
J. Math. Study
doi: 10.4208/jms.v48n1.15.01

Vol. 48, No. 1, pp. 1-17
March 2015

Modulus-based GSTS Iteration Method for Linear

Complementarity Problems

Min-Li Zeng1,2, Guo-Feng Zhang1,∗

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu
Province, P.R. China.
2 College of Mathematics, Putian University, Putian 351100, Fujian Province, P.R.
China.

Received 3 October, 2014; Accepted (in revised version) 14 December, 2014

Abstract. In this paper, a modulus-based generalized skew-Hermitian triangular split-
ting (MGSTS) iteration method is present for solving a class of linear complemen-
tarity problems with the system matrix either being an H+-matrix with non-positive
off-diagonal entries or a symmetric positive definite matrix. The convergence of the
MGSTS iteration method is studied in detail. By choosing different parameters, a series
of existing and new iterative methods are derived, including the modulus-based Jacobi
(MJ) and the modulus-based Gauss-Seidel (MGS) iteration methods and so on. Exper-
imental results are given to show the effectiveness and feasibility of the new method
when it is employed for solving this class of linear complementarity problems.
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1 Introduction

Consider the following linear complementarity problem

~w :=A~z+~q≥0, ~z≥0 and ~zT
~w=0, (1.1)

where A∈R
n×n is a large sparse matrix,~z∈R

n is an unknown vector and~q=(q1,q2,··· ,qn)T

∈R
n is a given vector. In the sequel, we abbreviate the linear complementarity problem
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(1.1) as LCP(~q,A). The notation “≥” means the componentwise defined partial ordering
between two vectors and “T” in the superscript denotes the transpose of a vector.

The LCP(~q,A) arises in many scientific computing and engineering applications, e.g.,
the contact problem, the Nash equilibrium point of a bimatrix game, the free boundary
problem and the optimal stopping in Markov chain and so on. For more details, see
[6, 17, 19] and the references therein.

To get the numerical solution for the large and sparse LCP(~q,A), many efficient meth-
ods have been presented based on linear algebraic equations, for example, the projected
iterative methods with the system matrix being symmetric positive definite(SPD), sym-
metric positive semi-definite and diagonally dominant ( [1, 16, 18]), the modulus-based
iterative method ( [2, 4–13, 15, 17, 20, 21]) and so on. The main drawback of the projected
methods is that we have to project the iterative solution onto the space R

n
+={x∈R

n|x≥0},
which is a costly and complicated work in actual implementations. Especially, it is much
more difficult when the system matrix is nonsymmetric or some zero entries appear on
the diagonal position.

Recently, Bai in [5] presented a modulus-based matrix splitting iteration method. The
method not only covers the known modulus iteration methods and the corresponding
modified variants, but also yields a series of modulus-based relaxation methods. For ex-
ample, the MJ, the MGS, the modulus-based SOR method (MSOR) ( [15]), the modified
modulus method ( [11]) and the non-stationary extrapolated modulus algorithm ( [12]).
Besides, if the system matrix is an H+-matrix, the improved modulus-based matrix split-
ting iteration method turns to the scaled extrapolated modulus algorithms ( [13]) and the
two-step modulus-based matrix splitting iteration methods ( [20]), respectively.

In this paper, based on the generalized skew-Hermitian triangular splitting (GSTS)
iteration method ( [14]) and the modulus-based matrix splitting iteration methods ( [5]),
we present a modulus-based GSTS (MGSTS) iteration method for solving large sparse
LCP(~q,A). By choosing different parameter matrices, we derive a series of existing and
new iterative methods, including MJ, MGS, AMJ(the accelerated MJ), AMGS(the acceler-
ated MGS) and AMSOR (the accelerated MSOR) methods. Experimental results are given
to show the effectiveness and feasibility of the new method when it is employed for solv-
ing the linear complementarity problems with the system matrix either H+-matrix with
non-positive off-diagonal entries or symmetric positive definite.

The paper is organized as follows. In Section 2, some necessary notations and def-
initions are introduced, some modulus-based matrix splitting iteration methods are re-
viewed. Then the MGSTS iteration method for solving large sparse LCP(~q,A) is estab-
lished and some special modulus-based methods are given, respectively. In Section 3,
when the system matrix is an H+-matrix with non-positive off-diagonal entries or a sym-
metric positive definite matrix, the convergence conditions are presented. In Section 4,
numerical examples are given to show the performance of the proposed method. Finally
in Section 5, we end this paper with some concluding remarks.
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2 The MGSTS iteration method

First we will introduce some notations and concepts. Let A=(aij) and B=(bij) be two
real m×n matrices. Then A≥B(A>B) means aij≥bij(aij>bij) for all 1≤i≤m and 1≤ j≤n.

Let |A|=(|aij |)∈R
m×n be the absolute value of the matrix A, and AT be the transpose of

A.
We call a real matrix A is Z-matrix if the off-diagonal entries of A are non-positive;

an M-matrix if A is a Z-matrix and A−1≥0; an H-matrix if its comparison matrix 〈A〉=
(〈a〉ij)∈R

n×n is an M-matrix, where

〈a〉ij =

{

|aij|, for i= j

−|aij|, for i 6= j
i, j=1,2,.. . ,n.

Particularly, a matrix A is called an H+-matrix if A is an H-matrix with positive diagonal
entries.

Given a matrix A ∈ R
n×n. A splitting A = M−N is called an M-splitting if M is a

nonsingular M-matrix and N≥0; an H-compatible splitting if 〈A〉=〈M〉−|N|. It is known
that if A= M−N is an M-splitting and A is nonsingular M-matrix, then ρ(M−1N)< 1,
where ρ(M−1N) denotes the spectral radius of the matrix M−1N. For more details, we
refer to [5].

Lemma 2.1. ([5]) Let A=M−N be a splitting of the matrix A∈R
n×n, Ω1, Ω2, Ω :=Ω1+Ω2

and Γ be n×n positive diagonal matrices. For the LCP(~q,A) (1.1), the following statements hold
true:

• (i) if (~w,~z) is a solution of the LCP(~q,A), then ~x= 1
2(Γ

−1~z−Ω
−1~w) satisfies the implicit

fixed-point equation

(MΓ+Ω1)~x=(NΓ−Ω2)~x+(Ω−AΓ)|~x|−q. (2.1)

• (ii) if ~x satisfies the implicit fixed-point equation (2.1), then

~z=Γ(|~x|+~x) and ~w=Ω(|~x|−~x) (2.2)

is a solution of LCP(~q,A).

By taking~z= 1
γ (|~x|+~x),~w= 1

γ Ω(|~x|−~x) and A=M−N, the LCP(~q,A) can be equiva-
lently written into a system of fixed-point equations( [5])

(Ω+M)~x=N~x+(Ω−A)|~x|−γ~q. (2.3)

Based on (2.3), Bai ( [5]) established the following modulus-based matrix splitting itera-
tion method for solving LCP(~q,A):
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(Ω+M)~x(k+1)=N~x(k)+(Ω−A)|~x(k)|−γ~q, (2.4)

~z(k+1) :=
1

γ
(|~x(k+1)|+~x(k+1)).

Zheng in [22] further established the accelerated modulus-based iteration method as fol-
lows.

(M1+Ω)~x(k+1)=N1~x
(k)+(Ω−M2)|~x

(k)|+N2|~x
(k+1)|−γ~q, (2.5a)

~z(k+1) :=
1

γ
(|~x(k+1)|+~x(k+1)). (2.5b)

Here, A=M1−N1=M2−N2 are two splittings of the matrix A∈R
n×n, Ω is a n×n positive

diagonal matrix and γ is a positive constant.
Now if we let A=M−N be a splitting of the matrix A with

M=
1

τ
B(ω1,ω2), N=

1

τ
C(ω1,ω2,τ), (2.6)

where

B(ω1,ω2)=(Bc+ω1KL)B−1
c (Bc+ω2KU), (2.7a)

C(ω1,ω2,τ)=Bc−τAH+ω1ω2KLB−1
c KU−(τ−ω1)KL−(τ−ω2)KU, (2.7b)

with Bc ∈R
n×n being a symmetric positive definite matrix, KL and KU being the strictly

lower triangular and the strictly upper triangular matrix, respectively, ω1 and ω2 being
two acceleration parameters.

Then we present our modulus-based GSTS (MGSTS) iteration method for LCP(~q,A)
as follows.

MGSTS iteration method: Given an initial vector ~x(0)∈R
n, a n×n positive diagonal

matrix Ω, a symmetric positive definite matrix Bc and three positive parameters ω1, ω2

and τ to obtain the matrices M and N defined by (2.6). For k=0,1,2,··· until the iteration
sequence {~z(k)}+∞

k=0 is convergent, compute ~x(k+1)∈R
n by solving the linear system

(M+Ω)~x(k+1)=N~x(k)+(Ω−A)|~x(k)|−γ~q, (2.8)

and set

~z(k+1) :=
1

γ

(

|~x(k+1)|+~x(k+1)
)

.

Remark 1. If we split A=AH+AS, where

AH =
1

2
(A+AT), AS=

1

2
(A−AT)=KL+KU,
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KL and KU are the strictly lower-triangular and the strictly upper-triangular parts of AS.
Given a symmetric positive definite matrix Bc. Then we obtain the generalized skew-
Hermitian triangular splitting (GSTS) matrix as

M=
1

τ
B(ω1,ω2)=

1

τ
(Bc+ω1KL)B−1

c (Bc+ω2KU). (2.9)

Remark 2. If we split A=D−L−U, and let Bc :=D, KL :=L and KU :=U, where D, L and
U are the diagonal part, the minus strictly lower-triangular part and the minus strictly
upper-triangular part of A, respectively. Then we have

M=
1

τ
B(ω1,ω2)=

1

τ
(D+ω1L)D−1(D+ω2U). (2.10)

Remark 3. If we split A= M1−N1 = M2−N2 , and let M1 and N1 be defined by (2.6a)
and (2.6b), respectively. Then we obtain an accelerated modulus-based GSTS (AMGSTS)
iteration method from the MGSTS iteration method when we compute ~x(k+1) ∈ R

n by
solving the linear system (2.5a).

By choosing different matrices Bc and Ω and accelerate parameters ω1, ω2, τ and γ,
we can easily get a series of iterative algorithms from the MGSTS iteration method for
solving the LCP(~q,A) (1.1).

Case 1. If Bc=A, ω1=ω2=0, τ=1, γ=1 and Ω= I. Then the MGSTS iteration method
reduces to the modulus iteration method ( [5])

(I+A)~x(k+1)=(I−A)|~x(k)|−~q

with~z(k+1)= |~x(k+1)|+~x(k+1).
Case 2. If Bc = αI, ω1 =ω2 = 0, τ = 1, γ= 1 and Ω = αI. Then the MGSTS iteration

method becomes the modified modulus iteration method in [11] as

(αI+A)~x(k+1)=(αI−A)|~x(k)|−~q

with~z(k+1)= |~x(k+1)|+~x(k+1).
Case 3. If Bc=D, ω1=−1,ω2=0, τ=1 and γ=2, the AMGSTS iteration method yields

the accelerated modulus-based Jacobi iteration method ( [22]), denoted as AMJ,

(D+Ω)~x(k+1)=(L+U)~x(k)+(Ω−M2)|~x
(k)|+N2|~x

(k+1)|−2~q

with~z(k+1)= 1
2(|~x

(k+1)|+~x(k+1)).
Case 4. If Bc = D, ω1 =−1,ω2 = 0, τ = 1 and γ = 2, the AMGSTS iteration method

reduces to the accelerated modulus-based Gauss-Seidel iteration method ( [22]), denoted
as AMGS,

(D+Ω−L)~x(k+1)=U~x(k)+(Ω−M2)|~x
(k)|+N2|~x

(k+1)|−2~q

with~z(k+1)= 1
2(|~x

(k+1)|+~x(k+1)).
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Case 5. If Bc =
1
α D, ω1 =−1,ω2 = 0, τ = 1 and γ= 2, the AMGSTS iteration method

yields the accelerated modulus-based SOR iteration method ( [22]) , denoted as AMSOR,

(D+Ω−αL)~x(k+1)=((1−α)D+αU)~x(k)+(Ω−αM2)|~x
(k)|+αN2|~x

(k+1)|−2α~q

with~z(k+1)= 1
2(|~x

(k+1)|+~x(k+1)).

Case 6. If Bc =
1
α D, ω1 =− β

α ,ω2 = 0, τ = 1 and γ = 2, the MGSTS iteration method
becomes the modulus-based AOR iteration method ( [15])

(D+Ω−βL)~x(k+1)=((1−α)D+(α−β)L+αU)~x(k)+(Ω−αA)|~x(k)|−2α~q

with~z(k+1)= 1
2(|~x

(k+1)|+~x(k+1)).
We can give some new MGSTS iterative methods by choosing different parameters.

Some choices for the parameters are listed in Table 1. In Table 1, AH := 1
2(A+AT), AS :=

Table 1: Some choices of parameters.

Method Bc KL KU p ω1 ω2 τ

MGSTS(1) diag(A) tril(A) triu(A) pexp 1 ω2,exp 1
MGSTS(2) AH tril(AS) triu(AS) pexp 0 ω2,exp 0.6
MGSTS(3) AH tril(AS) triu(AS) pexp ω1,exp 0 0.6
MGSTS(4) AH tril(AS) triu(AS) 0.01 * * 0.6
MGSTS(5) AH tril(AS) triu(AS) 0.01 1.3 0.7 0.6
MGSTS(6) AH tril(AS) triu(AS) 6 1.3 0.7 0.6

1
2(A−AT), diag(A) is the diagonal parts of A. tril(A) and triu(A) represent the strictly
lower-triangular part and the strictly upper-triangular part of the matrix A, respectively.
Pexp, ω1,exp and ω2,exp are the experimental optimal parameters.

3 Convergence analysis of the MGSTS iteration method

In this section, we concentrate on the convergence of the MGSTS iteration method with
the splitting matrix M defined in (2.9) and the system matrix A of the LCP(~q,A) being an
H+-matrix with non-positive off-diagonal entries or a symmetric positive definite matrix.

If the vector pair (~z∗,~w∗)∈R
n
+×R

n
+ is a solution of the LCP(~q,A), then ~x∗= 1

2 γ(~z∗−
Ω

−1~w∗) obviously holds the fixed-point equation

(M+Ω)~x∗=N~x∗+(Ω−A)|~x∗|−γq. (3.1)

After subtracting (3.1) from (2.4), we can immediately obtain

~x(k+1)−~x∗=(M+Ω)−1(N(~x(k)−~x∗)+(Ω−A)(|~x(k)|−|~x∗|)). (3.2)
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Therefore, to prove lim
k→+∞

~z(k)=~z∗, we only need to demonstrate the convergence of the

sequence {~x(k)}+∞

k=0 generated by the MGSTS method. We will use the error relationship
(3.2) to establish our convergence theorem.

3.1 A is an H+-matrix with non-positive off-diagonal entries

Assume that A∈R
n×n is an H+-matrix with non-positive off-diagonal entries. If KL>0,

ω2=0 and Bc=AH, then the splitting matrix of the form (2.9) can be rewritten as

M=
1

τ
(AH+ω1KL). (3.3)

If KL < 0, we will let ω1 = 0 and Bc = AH. Then the splitting matrix of the form (2.9) can
be rewritten as

M=
1

τ
(AH+ω2KU). (3.4)

It can be easily obtained that AH=
1
2(A+AT) is a Z-matrix with the same diagonal entries

as A. We can establish the following convergence theorem for the MGSTS method.

Theorem 3.1. Let A∈R
n×n be an H+-matrix with non-positive off-diagonal entries, A=AH+

KL+KU with KL and KU being the strictly lower-triangular and the strictly upper-triangular
parts of AS, respectively. Assume that A=M−N is a splitting of A with M defined by Eq. (3.3)
or Eq. (3.4), the positive diagonal matrix Ω satisfies Ω≥ 1

2diag(M) and γ is a positive constant.
If one of the following conditions holds:

• (1) when KL > 0, the positive parameter τ and the accelerated parameter ω1 make M =
1
τ (AH+ω1KL) to be a Z-matrix and

(
1

τ
−1)AH+(

ω1

τ
−1)KL−KU ≥0; (3.5)

• (2) when KL<0, the positive number τ and the accelerated parameter ω2 make M= 1
τ (AH+

ω1KU) to be a Z-matrix and

(
1

τ
−1)AH+(

ω2

τ
−1)KU−KL≥0. (3.6)

Then the iteration sequence {~z(k)}+∞

k=0⊂R
n
+ generated by the MGSTS method converges to

the unique solution~z∗∈R
n
+ of the LCP(~q,A) (1.1) for any initial vector ~x(0)∈R

n.

Proof. If KL > 0, then KU =−KT
L < 0. It follows from (3.5) that 1

τ −1 ≥ 0 and ω1
τ −1 ≥ 0

hold, while yields 0< τ≤ 1 and ω1 ≥ τ> 0. So M= 1
τ (AH+ω1KL) is a Z-matrix with

positive diagonal entries when A∈R
n×n is an H+-matrix with non-positive off-diagonal

entries. Then 〈A〉= 〈M〉−|N|. Therefore, A= M−N is an H-compatible splitting of the
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matrix A. According to Theorem 4.3 in [5], we can acquire that the iteration sequence
{~z(k)}+∞

k=0⊂R
n
+ generated by the MGSTS method converges to the unique solution~z∗∈R

n
+

of the LCP(~q,A).

The convergence property for the case KL < 0 can be obtained by the same way as
KL>0.

Corollary 1. Let A∈R
n×n be an M-matrix and A=M−N be a splitting of A described in

Theorem 3.1. Assume that the positive diagonal matrix Ω satisfies Ω≥ 1
2diag(M). Then

for a given positive constant γ, the iteration sequence {~z(k)}+∞

k=0 ⊂R
n
+ generated by the

MGSTS method converges to the unique solution~z∗∈R
n
+ of the LCP(~q,A) for any initial

vector ~x(0)∈R
n.

Proof. Because N≥0 and M is a nonsingular matrix. Then A=M−N is an M-splitting of
the matrix A. By the result of Theorem 4.5 in [5], the conclusion immediately follows.

3.2 A is symmetric positive definite

Firstly, we review a directly result about the accelerated MGSTS (AMGSTS) iteration
method from [22].

Lemma 3.1. ( [22]) Let A∈R
n×n be a positive definite matrix, and A=M1−N1=M2−N2 with

M1∈R
n×n being positive definite. Assume that Ω∈R

n×n is a positive diagonal matrix and γ is
a positive constant. Define

ξ(Ω)=‖(Ω+M1)
−1N1‖, (3.7a)

η(Ω)=‖(Ω+M1)
−1N2‖, (3.7b)

µ(Ω)=‖(Ω+M1)
−1(Ω−M1)‖. (3.7c)

Then the iteration sequence {~z(k)}+∞

k=0 ⊂ R
n
+ generated by the AMGSTS iteration method con-

verges to the unique solution ~z∗∈R
n×n of the LCP(~q,A) for any initial vector ~x(0)∈R

n×n, pro-
vided

δ(Ω) :=µ(Ω)+2ξ(Ω)+2η(Ω)<1. (3.8)

When the system matrix A is symmetric positive definite, then KL and KU are both
zeros matrices. Therefore, from the AMGSTS iteration method in Remark 3, the splitting
matrix of the form (2.9) can be rewritten as

M1=
1

τ
Bc, (3.9)

where Bc is symmetric positive definite and τ > 0 is a positive number. Obviously, the
matrix M1 is symmetric positive definite. Let Ω= pI ∈R

n×n be a positive scalar matrix.
Then the convergence results can be obtained immediately from Lemma 3.1.
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Theorem 3.2. Let A∈R
n×n be a symmetric positive definite matrix, and A=M1−N1=M2−N2

with M1 =
1
τ Bc ∈R

n×n being symmetric positive definite and M2 = A. Assume that Ω= pI ∈
R

n×n, φ1 and φ2 are the smallest and the largest eigenvalues of the matrix Bc, respectively, and
ν := τ ·‖B−1

c N1‖< 1. Then the sequence {~z(k)}+∞

k=0 ⊂ R
n
+ generated by the MGSTS iteration

method converges to the unique solution ~z∗∈R
n
+ of the LCP(q,A) for any initial ~x(0)∈R

n, pro-
vided the parameter p satisfies either of the following conditions:

• (1) (i) when ν2φ2<φ1<νφ2,

νφ2< p<
(1−ν)φ1φ2

νφ2−φ1
; (3.10)

• (1) (ii) when φ1≥νφ2,
pτ>νφ2. (3.11)

4 Numerical results

In this section, we examine the feasibility and effectiveness of the MGSTS iteration method
for solving LCP(~q,A) (1.1) in terms of both iteration steps (denoted by “IT”) and the
elapsed CPU time (denoted by “CPU”) in seconds. We list the IT, CPU times and the
norm of absolute residual vectors (denoted by “RES”). Here, “RES” are defined as

RES(~z(k)) :=‖min{A~z(k)+~q,~z(k)}‖,

where ~z(k) is the kth approximate solution to the LCP(~q,A) and the minimum is taken
componentwise.

All tests are performed in MATLAB R2013a on Intel(R) Core(TM) i7-3770 CPU 3.40
GHz and 8.00 GB of RAM, with machine precision 10−16. In our computations, all runs
of MGSTS method is started from the initial vector ~x(0)=(1,0,1,0,··· ,1,0,···)T ∈R

n and
terminated if the current iteration satisfies either RES(~z(k))< 10−5 or the number of the
prescribed iteration kmax =1000 is exceeded.

We compare the MGSTS method with the projected Gauss-Seidel (PGS), the projected
successive over-relaxation (PSOR) methods( [1, 3, 16]), the MJ, the MGS, the AMJ, the
AMGS and the AMSOR method. We take γ= 2 and Ω= pI in all iteration methods, in
which the parameter p is chosen to minimize the corresponding iteration steps. The ab-
breviations of the corresponding terminologies are listed in the cases described in Section
2. Six different choices for the iteration parameters and parameter-matrices with respect
to the MGSTS iteration method are used in our test experiments, see Table 1. We note
that when the matrix A is symmetric, the MGSTS(2) iteration method is equivalent to
MGSTS(3). They are independent of the parameters ω1 and ω2. The method MGSTS(4)
is only for symmetric matrix A. The methods MGSTS(5) and MGSTS(6) are for nonsym-
metric A, where MGSTS(5) is for c=0, and MGSTS(6) is for c=4, respectively.
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Example 4.1. ( [5, 22]) Consider the LCP(~q,A) (1.1), in which A∈R
n×n is given by A=

Â+cI (c≥0), ~q=(−1,1,−1,1,··· ,−1,1)T ∈R
n, n :=m2.

Â=Tridiag(−l I,S,−rI)=

















S −rI 0 ··· 0 0
−l I S −rI ··· 0 0

0 −l I S ··· 0 0
··· ··· ··· ··· ···
0 0 0 ··· S −rI
0 0 0 ··· −l I S

















∈R
n×n

is a block-tridiagonal matrix,

S= tridiag(−l,4,−r)=

















4 −r 0 ··· 0 0
−l 4 −r ··· 0 0
0 −l 4 ··· 0 0
··· ··· ··· ··· ···
0 0 0 ··· 4 −r
0 0 0 ··· −l 4

















∈R
m×m

is a tridiagonal matrix, and ~z∗ = (1,2,1,2,··· ,1,2)T ∈ R
n is the unique solution of the

LCP(~q,A) (1.1).

4.1 When the system matrix is symmetric

If we choose l=1 and r=1 in Example 4.1, then the system matrix A is symmetric. Hence,
it follows that KL =KU = 0 and the matrix M, N in (2.6a) and (2.6b) are independent on
the parameters ω1, ω2. In this case, we list the experimental optimal parameter ranges
in Tables 2 and 3 for the proposed methods with different problem scales with c=0 and
c = 4, respectively. The corresponding numerical results (iteration steps (IT) and CPU
times (CPU)) with c=0 and c=4 are listed in Tables 4 and 5, respectively.

From the experimental results in Tables 4 and 5 it can be seen that the PSOR method
requires less iteration steps than the MJ, the MGS and the MSOR methods. However,
the projected methods cost much computing times. Those experimental results coincide

Table 2: The experimental optimal parameters for symmetric case with c=0.

m\Method: MJ MGS AMJ AMGS AMSOR MGSTS(1) MGSTS(2)
ω2,exp pexp pexp

10 3.8 1.7 1.7 1.1 1.8 2.4 1.3 [0.10,0.16]
20 3.9 1.7 1.8 0.6 1.3 2.5 1.1 [0.01,0.05]
30 3.8 1.7 1.8 0.4 1.1 2.7 1 [0.01,0.03]
40 3.8 1.6 1.8 0.3 1.0 2.7 0.9 [0.01,0.02]
50 3.8 1.6 1.8 0.3 1.0 2.8 1 [0.01,0.02]
60 3.8 1.6 1.8 0.3 1.0 2.8 1 0.01
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Table 3: The experimental optimal parameters for symmetric case with c=4.

m\Method: MJ MGS AMJ AMGS AMSOR MGSTS(1) MGSTS(2)
ω2,exp pexp pexp

10 [7.3,7.6] [6.8,6.9] [6.8,6.9] [6.7,7.0] [8.0,8.3] [2.0,2.7] [6.2,6.6] [1.8,2.1]
20 [7.2,7.8] 6.8 6.8 [6.5,7.0] [7.8,8.3] [1.7,2.7] [6.0,6.5] 1.9
30 [7.2,7.9] [6.5,7] [6.5,7.0] [6.5,6.8] [7.9,8.1] [1.8,2.7] [6.1,6.3] [1.5,2.2]
40 [7.2,7.6] [6.6,6.9] [6.6,6.9] 6.6 8.0 [1.9,2.7] [6.1,6.3] [1.5,2.1]
50 [7.3,7.5] 6.7 6.7 [6.4,7.0] [7.8,8.0] [1.9,2.7] [6.1,6.3] [1.5,2.1]
60 [7.1,7.8] [6.4,7.1] 6.6 [6.4,6.6] [7.8,7.9] [1.9,2.7] [6.2,6.3] [1.6,2.1]

Table 4: Numerical results for symmetric case (c=0) .

m 10 20 30 40 50 60
Method

PGS IT 145 502 >1000 >1000 >1000 >1000
CPU 9.78 550.47 - - - -

PSOR IT 34 116 251 - - -
CPU 2.26 127.09 1478.55 >5000 >5000 >5000

MJ IT 280 994 - - - -
CPU 0.007 0.05 - - - -

MGS IT 131 427 970 - - -
CPU 0.006 0.13 1.39 - - -

AMJ IT 130 463 - - - -
CPU 0.21 11.80 - - - -

AMGS IT 30 59 90 119 150 185
CPU 0.07 0.90 16.69 70.37 220.01 663.23

AMSOR IT 31 62 91 120 153 186
CPU 0.07 0.92 16.84 70.44 220.32 663.01

MGSTS(1) IT 22 39 71 101 126 162
CPU 0.001 0.034 0.34 1.46 4.40 11.77

MGSTS(2) IT 9 10 11 11 11 11
CPU 0.0005 0.008 0.04 0.15 0.35 0.64

MGSTS(4) IT 10 10 11 11 11 13
CPU 0.0008 0.008 0.047 0.16 0.36 0.68

with that in [5]. It can also been find that the AMJ method is not convergent when c=0.
The AMGS and the AMSOR methods are convergent very slowly when the problem size
increases. However, the MGSTS method keeps the most efficient when the parameter p
is choose according to Tables 2 and 3. When c=4, the AMJ, the AMGS and the AMSOR
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Table 5: Numerical results for symmetric case (c=4).

m 10 20 30 40 50 60
Method

PGS IT 13 15 15 15 16 16
CPU 0.86 16.46 98.73 312.52 973.34 2188.03

PSOR IT 12 12 12 13 13 14
CPU 0.81 13.34 70.50 253.81 784.12 1725.33

MJ IT 20 22 23 23 23 24
CPU 0.0004 0.009 0.02 0.13 0.45 0.72

MGS IT 15 16 17 17 17 18
CPU 0.0008 0.007 0.06 0.11 0.27 0.45

AMJ IT 15 16 17 17 17 17
CPU 0.02 0.39 2.05 6.43 15.86 30.21

AMGS IT 11 12 12 13 13 13
CPU 0.03 0.41 2.07 6.46 17.21 32.82

AMSOR IT 12 12 12 12 13 13
CPU 0.03 0.413 2.07 6.46 17.21 32.82

MGSTS(1) IT 8 9 9 9 9 9
CPU 0.0005 0.007 0.04 0.09 0.17 0.36

MGSTS(2) IT 6 6 7 7 7 7
CPU 0.0003 0.004 0.01 0.05 0.10 0.25

MGSTS(4) IT 10 11 11 11 11 12
CPU 0.0007 0.008 0.06 0.11 0.21 0.39

Table 6: The experimental optimal parameters for nonsymmetric case (c=0).

m\Method: MJ MGS AMJ AMGS AMSOR MGSTS(1) MGSTS(2) MGSTS(3)
ω2,exp pexp ω2,exp pexp ω1,exp pexp

10 4.1 2.1 2.1 2.2 2.9 2.0 [1.6,1.7] 0.8 0.5 1.8 2.9
20 4.1 1.8 1.8 2.1 2.8 1.8 1.2 0.8 0.5 1.8 3.0
30 4.0 1.7 1.7 2.0 2.7 1.7 [0.9,1.0] 0.7 0.5 1.8 3.0
40 4.0 1.6 1.6 2.0 2.7 1.6 0.8 0.7 0.5 1.8 3.0
50 4.0 1.5 1.5 2.0 2.7 1.6 0.7 0.7 0.5 1.8 3.0
60 4.0 1.4 1.5 2.0 2.7 1.5 0.6 0.6 0.5 1.8 3.0

methods become faster convergent than c= 0. Hence, the MGSTS(4) method is a good
choice as a common way to solve the LCP(~q,A) when the system matrix is symmetric.

Besides, we also test the case when we simply take p=0.01, ω1=1.3 and ω2=0.7 for
all problems sizes. From Tables 4 and 5 we see that the iteration steps and the computing
times with respect to both the experimental optimal parameter and this simple choices
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Table 7: The experimental optimal parameters for nonsymmetric case with c=4.

Method\m 10 20 30 40 50 60

MJ [7.6,8.0] [7.5,7.9] [7.4,7.9] [7.5,7.7] [7.3,7.8] [7.3,7.8]
MGS [6.3,7.0] [6.1,6.9] [6.2,6.9] [6.3,6.5] [6.0,6.9] [6.0,6.9]
AMJ [6.3,7.0] [6.1,6.9] [6.2,6.7] [6.3,6.5] [6.1,6.6] [6.2,6.5]
AMGS [6.6,7.5] [6.7,7.3] [6.8,7.2] [6.9,7.1] [6.9,7.1] [6.9,7.0]
AMSOR [7.9,8.8] [8.1,8.6] [8.1,8.5] [8.2,8.4] [8.2,8.4] [8.2,8.3]
MGSTS(1)
ω2,exp [2.1,2.7] [1.9,3.0] [2.0,3.0] [2.1,3.0] [2.2,3.0] [2.3,3.0]
pexp [6.3,6.5] [6.1,6.3] [6.1,6.3] [6.1,6.3] [6.0,6.2] [6.0,6.2]
MGSTS(2)
ω2,exp [0.6,0.7] [0.6,0.8] [0.6,0.8] [0.6,0.7] [0.6,0.7] [0.6,0.7]
pexp [1.7,1.8] [1.4,1.7] [1.4,1.6] [1.4,1.6] [1.4,1.6] [1.4,1.5]
MGSTS(3)
ω1,exp [1.1,1.4] [1.1,1.4] [1.1,1.4] [1.2,1.4] [1.1,1.4] [1.2,1.4]
pexp [3.2,3.5] [3.2,3.5] [3.2,3.5] [3.2,3.5] [3.2,3.4] [3.3,3.4]

are almost the same. The MGSTS(4) method also performs quite efficiently.

4.2 When the system matrix is nonsymmetric

If we let l = 1.5 and r= 0.5, then the system matrix A is nonsymmetric and KL > 0. Ac-
cording to Theorem 3.1, we will take τ=0.6∈(0,1] for both the MGSTS(2) and MGSTS(3)
methods defined by Table 1.

Tables 6 and 7 list the experimental optimal parameter ranges for the proposed method
with respect to different problem scales with c= 0 and c= 4, respectively. Tables 8 and
9 list the numerical results with respect to IT, CPU and RES for the testing methods for
Example 4.1, with respect to varying m.

From the numerical results in Tables 8 and 9 it can be found once again that the pro-
jected methods require less iteration steps but much computing times than the MJ, the
MGS and the AMJ methods. It can been also seen that the MGSTS method is superior to
other methods if the optimal parameters are employed. It needs more iterative steps for
the MGSTS(2) method than the MGSTS(3) method.

From these tables, we see that the MGSTS method always outperforms the MJ method,
the MGS method and the AMJ method considerably in iteration steps. The MGSTS
method almost has the same efficiency as that of the accelerated modulus-based methods
considerably in iteration steps and residual errors.

Besides, we also choose some fixing parameters. For example, when c= 0 and c= 4,
we use the MGSTS(5) and MGSTS(6) methods in Table 1, respectively. We see from Table
8 and Table 9 that, they are both very efficient.
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Table 8: Numerical results for Example 4.1 for nonsymmetric case with c=0.

m 10 20 30 40 50 60
Method

PGS IT 39 60 78 94 - -
CPU 2.63 66.12 462.28 1833.95 >5000 >5000

PSOR IT 34 42 53 64 - -
CPU 2.26 46.21 312.81 1244.14 >5000 >5000

MJ IT 92 155 211 263 313 363
CPU 0.002 0.08 0.16 0.52 1.53 2.71

MGS IT 43 63 81 96 110 126
CPU 0.001 0.02 0.12 0.41 1.12 2.57

AMJ IT 42 63 81 96 110 123
CPU 0.07 1.58 10.23 38.48 53.84 77.49

AMGS IT 13 14 15 15 16 16
CPU 0.03 0.49 2.62 8.28 21.61 44.64

AMSOR IT 13 15 15 15 16 16
CPU 0.03 0.50 2.62 8.28 21.60 44.65

MGSTS(1) IT 17 25 32 37 43 49
CPU 0.001 0.021 0.15 0.53 1.48 2.52

MGSTS(2) IT 16 29 39 49 58 69
CPU 0.001 0.03 0.19 0.70 1.60 3.65

MGSTS(3) IT 9 10 10 11 11 11
CPU 0.0004 0.007 0.04 0.14 0.36 0.75

MGSTS(5) IT 10 13 16 18 20 22
CPU 0.0005 0.008 0.06 0.16 0.44 0.97

Finally in Table 10, we list some numerical results using the MGSTS(4), MGSTS(5),
MGSTS(6) methods for high dimensions LCP(~q,A). We can find that they perform effi-
ciently.

It can be drawn a conclusion that, when the system matrix is symmetric for the
LCP(~q,A), we can use the MGSTS(4) method. When the system matrix is nonsymmetric
for the LCP(~q,A) and c=0, we can use the MGSTS(5) method. When the system matrix is
nonsymmetric for the LCP(~q,A) and c=4, we can use the MGSTS(6) method.

5 Conclusions

In this paper, we have proposed a modulus-based generalized skew-Hermitian triangu-
lar splitting (MGSTS) method for solving a class of linear complementarity problems with
the system matrix being either an H+-matrix with non-positive off-diagonal entries or a
symmetric positive definite matrix. The convergence conditions are given. Numerical ex-
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Table 9: Numerical results for nonsymmetric case (c=4).

m 10 20 30 40 50 60
Method
PGS IT 10 10 11 11 11 11

CPU 0.69 11.04 64.91 213.86 634.30 1413.82
PSOR IT 8 9 9 9 9 9

CPU 0.61 11.19 58.77 201.13 512.24 1127.08
MJ IT 20 22 23 23 24 24

CPU 0.0009 0.006 0.05 0.17 0.48 0.69
MGS IT 13 14 14 14 15 15

CPU 0.0005 0.004 0.03 0.10 0.28 0.38
AMJ IT 13 14 14 14 15 15

CPU 0.02 0.33 1.67 5.28 13.85 27.49
AMGS IT 8 8 8 8 8 8

CPU 0.02 0.26 1.32 4.14 10.11 20.94
AMSOR IT 8 8 8 8 8 8

CPU 0.02 0.26 1.32 4.13 10.11 20.93
MGSTS(1) IT 9 25 32 37 43 49

CPU 0.001 0.02 0.15 0.53 1.48 3.02
MGSTS(2) IT 16 29 39 49 58 69

CPU 0.001 0.02 0.19 0.71 2.01 3.96
MGSTS(3) IT 9 10 10 11 11 11

CPU 0.0005 0.004 0.01 0.08 0.21 0.28
MGSTS(6) IT 12 13 14 14 14 14

CPU 0.0004 0.004 0.03 0.11 0.27 0.35

Table 10: Numerical results for high dimensions.

m 70 80 90 100
(l,r) Method
c=0:
(1,1) MGSTS(4) IT 16 20 24 28

CPU 1.05 1.85 3.16 5.91
(1.5,0.5) MGSTS(5) IT 24 25 27 29

CPU 1.34 2.08 3.58 6.04
c=4:
(1,1) MGSTS(4) IT 12 12 12 12

CPU 0.85 1.55 1.61 2.48
(1.5,0.5) MGSTS(6) IT 14 14 15 15

CPU 0.65 1.13 1.91 3.18

periments show the effectiveness of the MGSTS method for the test problems. However,
the choice of the parameters will be studied in the future work.
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