the CG method and

the fast Poisson algorithm with bilinear finite elements. In Section 3, we consider the interface

problem. In Section 4, we consider the Neumann boundary value problems. Numerical tests

are reported in Section 5, and Section 6 concludes this paper.

2. Conjugate Gradient Method and Fast Poisson Solver

We first recall some basic notions in functional analysis.

Definition 2.1. Suppose V is a (real) Hilbert space with inner product (·, ·). The induced norm

is denoted by ‖ · ‖. A linear operator T : V → V is regarded bounded if there exists a constant

c2 > 0 such that

‖Tv‖ ≤ c2‖v‖, ∀ v ∈ V.

T is regarded coercive if there exists a constant c1 > 0 such that

(Tv, v) ≥ c1‖v‖
2, ∀ v ∈ V.

T is regarded self-adjoint if

(Tu, v) = (u, T v), ∀u, v ∈ V.

If the linear operator T is bounded, coercive and self-adjoint, we call it Self-adjoint Positive

Definite (SPD). The constants c1 and c2 are regarded bounds of the SPD operator T .

Obviously, the concept of SPD is an extension of that for a symmetric positive definite

matrix. If T is SPD, then its spectrum σ(T ) ⊂ [c1, c2] where c1 and c2 are bounds of T . Define



Poisson Preconditioning for Self-Adjoint Elliptic Problems 563

the condition number as

κ(T ) =
supσ(T )

inf σ(T )
,

and it follows that κ(T ) ≤ c2/c1.

Given a Hilbert space V with inner product (·, ·)α, we consider the Riesz representation of

a bounded linear functional l(v). More precisely, we seek u ∈ V such that

(u, v)α = l(v), ∀ v ∈ V.

Suppose (·, ·)ref is another equivalent inner product in V . Define the representation operator

T by

(u, v)α = (Tu, v)ref , ∀u, v ∈ V,

and let Rl be the Riesz representation of l(v) under the reference inner product (·, ·)ref , i.e.,

l(v) = (Rl, v)ref , ∀ v ∈ V.

Then u solves the operator equation

Tu = Rl. (2.1)

Since (·, ·)α and (·, ·)ref are equivalent, T is SPD. The operator Eq. (2.1) can be solved with

the standard CG method:

1. Given a relative residual error tolerance ǫ and initial guess u(0).

2. Set r(0) = Rl − Tu(0), p(0) = r(0).

3. for k = 0, 1, · · ·

αk =
(r(k), r(k))ref
(p(k), p(k))α

,

u(k+1) = u(k) + αkp
(k),

r(k+1) = r(k) − αkTp
(k),

βk =
(r(k+1), r(k+1))ref

(r(k), r(k))ref
,

p(k+1) = r(k+1) + βkp
(k).

4. Iterations terminate when ‖r(k)‖ref/‖r(0)‖ref ≤ ǫ.

The error bound at the k-th iteration is given by (see for example [11])

‖u− u(k)‖α
‖u− u(0)‖α

≤ 2

(

√

κ(T )− 1
√

κ(T ) + 1

)k

,

where κ(T ) is the condition number of T .

Fast Poisson solver is an efficient numerical algorithm to solve Dirichlet Poisson problems

defined in a rectangular domain. There are several versions in the literature, but all of them

share the same spirit. We recall this algorithm for the bilinear rectangular elements.
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Given a rectangular domain Ω = Ω1 × · · · × Ωd of dimension d, let us consider the discrete

variational problem: Find u ∈ V R
h (Ω) such that u|∂Ω = g ∈ ∂V R

h (Ω) and

az,Ω(u, v)
def
= (∇u,∇v)Ω + z(u, v)Ω = l(v), ∀ v ∈ V R

h,0(Ω). (2.2)

Here and hereafter, V R
h (Ω) denotes the bilinear Rectangular finite element space in Ω, V R

h,0(Ω)

the maximal subspace of V R
h (Ω) with trace zero, ∂V R

h (Ω) the trace space, l a bounded linear

functional on H1(Ω), and (·, ·)Ω the standard L2 inner product. This variational problem

arises when one discretizes the Poisson operator −∆ + zI equipped with Dirichlet boundary

condition. If z ∈ R is not a Dirichlet eigenvalue of the discrete Laplace operator, the problem

(2.2) is uniquely solvable.

Let us denote the hat basis functions in the i-th direction as ψi,k(xi), k = 0, 1, · · · ,Mi,

i = 1, · · · , d. Introducing the vectorial index k = (k1, k2, · · · , kd), we can label finite element

basis functions as

ψk(x) =
∏

i=1,··· ,d

ψi,ki
(xi), x = (x1, · · · , xd)

⊤.

By expanding u under this set of basis functions as

u =
∑

k

ukψk,

the variational problem (2.2) can be reformulated as a linear system

Tu = b, u = (uk), (2.3)

where T = (tk,k′) is the reduced total stiffness matrix defined as

tk,k′ = az,Ω(ψk, ψk′)

=
∑

i=1,··· ,d

(∇ψi,ki
,∇ψi,k′

i
)Ωi

∏

j 6=i

(ψj,kj
, ψj,k′

j
)Ωj

+ z
∏

i=1,··· ,d

(ψi,ki
, ψi,k′

i
)Ωi

,

and b = (bk) is the reduced load vector defined as

bk = l(ψk)−
∑

k′∈BInd

tk,k′uk′ , ∀k 6∈ BInd.

Here BInd denotes the set of boundary indices, and uk′ for k′ ∈ BInd is given by the Dirichlet

boundary condition. It is easy to verify that the reduced stiffness and mass matrices in the i-th

direction are of the form

Ti =
1

hi
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,

where hi denotes the mesh size in the i-th direction. The key point is that these two matrices

are simultaneously diagonalizable by the discrete sine transform

x = (x1, · · · , xMi−1)
⊤ → y = (y1, · · · , yMi−1)

⊤ = Vix
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defined by

yk =

Mi−1
∑

j=1

sin

(

kjπ

Mi

)

xj .

The diagonal elements of diagonal matrices ViTiV
−1
i and ViUiV

−1
i are, for 1 ≤ k ≤Mi − 1:

Ti,k =
2− 2 cos

(

kπ
Mi

)

hi
, Ui,k = hi





2

3
+

cos
(

kπ
Mi

)

3



 .

Since T is a summation of some tensor products of Ti and Ui, i.e.,

T =
∑

i=1,··· ,d

Ti
⊗





⊗

j 6=i

Uj



+ z
⊗

i=1,··· ,d

Ui,

the coefficient matrix T of linear system (2.3) can be diagonalized by the multi-dimensional

discrete sine transform, and the diagonal element at (k,k)-position is
∑

i=1,··· ,d

Ti,ki

∏

j 6=i

Uj,kj
+ z

∏

i=1,··· ,d

Ui,ki
.

Thanks to the fast algorithm for the discrete sine transform, the linear system (2.3) can be

solved within O(N lnN) operations with N =
∏d

i=1Mi.

3. Interface Problem

We consider the following general interface problem

Avaru
def
= −∇ · (β(x)∇u) + c(x)u = f, ∀x ∈ Ωi ∪ Ωe,

(DΓ,Ωi
−DΓ,Ωe

)u = r, ∀x ∈ Γ,

NΓu = m, ∀x ∈ Γ,

D∂Ωu = g, ∀x ∈ ∂Ω,

(3.1)

where Γ = ∂Ωi ∩ ∂Ωe is a Lipschitz interface, NΓ = NΓ,Ωi
+ NΓ,Ωe

, and Ω = Ω̄i ∪ Ωe is a

rectangular domain. See the schematic map in the left of Fig. 3.1. Here and hereafter, given

any domain Ω̃ and a part of its boundary Γ̃ ⊂ ∂Ω̃, we denote by DΓ̃,Ω̃ the Dirichlet operator

limiting from the interior of Ω̃ to its boundary. In the same spirit, we denote the Neumann

operator by

NΓ̃,Ω̃u = n · β(x)∇u, ∀x ∈ Γ̃,

where n denotes the unit normal directed to the exterior of domain Ω̃. In some cases, we do

not specify the domain when no ambiguity occurs. The coefficient functions β(x) and c(x) are

presumed continuous on each disjoint subdomain, but may be discontinuous across the interface

Γ. Furthermore, we suppose β(x) and c(x) satisfy the conditions specified in (1.2).

The weak formulation associated with the interface problem (3.1) is to find a distribution

u ∈ L2(Ω) such that

u|Ωi
∈ H1(Ωi), u

∣

∣

Ωe
∈ H1(Ωe),

(

DΓ,Ωi
−DΓ,Ωe

)

u = r ∈ H
1
2 (Γ), D∂Ωu = g ∈ H

1
2 (∂Ω),

avar,Ω(u, v)
def
= (β(x)∇u,∇v)Ω + (c(x)u, v)Ω = (f, v)Ω+ < m,DΓv >Γ, ∀ v ∈ H1

0 (Ω).
(3.2)



566 H.D. HAN AND C.X. ZHENG

If f ∈ L2(Ω) and m ∈ H
1
2 (Γ), this problem is uniquely solvable (see [1]).

We resort to the conforming finite element method to solve this interface problem numeri-

cally. First we generate a uniform rectangular mesh in Ω, and then form an interface domain

by collecting all rectangular elements intersecting with Γ, and make a local body-fitted shape-

regular triangular mesh. See the schematic map in the right of Fig. 3.1.

Ω
i

Ω
e

Γ Ω
1

Ω
2

Fig. 3.1. Domain decomposition based on a uniform rectangular mesh.

The whole domain Ω is divided into three parts: Ω1 in Ωi, Ω2 in Ωe and the residual crack

domain Ωc = Interior(Ω\(Ω1 ∪ Ω2)). Note that Ω1 and Ω2 are composed only of rectangular

elements. Set Ωi,c = Ωi∩Ωc and Ωe,c = Ωe∩Ωc. The discrete variational problem corresponding

to (3.2) is to find a function u such that

u|Ω1∪Ω2
∈ V R

h (Ω1 ∪Ω2), u|Ωi,c
∈ V T

h (Ωi,c), u|Ωe,c
∈ V T

h (Ωe,c),

(DΓ,Ωi,c
−DΓ,Ωe,c

)u = Ihr, D∂Ωu = Ihg,

(D∂Ωc,Ωc
−D∂Ωc,Ω1∪Ω2

)u = 0,

avar,Ω(u, v) = (f, v)Ω+ < m,DΓv >Γ, ∀ v ∈ Vh,0(Ω).

(3.3)

Here Vh,0(Ω) denotes the conforming finite element space with trace zero, which relates to the

composite mesh consisting of rectangular elements in Ω1 ∪ Ω2 and triangular elements in Ωc.

V T
h denotes the triangular finite element space and Ih a suitable interpolating operator. We

should remark that in the discrete level, the interface Γ is actually approximated with a polygon

or a polytope, and the domains Ωi and Ωe are modified correspondingly. We hope this wilful

neglect will not present any confusion to understand the main idea.

We take two steps to compute the numerical solution.

3.1. Step A: local solution

Using local triangular elements, we compute the solution of the local interface problem

Avaru0 = fχΩc
, x ∈ Ωc\Γ,

(DΓ,Ωi,c
−DΓ,Ωe,c

)u0 = r, ∀x ∈ Γ,

NΓu0 = m, ∀x ∈ Γ,

D∂Ωc,Ωc
u0 = 0, ∀x ∈ ∂Ωc.
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Numerically, we determine u0 such that

u0|Ωi,c
∈ V T

h (Ωi,c), u0|Ωe,c
∈ V T

h (Ωe,c),

(DΓ,Ωi,c
−DΓ,Ωe,c

)u0 = Ihr, D∂Ωc,Ωc
u0 = 0,

avar,Ωc
(u0, v) = (fχΩc

, v)Ωc
+ < m,DΓv >Γ, ∀ v ∈ V T

h,0(Ωc).

Here V T
h,0 denotes the maximal subspace of V T

h with trace zero on ∂Ωc.

The above problem can be decomposed into three subproblems. First, using triangular

elements we solve

Avaru01,i = fχΩi,c
, ∀x ∈ Ωi,c,

DΓ,Ωi,c
u01,i = r, ∀x ∈ Γ,

D∂Ω1,Ωi,c
u01,i = 0, ∀x ∈ ∂Ω1,

which is equivalent to determine u01,i ∈ V T
h (Ωi,c) such that

DΓ,Ωi,c
u01,i = Ihr, D∂Ω1,Ωi,c

u01,i = 0,

avar,Ωi,c
(u01,i, v) = (fχΩi,c

, v)Ωi,c
, ∀ v ∈ V T

h,0(Ωi,c).
(3.4)

Second, using triangular elements we solve

Avaru01,e = fχΩe,c
, ∀x ∈ Ωe,c,

DΓ,Ωe,c
u01,e = 0, ∀x ∈ Γ,

D∂Ω2\∂Ω,Ωe,c
u01,e = 0, ∀x ∈ ∂Ω2\∂Ω,

which is equivalent to determine u01,e ∈ V T
h,0(Ωe,c) such that

avar,Ωe,c
(u01,e, v) = (fχΩe,c

, v)Ωe,c
, ∀ v ∈ V T

h,0(Ωe,c). (3.5)

Let us define

u01 =

{

u01,i, x ∈ Ωi,c,

u01,e, x ∈ Ωe,c,

and set u02 = u0 − u01. Then u02 solves

Avaru02 = 0, ∀x ∈ Ωc\Γ,

(DΓ,Ωi,c
− DΓ,Ωe,c

)u02 = 0, ∀x ∈ Γ,

NΓu02 = m−NΓu01, ∀x ∈ Γ,

D∂Ωc,Ωc
u02 = 0, ∀x ∈ ∂Ωc,

which is equivalent to determine u02 ∈ V T
h,0(Ωc) such that

avar,Ωc
(u02, v) =< m−NΓu01, v >Γ, ∀ v ∈ V T

h,0(Ωc). (3.6)

In the case that all interior vertices of Ωc are located in the interface Γ, there is no need to

solve (3.4)-(3.5), since the solutions are simply the piecewise linear interpolants. The subprob-

lem (3.6) can be solved efficiently, since the resulting linear system only involves the degrees

of freedom on the interface Γ, and the coefficient matrix is sparse and symmetric positive defi-

nite. Especially in two dimensions, if the interface is topologically isomorphic to a circle, this

coefficient matrix can be made cyclic tridiagonal, and the linear system can be solved directly

within the linear scaling complexity.



568 H.D. HAN AND C.X. ZHENG

3.2. Step B: global solution

Let us extend the function u0 to the whole domain Ω by zero and put u = u0+ ũ. It is easy

to verify that ũ solves the following interface problem

Avar ũ = fχΩ1∪Ω2
, ∀x ∈ Ω1 ∪ Ω2 ∪Ωc,

(D∂Ωc,Ωc
−D∂Ωc,Ω1∪Ω2

)ũ = 0, ∀x ∈ ∂Ωc,

N∂Ωc
ũ = −N∂Ωc

u0, ∀x ∈ ∂Ωc,

D∂Ωũ = g, ∀x ∈ ∂Ω.

Numerically, ũ ∈ Vh(Ω) satisfies D∂Ωũ = Ihg and

avar,Ω(ũ, v) = (fχΩ1∪Ω2
, v)Ω1∪Ω2

− < N∂Ωc
u0, v >∂Ωc

, ∀ v ∈ Vh,0(Ω). (3.7)

Let us denote by S
T (R)
loc : t→ ut the solution operator of the local Dirichlet variational problem

with Triangular (Rectangular) elements, i.e.,

ut ∈ V
T (R)
h (Ωc), ut|∂Ωc

= t, avar,Ωc
(ut, v) = 0, ∀ v ∈ V

T (R)
h,0 (Ωc), (3.8)

and K
T (R)
var the corresponding discrete Dirichlet-to-Neumann map

< KT (R)
var (t),D∂Ωc

v >∂Ωc
= avar,Ωc

(ut, v), ∀ v ∈ V
T (R)
h (Ωc).

Recalling (3.7) we have

avar,Ωc
(ũ, v) = 0, ∀ v ∈ V T

h,0(Ωc).

Therefore, for any v ∈ Vh,0(Ω) it holds

avar,Ω(ũ, v) = avar,Ω1∪Ω2
(ũ, v) + avar,Ωc

(ũ, v)

= avar,Ω1∪Ω2
(ũ, v)+ < KT

varD∂Ωc
ũ,D∂Ωc

v >∂Ωc
.

Thus then, the variational problem (3.7) is equivalent to find ũ ∈ V R
h (Ω1 ∪ Ω2), such that

D∂Ωũ = Ihg and

avar,Ω1∪Ω2
(ũ, v)+ < KT

varD∂Ωc
ũ,D∂Ωc

v >∂Ωc

=(fχΩ1∪Ω2
, v)Ω1∪Ω2

− < N∂Ωc
u0, v >∂Ωc

, ∀ v ∈ V R
h,∗(Ω1 ∪Ω2), (3.9)

where V R
h,∗(Ω1 ∪ Ω2) is the maximal subspace of V R

h (Ω1 ∪ Ω2) with zero trace on ∂Ω.

Lemma 3.1. There exist two positive constants c1 and c2, independent of h, such that

c1 ≤
< KR

var(t), t >∂Ωc

< KT
var(t), t >∂Ωc

≤ c2, ∀ 0 6= t ∈ ∂V T
h (Ωc) = ∂V R

h (Ωc).

This lemma is a direct consequence of the discrete harmonic extension theorem, see Theorem

11.4.3 in [12].

Theorem 3.1. For any z ≥ 0, let KR
z be the discrete Dirichlet-to-Neumann operator of Poisson

operator −∆+ zI in Ωc with rectangular elements. Then the bilinear form

az,Ω1∪Ω2
(u, v)+ < KR

z D∂Ωc
u,D∂Ωc

v >∂Ωc
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defines a uniformly equivalent inner product as

avar,Ω1∪Ω2

(

u, v
)

+ < KT
varD∂Ωc

u,D∂Ωc
v >∂Ωc

in V R
h,∗(Ω1 ∪Ω2). Precisely, there exist two positive constants c3 and c4, independent of h, such

that

c3 ≤
avar,Ω1∪Ω2

(

u, u
)

+ < KT
varD∂Ωc

u,D∂Ωc
u >∂Ωc

az,Ω1∪Ω2

(

u, u
)

+ < KR
z D∂Ωc

u,D∂Ωc
u >∂Ωc

≤ c4, ∀ 0 6= u ∈ V R
h,∗(Ω1 ∪ Ω2).

Proof. Since

az,Ω1∪Ω2
(u, u)+ < KR

z D∂Ωc
u,D∂Ωc

u >∂Ωc

≤max(1, z)
(

a1,Ω1∪Ω2
(u, u)+ < KR

1 D∂Ωc
u,D∂Ωc

u >∂Ωc

)

,

and

az,Ω1∪Ω2
(u, u)+ < KR

z D∂Ωc
u,D∂Ωc

u >∂Ωc

≥a0,Ω1∪Ω2
(u, u)+ < KR

0 D∂Ωc
u,D∂Ωc

u >∂Ωc
,

it suffices to show that there exist two positive constants c5 and c6, independent of h, such that

avar,Ω1∪Ω2

(

u, u
)

+ < KT
varD∂Ωc

u,D∂Ωc
u >∂Ωc

a0,Ω1∪Ω2

(

u, u
)

+ < KR
0 D∂Ωc

u,D∂Ωc
u >∂Ωc

≤ c5, (3.10)

avar,Ω1∪Ω2

(

u, u
)

+ < KT
varD∂Ωc

u,D∂Ωc
u >∂Ωc

a1,Ω1∪Ω2

(

u, u
)

+ < KR
1 D∂Ωc

u,D∂Ωc
u >∂Ωc

≥ c6. (3.11)

Let S
T (R)
loc,z be the discrete solution operator of Poisson operator −∆+ zI with Triangular and

Rectangular elements respectively. By the Dirichlet principle, we have

< KT
varD∂Ωc

u,D∂Ωc
u >∂Ωc

≤ avar,Ωc

(

ST
loc,0D∂Ωc

u, ST
loc,0D∂Ωc

u
)

.

Thus then, there exists a positive constant c7 such that

avar,Ω1∪Ω2

(

u, u
)

+ < KT
varD∂Ωc

u,D∂Ωc
u >∂Ωc

≤ avar,Ω1∪Ω2

(

u, u
)

+ avar,Ωc

(

ST
loc,0D∂Ωc

u, ST
loc,0D∂Ωc

u
)

≤ c7

(

a0,Ω1∪Ω2

(

u, u
)

+ a0,Ωc

(

ST
loc,0D∂Ωc

u, ST
loc,0D∂Ωc

u
)

)

. (3.12)

The last inequality holds since a0,Ω is an equivalent bilinear form as avar,Ω in H1
0 (Ω). By

Lemma 3.1, there exists a positive constant c8 such that

a0,Ωc
(ST

loc,0D∂Ωc
u, ST

loc,0D∂Ωc
u) ≤ c8a0,Ωc

(SR
loc,0D∂Ωc

u, SR
loc,0D∂Ωc

u). (3.13)

Combining (3.12)-(3.13) then yields (3.10). The proof of (3.11) is analogous. By the Dirichlet

principle, we have

< KR
1 D∂Ωc

u,D∂Ωc
u >∂Ωc

≤ a1,Ωc
(SR

locD∂Ωc
u, SR

locD∂Ωc
u).
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Thus then, there exists a positive constant c9 such that

a1,Ω1∪Ω2
(u, u)+ < KR

1 D∂Ωc
u,D∂Ωc

u >∂Ωc

≤ a1,Ω1∪Ω2
(u, u) + a1,Ωc

(SR
locD∂Ωc

u, SR
locD∂Ωc

u)

≤ c9
(

avar,Ω1∪Ω2
(u, u) + avar,Ωc

(SR
locD∂Ωc

u, SR
locD∂Ωc

u)
)

. (3.14)

The last inequality holds since a1,Ω is an equivalent bilinear form as avar,Ω in H1
0 (Ω). By

Lemma 3.1, there exists a positive constant c10 such that

avar,Ωc
(SR

locD∂Ωc
u, SR

locD∂Ωc
u) ≤ c10avar,Ωc

(ST
locD∂Ωc

u, ST
locD∂Ωc

u). (3.15)

Combining (3.14)-(3.15) then yields (3.11). �

The solution of (3.9) is the Riesz representation of the right hand functional with respect

to the inner product

avar,Ω1∪Ω2
(u, v)+ < KT

varD∂Ωc
u,D∂Ωc

v >∂Ωc
.

Theorem 3.1 implies that we can precondition (3.9) by the Poisson equation with rectangular

elements. A CG algorithm can be developed as described in Section 2. The convergence speed

is independent of the mesh size and the interface geometry. At each iteration, one needs to solve

a local Dirichlet boundary value problem and a Dirichlet Poisson problem. The computational

complexity is essentially of linear scaling with respect to the total number of degrees of freedom.

4. Neumann Boundary Value Problem

In this section, we consider the following Neumann boundary value problem

Avaru
def
= −∇ · (β(x)∇u) + c(x)u = f, ∀x ∈ Ωi,

NΓ,Ωi
u = m, ∀x ∈ Γ,

(4.1)

where Γ = ∂Ωi is a Lipschitz boundary. The variational problem associated with (4.1) is to

find u ∈ H1(Ωi) such that

avar,Ωi
(u, v) = (f, v)Ωi

+ < m,DΓv >Γ, ∀ v ∈ H1(Ωi). (4.2)

Suppose β(x) and c(x) are specified such that avar,Ωi
(·, ·) defines an equivalent inner product

as a1,Ωi
(·, ·) in H1(Ωi), the variational problem (4.2) is uniquely solvable for any f ∈ L2(Ωi)

and m ∈ H− 1
2 (Γ).

We first embed the domain Ωi into a large rectangular domain Ω. See the schematic map

in the left of Fig. 3.1. Applying the method described in Section 3, we derive a composite

shape-regular mesh in Ωi. The discrete variational problem is then to find u ∈ Vh(Ωi) such that

avar,Ωi
(u, v) = (f, v)Ωi

+ < m,DΓv >Γ, ∀ v ∈ Vh(Ωi). (4.3)

We take two steps to compute the solution of (4.3).
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Algorithm 4.1.

1. Solve the following local boundary value problem

Avaru0 = f, ∀x ∈ Ωi,c,

D∂Ω1
u0 = 0, ∀x ∈ ∂Ω1,

NΓ,Ωi,c
u0 = m, ∀x ∈ Γ.

(4.4)

Set

V T
h,∗(Ωi,c) =

{

v ∈ V T
h (Ωi,c) : D∂Ω1

v = 0
}

.

The variational form of (4.4) is to find u0 ∈ V T
h,∗(Ωi,c) such that

avar,Ωi,c
(u0, v) = (f, v)Ωi,c

+ < m,DΓv >Γ, ∀ v ∈ V T
h,∗(Ωi,c).

This problem can be solved efficiently, since only a few degrees of freedom around the

boundary Γ get involved.

2. Set ũ = u− u0, and determine ũ by solving the following interface problem

Avar ũ = f, ∀x ∈ Ω1,

Avar ũ = 0, ∀x ∈ Ωi,c,

(D∂Ω1,Ω1
−D∂Ω1,Ωi,c

)ũ = 0, ∀x ∈ ∂Ω1,

N∂Ω1
ũ = −N∂Ω1,Ωi,c

u0, ∀x ∈ ∂Ω1,

NΓ,Ωi,c
ũ = 0, ∀x ∈ Γ.

(4.5)

Let ST
var : r → ur be the discrete solution operator of the boundary value problem

Avarur = 0, ∀x ∈ Ωi,c,

NΓ,Ωi,c
ur = 0, ∀x ∈ Γ,

D∂Ω1,Ωi,c
ur = r, ∀x ∈ ∂Ω1,

(4.6)

and let KT
var denote the discrete Dirichlet-to-Neumann map, i.e.,

< KT
var(r),D∂Ω1

v >∂Ω1
= avar,Ω1

(ur, v), ∀ v ∈ V T
h (Ωi,c).

Then confined to Ω1, ũ solves the variational problem: find ũ ∈ V R
h (Ω1) such that

avar,Ω1
(ũ, v)+ < KT

varD∂Ω1
ũ,D∂Ω1

v >∂Ω1

= < f, v >Ω1
− < N∂Ω1,Ωi,c

u0,D∂Ω1
v >∂Ω1

, ∀ v ∈ V R
h (Ω1). (4.7)

Let SR
z : r ∈ ∂V R

h (Ω1) → ur ∈ V R
h (Ωc ∪ Ω2) be the discrete solution operator with rectan-

gular elements of the following problem

ur ∈ V R
h (Ωc ∪ Ω2), ur|∂Ω = 0,

az,Ωc∪Ω2
(ur, v) = 0, ∀ v ∈ V R

h (Ωc ∪ Ω2) with v|∂Ω = 0, (4.8)
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and KR
z the corresponding discrete Dirichlet-to-Neumann map defined by

< KR
z (r),D∂Ω1

v >∂Ω1
= az,Ωc∪Ω2

(ur, v), ∀ v ∈ V R
h (Ωc ∪ Ω2) with v|∂Ω = 0.

Theorem 4.1. The bilinear form

az,Ω1
(u, v)+ < KR

z D∂Ω1
u,D∂Ω1

v >∂Ω1

defines a uniformly equivalent inner product as

avar,Ω1
(u, v)+ < KT

varD∂Ω1
u,D∂Ω1

v >∂Ω1

in V R
h (Ω1).

Proof. Let Sz : r ∈ ∂V R
h (Ω1) → ur ∈ Vh(Ωc ∪ Ω2) be the discrete solution operator with

rectangular elements of the following problem

ur ∈ Vh(Ωc ∪ Ω2), ur|∂Ω = 0,

az,Ωc∪Ω2
(ur, v) = 0, ∀ v ∈ Vh(Ωc ∪ Ω2) with v|∂Ω = 0, (4.9)

and Kz the corresponding discrete Dirichlet-to-Neumann map defined by

< Kz(r),D∂Ω1
v >∂Ω1

= az,Ωc∪Ω2
(ur, v), ∀ v ∈ Vh(Ωc ∪ Ω2) with v|∂Ω = 0.

By the Dirichlet principle, we have

< KT
varD∂Ω1

u,D∂Ω1
u >∂Ω1

= avar,Ωi∩Ωc
(ST

varD∂Ω1
u,ST

varD∂Ω1
u)

≤ avar,Ωi∩Ωc
(SzD∂Ω1

u,SzD∂Ω1
u).

Thus then,

avar,Ω1
(u, u)+ < KT

varD∂Ω1
u,D∂Ω1

u >∂Ω1

≤ avar,Ω1
(u, u) + avar,Ωi∩Ωc

(SzD∂Ω1
u,SzD∂Ω1

u)

≤ max(β1, cmax)
(

a1,Ω1
(u, u) + a1,Ωi∩Ωc

(SzD∂Ω1
u,SzD∂Ω1

u)
)

≤ max(β1, cmax)
(

a1,Ω1
(u, u) + a1,Ωc∪Ω2

(SzD∂Ω1
u,SzD∂Ω1

u)
)

≤ c1 max(β1, cmax)
(

az,Ω1
(u, u) + az,Ωc∪Ω2

(SzD∂Ω1
u,SzD∂Ω1

u)
)

= c1 max(β1, cmax)
(

az,Ω1
(u, u)+ < KzD∂Ω1

u,D∂Ω1
u >∂Ω1

)

.

The last second inequality holds since avar,Ω(·, ·) is equivalent to a1,Ω(·, ·) in H1
0 (Ω). Recalling

Lemma 3.1 we know there exists c2 > 0 such that

< KzD∂Ω1
u,D∂Ω1

u >∂Ω1

< KR
z D∂Ω1

u,D∂Ω1
u >∂Ω1

≤ c2.

Therefore,

avar,Ω1
(u, u)+ < KT

varD∂Ω1
u,D∂Ω1

u >∂Ω1

≤ c1 max(1, c2)max(β1, cmax)
(

az,Ω1
(u, u)+ < KR

z D∂Ω1
u,D∂Ω1

u >∂Ω1

)

.
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On the other hand, since ∂Ω1 is uniformly Lipschitzian and SR
z is a discrete Poisson extension

operator, there exists a constant c3 > 0 independent of h, such that

< KR
z D∂Ω1

u,D∂Ω1
u >∂Ω1

= a1,Ωc∪Ω2
(SR

z D∂Ω1
u,SR

z D∂Ω1
u) ≤ c3‖D∂Ω1

u‖2
H

1
2 (∂Ω1)

.

By the trace theorem, there exists a constant c4 > 0 independent of h such that

‖D∂Ω1
u‖2

H
1
2 (∂Ω1)

≤ c4a1,Ω1
(u, u).

Thus then,

az,Ω1
(u, u)+ < KR

z D∂Ω1
u,D∂Ω1

u >∂Ω1
≤ (c3c4 +max(1, z))a1,Ω1

(u, u).

By the assumption that avar,Ω1
(·, ·) defines an equivalent inner product as a1,Ω1

(·, ·), there exist

a constant c5 > 0 such that

az,Ω1
(u, u)+ < KR

z D∂Ω1
u,D∂Ω1

u >∂Ω1

≤ c5

(

c3c4 +max(1, z)
)

avar,Ω1
(u, u)

≤ c5

(

c3c4 +max(1, z)
)(

avar,Ω1
(u, u)+ < KT

varD∂Ω1
u,D∂Ω1

u >∂Ω1

)

.

This ends the proof. �

Theorem 4.1 implies that one can precondition (4.7) with the inner product

az,Ω1
(u, v)+ < KR

z D∂Ω1
u,D∂Ω1

v >∂Ω1
.

The Riesz representation with respect to this inner product corresponds to resolving a Dirichlet

Poisson problem in the rectangular domain Ω. The CG method described in Section 2 can then

be applied to solve (4.7) efficiently.

5. Numerical Experiments

We have chosen four simple problems to validate the performance of the proposed algorithms.

In particular, we are interested in the convergence speed of CG method under different mesh

sizes. In all numerical examples, we set the relative residual error tolerance as 10−6, and the

preconditioning Poisson operator as −∆, that is to say, we set z = 0.

All examples are two-dimensional and computed on some square domain with equally spaced

nodes. In the following, Node Number stands for the degrees of freedom in one direction. Thus

a numerical test with a node number of 1024 implies that the total number of grid points is

around one million.

5.1. Example 1

We consider an interface problem of Laplace equation in the rectangular domain [−5, 5]2.

The interface is a circle with radius R = π. The exact solution is set as

u(x) =

{

1 , |x| < R,

1− log |x|
R

, |x| > R.
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It is easy to verify that the Dirichlet jump at the interface is r = 0, and the Neumann jump is

m = 1/R, see (3.1).

The left of Fig. 5.1 plots the numerical solution when the node number is equal to 64, while

the right shows the convergence rates in both L∞ and L2 norm. Second order accuracy can be

observed. Besides, the CG iteration number remains stable when the mesh size gets smaller.

This coincides with our theoretical analysis given in Section 3 that the convergence speed of

CG method is uniform with respect to the mesh size.
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Fig. 5.1. Example 1. Left: numerical solution with a node number of 64. Right: errors and CG

iteration number vs the node number.

5.2. Example 2

In this example, we consider an interface problem with variable coefficients. The computa-

tional domain is [−π/3, π/3]2, and the interface is a circle with radius 0.5. We set the exact

solution as

u(x) =

{

ex1 cosx2, |x| < 0.5,

0, |x| > 0.5,

and the diffusion coefficient as

β(x) =

{

|x|2 + 1, |x| < 0.5,

1, |x| > 0.5.

A direct computation shows that the source term is

f(x) =

{

2ex1(x2 sinx2 − x1 cosx2), |x| < 0.5,

0, |x| > 0.5,

and the jump conditions are

r = ex1 cosx2, m =
5

2
ex1(x1 cosx2 − x2 sinx2).

Fig. 5.2 shows the numerical solution and the errors. Nearly second order can be observed.

The CG iteration number also remains stable when the mesh gets refined.
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Fig. 5.2. Example 2. Left: numerical solution with a node number of 64. Right: errors and CG

iteration number vs the node number.

5.3. Example 3

In this example, we check the performance of the proposed algorithm on the interface ge-

ometry and the diffusion coefficient function. As in the last example, we set the computational

domain as [−π/3, π/3]2. The interface Γ is parameterized and given by

x1 = r(θ) cos θ, x2 = r(θ) sin θ, r(θ) = 0.5 + 0.2 sin(ωθ), 0 ≤ θ < 2π.

The diffusion coefficient is piecewise constant, i.e.,

β(x) =

{

β−, x ∈ Ωi,

β+, x ∈ Ωe,

and we set the exact solution as

u(x) =

{

r2

β−

, x ∈ Ωi,
r4

β+
, x ∈ Ωe.

Fig. 5.3 shows the numerical solutions under different coefficient settings. In Fig. 5.4, we plot

the numerical errors and CG iteration numbers for β+ = 2, 10, 100 respectively. The parameter

β− is fixed as 1. We could still observe that the errors degenerate with second order rate

when the mesh size is sufficiently small. For β+ = 2, 10, the iteration numbers do not change

much, but increase as β increases. For β+ = 100, the iteration number becomes as large as

100. This indicates that the condition number of preconditioned problem is still large, though
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Fig. 5.3. Numerical solution u of Example 3. ω = 5. Left: β− = 1, β+ = 2. Middle: β− = 1, β+ = 10.

Right: β− = 1, β+ = 100.
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Table 5.1: Example 3. Node number is set as 1024.

ω = 1 ω = 5 ω = 10

L∞ Ite. Num. L∞ Ite. Num. L∞ Ite. Num.

β+ = 2 1.80E-6 14 3.52E-6 14 6.58E-6 14

β+ = 10 9.95E-7 33 1.37E-6 32 2.08E-6 33

β+ = 100 1.20E-6 96 1.21E-6 100 1.19E-6 101

independent of the mesh size. On the other hand, if we fix the coefficient function but change

the interface geometry by varying ω (see Table 5.1), we see that the iteration numbers almost

remain constant. These imply that our algorithm is sensitive to the contrast of coefficient

functions, but not to the interface geometry. Actually, the latter point has been shown by our

theoretical investigation, see Theorem 3.1.

5.4. Example 4

In this example, we consider a Neumann boundary value problem with variable coefficients

−∇ · (β(x)∇u) + c(x)u = f, ∀x ∈ Ωi = {x : |x| ≤ 0.5},

n · β(x)∇u = m, ∀x ∈ Γ,
(5.1)

where

β(x) = 2 + sin(x1 + x2), c(x) = x21 + x22.

The exact solution is set as u(x) = ex1 cosx2. Other data functions are set correspondingly.
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Fig. 5.4. Errors and iteration numbers of Example 3. ω = 5. Left: β− = 1, β+ = 2. Middle: β− = 1,

β+ = 10. Right: β− = 1, β+ = 100.
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Fig. 5.5. Example 4. Left: numerical solution. Right: errors and CG iteration numbers.
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We embed the circular domain into the square [−π/3, π/3]2 and apply the algorithm de-

scribed in Section 4. The left of Fig. 5.5 shows the numerical solution when the node number

is 64. The right plot the numerical errors and the CG iteration numbers. A second order

convergence rate is clearly observed in both L∞ and L2 norms. The CG iteration number also

remains very stable as the mesh size becomes smaller.

6. Conclusion

We have developed fast algorithms for the self-adjoint interface problem and the Neumann

boundary value problem. The basic idea is to precondition the PDE problem with the Poisson

equation in a rectangular domain. Since the interface and the physical boundary may not be

aligned with the uniform rectangular mesh, we need to reformulate the PDE problem into a

suitable form such that the Poisson preconditioning is applicable. We have shown how this can

be achieved and proved the associated operators of the preconditioned operator equations are

self-adjoint and uniformly positive definite. This implies that the condition numbers of these

operators are independent of the mesh size. Numerical examples have validated this result.

There are two important issues which are left open in this paper. First, when the fluctuation

of coefficient functions is large, the condition number of preconditioned system is still relatively

large, though independent of the mesh size. More efficient preconditioners are still wanting.

Second, the algorithm for the Neumann boundary value problem cannot be straightforwardly

adapted to the Dirichlet boundary value problem. The new difficulty lies in the fact that unlike

the Neumann boundary value problem, the Dirichlet energy in the local region for the Dirichlet

boundary value problem cannot be uniformly bounded by the Dirichlet energy in the interior

region composed of rectangular elements. We have succeeded in developing a two-stage CG

algorithm for the Dirichlet boundary value problem. However, since this algorithm involves a

nested loop, the efficiency of this algorithm is inferior to the algorithm developed in this paper

for the Neumann boundary value problem.
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