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Abstract. Based on high-order linear multistep methods (LMMs), we use the class
of extended trapezoidal rules (ETRs) to solve boundary value problems of ordinary
differential equations (ODEs), whose numerical solutions can be approximated by
boundary value methods (BVMs). Then we combine this technique with fourth-order
Padé compact approximation to discrete 2D Schrödinger equation. We propose a
scheme with sixth-order accuracy in time and fourth-order accuracy in space. It is
unconditionally stable due to the favourable property of BVMs and ETRs. Further-
more, with Richardson extrapolation, we can increase the scheme to order 6 accuracy
both in time and space. Numerical results are presented to illustrate the accuracy of
our scheme.
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1 Introduction

We concern ourselves with a high accurate numerical scheme for the following 2D Schrö-
dinger equation with initial and Dirichlet boundary conditions:
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−iut =uxx+uyy+ω(x,y)u, (x,y,t)∈ [a,b]×[a,b]×[0,T],

u(x,y,0)= ϕ(x,y),

u(x,a,t)=ψ1(x,t), u(x,b,t)=ψ2(x,t), t≥0,

u(a,y,t)=ψ3(y,t), u(b,y,t)=ψ4(y,t), t≥0,

(1.1)

where u(x,y,t) is the complex-valued wave function in continuous domain and ω(x,y) is
an arbitrary potential function and i=

√
−1.

Early in 2006, an implicit semi-discrete compact scheme with convergence order O(τ2

+h4) was proposed by Kalita et. al. in [13]. However, there was no stability analysis of
the scheme. Based on new type of discrete energy techniques for stability, Sun [21] and
Liao et. al. [14] presented a fully discrete scheme with same order as the one in [13]
in maximum norm, and raised the convergence order to O(τ4+h4) by Richardson ex-
trapolation. Later, Liao et. al. [15] presented a stable compact ADI scheme resulting in
a tri-diagonal linear system, which has advantages on the computational efficiency of
multi-dimensional schemes over another high-order compact ADI (HOC-ADI) method
proposed in [23]. In 2012, Xu et. al. [24] generalized this method to linear and nonlinear
Schrödinger equations and unconditional stability could be obtained via Fourier analy-
sis. Guo et. al. in [11] established a compact stable ADI scheme and considered also
the stability by the discrete energy technique for both linear and nonlinear Schrödinger
equations. The convergence order is only O(τ2+h4).

Another idea for the numerical approximation of Schrödinger equation is to use BVMs
(boundary value methods) (See, e.g., in [1, 3, 4, 6–9, 19]). In 2003, Sun et. al. in [20] pro-
posed a method by combining fourth-order BVMs with fourth-order compact difference
scheme for solving one-dimensional heat equation. Then, Dehghan et. al. analogously
developed methods by applying fourth-order compact scheme for space approximation
and fourth-order BVMs for time integration [10, 17]. By applying these methods to 2D
Schrödinger equations, fourth-order schemes were obtained. Nevertheless, higher order
BVMs and stability analysis could not be derived naturally from above work.

Based on high-order LMMs (linear multistep methods), a class of ETRs (extended
trapezoidal rules) will be modified and employed to solve the ODEs in this paper. Actu-
ally we will develop a scheme with order O(τ4+h6). With the aid of Richardson extrapo-
lation, the order will be increased to O(τ6+h6). By applying implicit Adams techniques
to impose the initial and final conditions, we construct ETRs with various orders, and
strengthen the stability of the ETRs approximations. In the meantime, we pointed out an
unsuitable application of TOMs (top order methods) in [6].

The paper is organized as follows. In Section 2, the basic theory and applications
with stability analysis of the methods such as LMMs, BVMs, and ETRs are reviewed.
Especially, ETRs with various orders are constructed. In Section 3, combining sixth-order
ETRs with fourth-order compact scheme, a highly accurate scheme for 2D Schrödinger
equation is proposed. In addition, Richardson extrapolation is addressed to increase the
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order of accuracy. In Section 4, numerical experiments are given to test convergence order
of various ETRs. Finally some concluding remarks are given in Section 5.

2 Application and stability analysis for ETRS

In this section, we describe the underlying idea of BVMs with (k1,k2)-boundary condi-
tions, introduced by Brugnano et. al. in [6,8], which are based on high-order LMMs. The
symmetric ETRs can be obtained from BVMs with special (ν,ν−1)-boundary conditions
by a class of Adams-Moulton methods. We will construct various ETRs with fixed-value
orders. With the notations of Kronecker product, the application of ETRs on ODEs is
presented to solve liner systems of equations.

2.1 Linear multistep formula and (k1,k2)-boundary conditions

For a well-conditioned first-order continuous problem

y′= f (t,y), t∈ [t0,T], y(t0)=y0, (2.1)

it can be approximated by the following k−step linear multistep formula [6–8, 18, 22]:

k

∑
i=0

αiyn+i=τ
k

∑
i=0

βi fn+i, n= k1,··· ,N−1, (2.2)

with partition

ti = t0+iτ, i=0,··· ,N+k2−1, τ=
T−t0

N+k2−1
,

where yn+i is the discrete approximation to y(tn+i) and fn+i = f (tn+i,yn+i). Coefficients
αi and βi are chosen so that the equation (2.2) has an indicated order.

As for the two natural numbers k1 and k2, k1+k2 = k in (2.2), the (k1,k2)-boundary
conditions are used with y0,··· ,yk1−1, being given at the initial points, and yN ,··· ,yN+k2−1,
being given at the final points.

However, only the first one y0 of such k1 values is available since it is provided in
(2.1). In order to obtain other quantities independent of those provided by LMF (2.2), we
need additional k1−1 initial equations and k2 final equations.

Here we give k1−1 initial equations

k

∑
i=0

αr
i yi =τ

k

∑
i=0

βr
i fi, r=1,··· ,k1−1, (2.3)

and k2 final equations

k

∑
i=0

αr
i yN+k2−1−i=τ

k

∑
i=0

βr
i fN+k2−1−i, r=N,··· ,N+k2−1. (2.4)
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The step number of equation (2.3) and (2.4) is k. The coefficients
{

αr
i

}

and
{

βr
i

}

should be
chosen such that the truncation errors of these initial and final equations are of the same
order as that in (2.2).

Remark 2.1. When k1 = k, k2 = 0, it reduces to the IVMs (initial value methods) (See,
in [1,3,6–8]), which suffer from heavy theoretical limitations, and which are summarized
by the two well-known Dahlquist barriers.

2.2 Modified ETRS

The explicit method Adams-Bashforth and the implicit method Adams-Moulton are two
well-known forms of methods [18, 19, 22]. For instance, the Adams-Moulton formula is
as follows:

yn−yn−1=τ
k

∑
i=0

βi fn−i, n= k,··· . (2.5)

Along with reverse Adams methods [2], Amodio et al. [1] developed ETRs which are
linear multistep methods with same numbers of initial and finial additional conditions.
Combining with (ν,ν−1)-boundary conditions, we provide ETRs the initial and finial
equations by using the reverse Adams implicit method and the Adams-Moulton respec-
tively. Numerical solutions of (2.2) can be approximated by the following various forms
of ETRs.

ETR1s: κ=0 or 1. Different initial and final equations are used.
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
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





















yn−yn−1=τ
ν−1

∑
i=−ν

βi+ν fn+i, n=ν,··· ,N−1,

yr−yr−1=τ
2ν−2+κ

∑
i=0

βr
i fi, r=1,··· ,ν−1,

yr−yr−1=τ
N+ν−2

∑
i=N−(ν+κ)

βr
i−N+ν+κ fi, r=N,··· ,N+ν−2.

(2.6)

ETR2s: They are from [9] but modified. Initial and final conditions are provided by
Adams-Moulton.
























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













ν−1

∑
i=−ν

αi+νyn+i=
τ

2
( fn+ fn−1), n=ν,··· ,N−1,

2ν−1

∑
i=0

αr
i yi =

τ

2
( fr+ fr−1), r=1,··· ,ν−1,

N+ν−2

∑
i=N−ν−1

αr
i−N+ν+1yi =

τ

2
( fr+ fr−1), r=N,··· ,N+ν−2,

(2.7)
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TOMs: They are from [6,8] but modified. Initial and final conditions are provided by
Adams-Moulton combining with (ν,ν−1)-boundary conditions.


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








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
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



ν−1

∑
i=−ν

αi+νyn+i=τ
ν−1

∑
i=−ν

βi+ν fn+i, n=ν,··· ,N−1.

yr−yr−1=τ
2k−2

∑
i=0

βr
i fi, r=1,··· ,ν−1,

yr−yr−1=τ
2k−2

∑
i=0

βr
i fN+ν−2−i, r=N,··· ,N+ν−2.

(2.8)

The coefficients in ETR1s, ETR2s and TOMs are given in accordance with the follow-
ing requirements.

• {βi},{αi} are determined such that the maximum order of ETRs is O(τk+1), and
that of TOMs is O(τ2k).

•
{

βr
i

}

,
{

αr
i

}

in ETRs are determined such that the truncation error of the imposing

initial and final equations are O(τk+1).

•
{

βr
i

}

in TOMs are determined such that the truncation error of the imposing initial

and final equations are at least O(τ2k−1).

In addtion, Tables 1 and 2 show the values of coefficients {βi},{αi}. For convenience,
we take βi =βi/ηk,αi =αi/ηk.

Remark 2.2. The above ETRs and TOMs methods with (ν,ν−1)-boundary conditions
have the following properties [1, 8].

(1) When ν=1, they reduce to the trapezoidal rule.

(2) When ν≥1, the number of steps is odd, k=2ν−1.

(3) Coefficients {βi} are symmetric, i.e., βi =βk−i, i=0,··· ,k.

(4) Coefficients {αi} are skew-symmetric, i.e., αi=−αk−i, i=0,··· ,k.

2.3 Stability

For relevant stability analysis of LMMs, we consider the following definitions. Quinney
basically gave in [19] the notions of zero stability or Dahlquist-stability, relative stability,
and A-stability. Amodio et. al. in [1–3, 16] used with BVMs the notions of BV zero-
stability, BV-stability, and ABV-stability. Brugnano et. al. in [6–8] gave different expla-
nations of zero-stability and A-stability generalized from the notions of Schur and von
Neumann polynomials.
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Table 1: Coefficients of ETR1s ( [1,8]).

k ν ηk β0 β1 β2 β3 β4

1 1 2 1
3 2 24 -1 13
5 3 1440 11 -93 802
7 4 120960 -191 1879 -9531 68323
9 5 7257600 2479 -28939 162680 -641776 4134338

Table 2: Coefficients of ETR2s ( [8]).

k ν ηk α0 α1 α2 α3 α4

1 1 1 -1
3 2 12 -1 -9
5 3 120 1 -15 -80
7 4 840 -1 14 -126 -525
9 5 5040 1 -15 120 -840 -3024

The stability analysis of ETRs used with (ν,ν−1)-boundary conditions reads as fol-
lows.

Theorem 2.1. ([1]) The (2ν−1)−step ETRs are BV-zero stable and BV-A-stable. The BV-
stability domain of the methods is the negative complex half-plane.

As for TOMs with (ν,ν−1)-boundary conditions mentioned above, we point out one
catastrophic instability examples of order 6, i.e., k = 3 and ν = 2. From (2.8), the corre-
sponding coefficients can be obtained by Taylor expansion with truncation error at least
5,

11yn+1+27yn+27yn−1−11yn−2=3τ[ fn+1+9 fn+9 fn−1+ fn−2].

Please see [19] for details of instability. In fact, the 3-step method is always unstable.
There is a restriction on the accuracy which can be obtained for any value of k.

Theorem 2.2. ([19]) The order of a stable odd k−step method is at most k+1.

Theorem 2.3. ([19]) The order of a stable even k−step method is at most k+2.

Theorem 2.2 implies that the order of the above example is less than or equal to 4 for
being stable.

Remark 2.3. Brugnano et. al. gave in [6,8] numerical examples approximated by fourth-
order ETR1 and sixth-order TOM. Due to above theorems, we know that the sixth-order
TOM is catastrophically unstable except that the order is less than or equal to 4. So it is
clear that there may be some unsuitable applications of TOMs in [6].
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2.4 Special ETRs

Five specific forms of ETRs with fixed orders are constructed from the general form of
ETRs in Section 2.2. They are listed here in order to be used for implementation in Section
4.

Fourth-order ETR1 (ν=2, k=3 and κ=1). Derived from (2.6):
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


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







yn−yn−1=
τ

24
(− fn−2+13 fn−1+13 fn− fn−1), n=2,··· ,N−1,

y1−y0=
τ

24
(9 f0+19 f1−5 f2+ f3),

yN−yN−1=
τ

24
( fN−3−5 fN−2+19 fN−1+9 fN).

(2.9)

Another form of fourth-order ETR1 (κ=0). Derived form (2.6):
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
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

yn−yn−1=
τ

24
(− fn−2+13 fn−1+13 fn− fn−1), n=2,··· ,N−1,

y1−y0=
τ

12
(5 f0+8 f1− f2),

yN−yN−1=
τ

24
(− fN−2+8 fN−1+5 fN).

(2.10)

Sixth-order ETR1 (ν= 3, k= 5 and κ= 1). Derived form (2.6) with 4 additional equa-
tions:


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

















yn−yn−1=
τ

1440
(11 fn−3−93 fn−2+802 fn−1+802 fn−93 fn+1+11 fn+2),

n=3,··· ,N−1,

y1−y0=
τ

720
(251 f0+646 f1−264 f2+106 f3−19 f4),

y2−y1=
τ

720
(−19 f0+346 f1+456 f2−74 f3+11 f4),

yN−yN−1=
τ

720
(11 fN−3−74 fN−2+456 fN−1+346 fN−19 fN+1),

yN+1−yN =
τ

720
(−19 fN−3+106 fN−2−264 fN−1+646 fN+251 fN+1).

(2.11)

Fourth-order ETR2 (ν=2, k=3). Derived from (2.7) with 2 additional equations:



























1

12
(−yn−2−9yn−1+9yn+yn+1)=

τ

2
( fn−1+ fn), n=2,··· ,N−1,

1

12
(−13y0+15y1−3y2+y3)=

τ

2
( f0+ f1),

1

12
(−yN−3+3yN−2−15yN−1+13yN)=

τ

2
( fN−1+ fN).

(2.12)
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Sixth-order ETR2 (ν=3, k=5). Derived from (2.7) with 4 additional equations:


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













1

120
(yn−3−15yn−2−80yn−1+80yn+15yn+1−yn+2)=

τ

2
( fn−1+ fn), n=3,. . .,N−1,

1

120
(−149y0+235y1−180y2+140y3−55y4+9y5)=

τ

2
( f0+ f1),

1

120
(−9y0−95y1+100y2+0y3+5y4−1y5)=

τ

2
( f1+ f2),

1

120
(1yN−4−5yN−3+0yN−2−100yN−1+95yN+9yN+1)=

τ

2
( fN+ fN−1),

1

120
(−9yN−4+55yN−3−140yN−2+180yN−1−235yN+149yN+1)=

τ

2
( fN+1+ fN).

(2.13)

Remark 2.4. The following is the fourth-order ETR2 (ν=2, k=3)used in [10,17,20] which
is different from our fourth-order ETR2 (2.12).
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
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























1

12
(−yn−2−9yn−1+9yn+yn+1)=

τ

2
( fn−1+ fn), n=2,··· ,N−1,

1

24
(−17y0+9y1+9y2−y3)=

τ

4
( f0+3 f1),

1

24
(yN−3−9yN−2−9yN−1+17yN)=

τ

4
(3 fN−1+ fN).

(2.14)

2.5 Applications to ODEs

The basic ODE of (2.1) can be numerically approximated by ETRs. See, for example,
in [10, 17, 20], the fourth-order ETR2 (2.14) applies.

Now, let us apply the sixth-order ETR1 (2.11) to solve ODE (2.1). We approximate (2.1)
with N+1 equations in form Aeye=τBe fe(te,ye), where te,ye∈R

N+1, Ae,Be∈R
(N+1)×(N+2),

and fe =( f0, f1,··· , fN , fN+1)
T. Using partitions Ae=[a0,A] and Be=[b0,B], where a0 is the

first column of Ae, and b0 is the first column of Be, we get a linear system for unknowns
y∈R

N+1,

{

Ay=τB f (t,y)+ ḡ0,

ḡ0=−a0y0+τb0 f (t0,y0),

where ḡ0 contains the initial information. From sixth-order ETR1 (2.11), the matrices A,
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B, a0 and b0 can be explicitly given as follows:

A=























1
−1 1

−1
. . .
. . .

. . .

. . .
. . .

−1 1























(N+1)×(N+1)

B=





























646
720

−264
720

106
720

−19
720

346
720

456
720

−74
720

11
720−93

1440
802

1440
802

1440
−93
1440

11
1440

11
1440

−93
1440

802
1440

802
1440

−93
1440

11
1440

. . .
. . .

. . .
. . .

. . .
. . .

11
1440

−93
1440

802
1440

802
1440

−93
1440

11
1440

11
720

−74
720

456
720

346
720

−19
720−19

720
106
720

−264
720

646
720

251
720





























(N+1)×(N+1)

a0=[−1,0,.. .,0]T1×(N+1), b0=
[

251
720 , −19

720 , 11
1440 ,0,. . .,0

]T

1×(N+1)
.

As for a linear system of ODEs, i.e.,

ẏ(t)=Bxy(t)+g(t), y(0)=y0, t≥0, (2.15)

where y(t)=[y1(t),. . . ,yn(t)]T , g(t)=[g1(t),. . .,gn(t)]T , and Bx is an n×n matrix. Then the
sixth-order ETR1 for (2.15) can be written as

(A⊗ In−τB⊗Bx)y=τ(B⊗ In)g+τ(b0⊗(Bxy0+g0))−a0⊗y0, (2.16)

where ⊗ indicates Kronecker product, In is an n×n identity, g0= g(t0), and

y≈ [y1(t1),. . .,yn(t1),y1(t2),. . .,yn(t2),. . .,y1(tN+1),. . .,yn(tN+1)]
T,

g=[g1(t1),. . .,gn(t1),g1(t2),. . .,gn(t2),. . .,g1(tN+1),. . .,gn(tN+1)]
T .

If we rewrite problem (2.15) into a more complicated form, i.e.,

Axẏ(t)=Bxy(t)+g(t), y(0)=y0, t≥0, (2.17)

where Ax is an n×n nonsingular matrix, then the relevant linear system of equations
with Kronecker product matrix [9, 12] should be

(A⊗Ax−τB⊗Bx)y=τ(B⊗ In)g+τ(b0⊗(Bxy0+g0))−a0⊗Axy0. (2.18)
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In special 2D case of (2.17), we have

Axyẏ(t)=Bxyy(t)+g(t), y(0)=y0, t≥0, (2.19)

(A⊗Axy−τB⊗Bxy)y=τ(B⊗ In2)g+τ(b0⊗(Bxyy0+g0))−a0⊗Axyy0, (2.20)

where Axy,Bxy are n2×n2 nonsingular matrices, and In2 is an n2×n2 identity.

Remark 2.5. If we consider to use the fourth-order ETRs to approximate ODE, then it
will be simpler. As a matter of fact, we will get a linear system for unknowns y∈R

N .

3 Compact difference scheme combined with ETRs

In this section we need the fourth-order Padé approximation for space discretization of
Shrödinger equation (1.1). The sixth-order ETR1 (2.11) on the compact scheme is imple-
mented and a scheme with sixth-order accuracy in time and fourth-order accuracy in
space is constructed. Richardson extrapolation will be incorporated with the scheme to
get it with sixth-order accuracy in space and in time.

3.1 Compact difference scheme

Let n and N be two positive integers and h= b−a
n , τ= T

N+1 . Denote

xr = a+rh, yj = a+ jh, r, j=0,1,.. . ,n,

tk = kτ, k=0,1,.. . ,N+1.

Shrödinger equation (1.1) can be rewritten as

−i
∂u

∂t
(x,y,t)−ω(x,y)u(x,y,t)=

∂2u

∂x2
(x,y,t)+

∂2u

∂y2
(x,y,t). (3.1)

Let us denote

Q(x,y,t)=
∂2u

∂x2
(x,y,t)+

∂2u

∂y2
(x,y,t), (3.2)

and introduce the second-order central difference operators,

δ2
xur,j=

ur+1,j−2ur,j+ur−1,j

h2
, δ2

yur,j=
ur,j+1−2ur,j+ur,j−1

h2
.

At any point (xr,yj,t), the space discretization with respect to x and y leads to

δ2
xur,j(t)+δ2

yur,j(t)−Rr,j(t)=Qr,j(t), (3.3)

where ur,j(t)≈u(xr ,yj,t) , Qr,j(t)=Q(xr,yj,t), and the truncation error Rr,j(t) is

Rr,j(t)=
h2

12

(

∂4u

∂x4
+

∂4u

∂y4

)

r,j

+
h4

360

(

∂6u

∂x6
+

∂6u

∂y6

)

r,j

+O(h6). (3.4)
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According to the approximation in [10, 17], the fourth-order partial derivatives of u are
as follows:

(

∂4u

∂x4

)

r,j

=

(

∂2Q

∂x2
− ∂4u

∂x2∂y2

)

r,j

,

(

∂4u

∂y4

)

r,j

=

(

∂2Q

∂y2
− ∂4u

∂y2∂x2

)

r,j

. (3.5)

If we replace the fourth-order partial derivatives of u in (3.4) with (3.5), and go back to
(3.3), then we have

[

δ2
x+δ2

y+
h2

6
δ2

xδ2
y

]

ur,j(t)=

[

1+
h2

12
(δ2

x+δ2
y)

]

Qr,j(t)+O(h4)+O(h6). (3.6)

Thus, we obtain a fourth-order compact scheme in space for problem (3.1),

[

δ2
x+δ2

y+
h2

6
δ2

xδ2
y

]

ur,j(t) (3.7)

=−
[

1+
h2

12
(δ2

x+δ2
y)

]

(iu′
r,j(t)+ωr,jur,j(t))+O(h4)+O(h6),

where ωr,j=ω(xr,yj) and u′
r,j(t)=

∂u
∂t (xr,yj,t).

Instead of using the approximation of δ2
x(ωr,jur,j),

δ2
x(ωr,jur,j)=(δ2

xωr,j)ur,j+2(δxwr,j)(δxur,j)+ωr,j(δ
2
xur,j), (3.8)

given in [10, 13, 17, 23], we prefer to utilizing the approximation of δ2
x(ωr,jur,j)

δ2
x(ωr,jur,j)=(ωr+1,jur+1,j−2ωr,jur,j+ωr−1,jur−1,j)/h2,

which was provided by Tian et. al. in [23].
In a same way, the approximation of δ2

y(ωr,jur,j) can be derived, too.

3.2 Implementing ETRs on compact scheme

By cutting off the truncation errors, we obtain the fourth-order compact difference scheme
(3.7) onto grid points.

−i

(

4u′
r,j(t)+

1

2
u′

r+1,j(t)+
1

2
u′

r−1,j(t)+
1

2
u′

r,j+1(t)+
1

2
u′

r,j−1(t)

)

=
1

h2

(

4
[

ur+1,j(t)+ur,j+1(t)+ur−1,j(t)+ur,j−1(t)
]

+
[

ur+1,j+1(t)+ur−1,j+1(t)+ur+1,j−1(t)+ur−1,j−1(t)
]

−20ur,j(t)
)

+4ωr,jur,j(t)

+
1

2

[

ωr+1,j(t)ur+1,j(t)+ωr−1,j(t)ur−1,j(t)+ωr,j+1(t)ur,j+1(t)+ωr,j−1(t)ur,j−1(t)
]

.
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This scheme is essentially a linear system of ordinary differential equations,
(

Axyu(t)+c1(t)
)′
=Bxyu(t)+c2(t), (3.9)

where u(t),c1(t),c2(t) are vectors, and Axy,Bxy are matrices. Especially,

u(t)= [u1,1(t),. . . ,u1,n−1(t),u2,1(t),. . .,u2,n−1(t),. . . ,un−1,1(t),. . .,un−1,n−1(t)]
T
1×(n−1)2 ,

Axy= tri[A1,A2,A3](n−1)2 ,Bxy= tri[B1,B2,B3](n−1)2 .

Here tri[a1,a2,a3]n−1 denotes an (n−1)×(n−1) tridiagonal matrix. Each row of this ma-
trix contains the values a1,a2,a3 on its subdiagonal, diagonal, superdiagonal respectively.
Matrix In−1 is an (n−1)×(n−1) identity. So,

A1=− i

2
In−1, A2=−tri

[

i

2
,4i,

i

2

]

n−1

, A3=− i

2
In−1,

B1=

[

1

h2
,

4

h2
+

1

2
ωr−1,j,

1

h2

]

n−1

,

B2=

[

4

h2
+

1

2
ωr,j−1,

−20

h2
+4ωr,j,

4

h2
+

1

2
ωr,j+1

]

n−1

,

B3=

[

1

h2
,

4

h2
+

1

2
ωr+1,j,

1

h2

]

n−1

.

Vectors c1(t) and c2(t) can be obtained from the boundary values of u. For example,

c1(t)=

[−i

2
(ψ3(y1,t)+ψ1(x1,t)),

−i

2
ψ3(y2,t),. . .,

−i

2
ψ3(yn−2,t),

−i

2

(

ψ3(yn−1,t)+ψ2(x1,t)
)

,
−i

2
ψ1(x2,t),0,. . .,0,

−i

2
ψ2(x2,t),. . .,

−i

2
ψ1(xn−2,t),0,. . . ,0,

−i

2
ψ2(xn−2,t),

−i

2
(ψ4(y1,t)+ψ1(xn−1,t)),

−i

2
ψ4(y2,t),. . .,

−i

2
ψ4(yn−2,t),

−i

2

(

ψ4(yn−1,t)+ψ2(xn−1,t)
)

]

.

The basic form of c2(t) is similar to c1(t). It depends on coefficients from matrix Bxy. For
the sake of simplicity, we omit it.

By (2.19) and (2.20), we obtain the sixth-order ETR1 solver for (3.9).

(A⊗Axy−τB⊗Bxy)u=−(A⊗ I(n−1)2)c1+τ(B⊗ I(n−1)2)c2−a0⊗Axyu0

+τ(b0⊗
(

Bxyu0)
)

−a0⊗c1(0)+τ
(

b0⊗ I(n−1)2c2(0)
)

, (3.10)

where matrices A,B and vectors a0,b0 are those given in Section 2.5, and

u≈ [u1,1(t1),. . .,u1,n−1(t1),. . .,un−1,1(t1),. . .,un−1,n−1(t1),. . .,

u1,1(tN+1),. . .,u1,n−1(tN+1),. . .,un−1,1(tN+1),. . .,un−1,n−1(tN+1)]
T

,
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c1=
[

c1(t1)
T,. . .,c1(tN+1)

T
]T

, c2=
[

c2(t1)
T,. . .,c2(tN+1)

T
]T

,

u0=[φ(x1,y1),. . .,φ(x1,yn−1),. . .,φ(xn−1,y1),. . .,φ(xn−1,yn−1)]
T

,

The linear system of (3.10) has a sparse coefficient matrix. We use GMRES iterative
method to solve it. For more details, please see [5] and references therein.

Remark 3.1. If ETRs with various orders are used to obtain systems (3.10), then the con-
vergence order in time of numerical solutions will be alternatively changed, say, from
four to six.

Remark 3.2. By the stability analysis in Section 2.3, we know that the sixth-order ETR1
solver to (3.10) is unconditionally stable. The solution of (3.10) is indeed approximate so-
lution of (3.9). Error accumulation will not really impact the accuracy of approximation.

3.3 Richardson extrapolation

To our knowledge, the convergence order of (3.10) will reach O(τ6+h4). Let us denote
uk

r,j≈u(xr,yj,tk). According to (3.6), we have

uk
r,j(τ,h)=u(xr ,yj,tk)+O(h4)+O(h6)+O(τ6), (3.11)

uk
2r,2j(τ,

h

2
)=u(xr,yj,tk)+O(

h4

16
)+O(h6)+O(τ6). (3.12)

Multiplying (3.11) and (3.12) by − 1
15 and 16

15 respectively, and adding the two products
together, we will obtain a sum without O(h4). Actually we obtain a new approximate
solution (uE)

k
r,j with convergence order O(τ6+h6).











16

15
uk

2r,2j(τ,
h

2
)− 1

15
uk

r,j(τ,h)=u(xr ,yj,tk)+O(τ6+h6).

(uE)
k
r,j=

16

15
uk

2r,2j(τ,
h

2
)− 1

15
uk

r,j(τ,h).

(3.13)

Remark 3.3. Richardson extrapolation is a widely used technique to increase the conver-
gence order. Zhou et. al. in [25] provided an extrapolation method to increase the con-
vergence order to O(τ6+h6) for parabolic equations. More applications of Richardson ex-
trapolation for two-dimensional linear Schrödinger equation, please refer to [11,15,23,24].

Remark 3.4. Our method associated with Richardson extrapolation for solving Schrö-
dinger equation is compact sixth-order extended trapezoidal rules both in space and
time. This method is also feasible and useful to unsteady convection-diffusion problems
instead of the fourth-order compact boundary method in [10].
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4 Numerical experiments

For frequently used linear Shrödinger equations [11, 13, 17, 23, 24], we compute four test
examples by using ETRs with various orders. With different steps h,τ, we perform our
methods on AMD Phenom (tm) II X4 830 CPU 2.79 GHZ with 3 GB RAM. All codes are
written in Python on Linux system. Notice that the CBBVM in [10,17,20] is not employed
here to require the save of computational cost. But instead, the basic GMRES iterative
method is used to produce satisfactory results.

All the numerical results in following tables are maximum errors on which our com-
parison depends.

4.1 Test example 1

Consider (1.1) with a=0, b=1, ω(x,y)=0. Provide the following initial function ϕ(x,y)=
(sin(x)+sin(y)). The exact solution is thus

u(x,y,t)= e−it(sin(x)+sin(y)). (4.1)

Table 3: Ex. 1 by ETR1.

h,τ
fourth-order ETR1 sixth-order ETR1 E sixth-order

Real part Imag part Real part Imag part Real part Imag part
(1/8,1/8) 1.3540e-06 8.8259e-07 3.4690e-08 7.5288e-08 8.4125e-08 2.1036e-07

(1/12,1/12) 1.0545e-07 2.5040e-07 7.3539e-09 4.9541e-09 2.3273e-09 7.0549e-09

(1/16,1/16) 7.0706e-08 9.4122e-08 1.3887e-09 1.7045e-09 1.0927e-09 0.6540e-09

(1/20,1/20) 3.0634e-08 2.3440e-08 5.9386e-10 4.1091e-10 2.9704e-10 3.7602e-10

(1/24,1/24) 1.0131e-08 9.3758e-09 1.3333e-10 1.1091e-10 * *

(1/28,1/28) 5.9374e-09 4.9877e-09 1.3041e-10 9.9124e-11 * *

(1/32,1/32) 3.1493e-09 2.0664e-09 1.6033e-10 1.4815e-10 * *

(1/40,1/40) 1.0670e-09 1.1926e-09 1.6118e-10 1.1070e-10 * *

Table 4: Ex. 1 by ETR2.

h,τ
fourth-order ETR2 fourth-order ETR2 [17] sixth-order ETR2 E sixth-order

Real part Imag part Real part Imag part Real part Imag part Real part Imag part
(1/8,1/8) 1.3148e-05 5.2298e-06 7.6846e-07 6.3543e-07 2.0807e-07 2.1801e-07 2.9299e-07 3.3033e-07

(1/12,1/12) 2.1100e-06 8.5024e-06 1.0500e-07 2.3244e-07 6.7764e-09 6.6343e-09 1.1011e-08 1.4451e-08

(1/16,1/16) 1.5537e-06 1.5067e-06 6.3209e-08 6.1597e-08 9.2613e-10 2.1092e-09 6.8127e-10 3.8448e-09

(1/20,1/20) 3.4172e-07 3.2150e-07 2.0116e-08 1.6998e-08 5.1817e-10 2.3474e-10 4.9722e-10 8.6423e-10

(1/24,1/24) 1.4377e-07 2.5205e-07 7.7260e-09 9.1422e-09 2.0071e-10 1.7681e-10 * *

(1/28,1/28) 9.7861e-08 7.1996e-08 4.5811e-09 3.8960e-09 1.2913e-10 1.9966e-10 * *

(1/32,1/32) 5.8910e-08 3.8071e-08 1.8049e-09 2.1598e-09 2.3721e-10 8.5120e-11 * *

(1/40,1/40) 1.9583e-08 4.6734e-08 6.8149e-10 4.5188e-10 7.8032e-11 2.5671e-10 * *
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4.2 Test example 2

Consider (1.1) with a=0,b=1,ω(x,y)=3−2tanh2(x)−2tanh2(y). Provide the following
initial function ϕ(x,y)= i

cosh(x)cosh(y) . The exact solution is thus

u(x,y,t)=
iexp(it)

cosh(x)cosh(y)
. (4.2)

Boundary conditions can be naturally derived from (4.2).

Table 5: Ex. 2 by ETR1.

h,τ
fourth-order ETR1 sixth-order ETR1 E sixth-order

Real part Imag part Real part Imag part Real part Imag part
(1/8,1/8) 2.5222e-06 2.4376e-06 1.5391e-06 3.4223e-06 8.4125e-08 2.1036e-07

(1/12,1/12) 1.8556e-07 6.2470e-07 7.9454e-08 1.7105e-07 2.3273e-09 7.0549e-09

(1/16,1/16) 7.5293e-08 1.8440e-07 3.7134e-08 2.6676e-08 1.0927e-09 0.6540e-09

(1/20,1/20) 6.1375e-08 3.7746e-08 2.3561e-08 4.5981e-08 2.9704e-10 3.7602e-10

(1/24,1/24) 1.0764e-08 2.2840e-08 1.2933e-08 1.1936e-08 * *

(1/28,1/28) 9.9627e-09 1.0448e-08 1.2755e-08 6.1271e-09 * *

(1/32,1/32) 9.7173e-09 3.8983e-09 6.1118e-09 5.4980e-09 * *

(1/40,1/40) 3.3095e-09 2.6256e-09 * * * *

Table 6: Ex. 2 by ETR2.

h,τ
fourth-order ETR2 fourth-order ETR2 [17] sixth-order ETR2 E sixth-order

Real part Imag part Real part Imag part Real part Imag part Real part Imag part

(1/8,1/8) 1.5524e-05 8.2397e-06 2.2938e-06 3.0451e-06 3.1526e-06 3.0019e-06 1.9322e-07 2.9219e-07

(1/12,1/12) 4.2587e-07 7.0620e-06 1.2353e-07 4.9920e-07 1.4857e-07 2.6754e-07 4.8235e-09 1.6058e-08

(1/16,1/16) 5.1793e-07 1.4646e-06 5.4540e-08 1.1617e-07 3.4205e-08 3.4464e-08 1.3352e-09 2.1394e-09

(1/20,1/20) 2.5559e-07 4.4610e-07 5.2634e-08 5.6841e-08 1.8918e-08 4.2241e-08 5.2749e-10 3.7849e-10

(1/24,1/24) 1.6608e-07 2.0237e-07 9.0371e-09 1.9222e-08 1.7633e-08 1.1129e-08 * *

(1/28,1/28) 8.9307e-08 7.2697e-08 1.3044e-08 9.3083e-09 1.2201e-08 9.4687e-09 * *

(1/32,1/32) 5.2799e-08 3.9565e-08 8.8403e-09 4.7043e-09 4.7484e-09 6.0042e-09 * *

(1/40,1/40) 1.8341e-08 3.0571e-08 2.6740e-09 3.2745e-09 1.8541e-09 2.6080e-09 * *

4.3 Test example 3

Consider (1.1) with an open domain problem, where a =−2.5,b = 2.5,ω(x,y) = 0. Pro-

vide the following initial function ϕ(x,y) = e−ik0x−(x2+y2), which generates the transient
Gaussian distribution
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u(x,y,t)=
i

i−4t
e(−i((x2+y2+ik0x+k2

0it)/(i−4t))). (4.3)

The function u(x,y,t) is initially centered at (0,0) and then moving along the negative
x-direction as time evolves. The wave number k0 is here tested with k0=2.5 and k0=0.5.
Boundary conditions can also be derived from (4.3).

Case k0=2.5

Table 7: Ex. 3 by ETR1 with k0=2.5.

space step time step
fourth-order ETR1 sixth-order ETR2

Real part Imag part Real part Imag part

40 40 0.000213346 0.000214359 0.000213205 0.000214225

50 50 8.59215e-05 8.80028e-05 8.58587e-05 8.79400e-05

55 55 5.90311e-05 6.00736e-05 5.89912e-05 6.00341e-05

60 60 4.08308e-05 4.29534e-05 4.08055e-05 4.29232e-05

65 65 3.0153e-05 3.0830e-05 * *

Table 8: Ex. 3 by ETR2 with k0=2.5.

space step time step
fourth-order ETR2 sixth-order ETR2

Real part Imag part Real part Imag part

40 40 0.000213320 0.000214334 0.000213205 0.000214225

50 50 8.59058e-05 8.79875e-05 8.58584e-05 8.79401e-05

55 55 5.90204e-05 6.00629e-05 5.89911e-05 6.00342e-05

60 60 4.08239e-05 4.29544e-05 4.08054e-05 4.29232e-05

65 65 3.01534e-05 3.08300e-05 3.01378e-05 3.08138e-05

Table 9: Ex. 3 by E sixth-order with k0=2.5.

space step time step
E sixth-order ETR1 E sixth-order ETR2

Real part Imag part Real part Imag part

10 10 0.001127727 0.000571239 0.001124961 0.000572365

20 20 1.25567e-05 1.25337e-05 1.25598e-05 1.25362e-05

25 25 3.24548e-06 3.25194e-06 3.25454e-06 3.25911e-06

30 30 * * 1.12320e-06 1.09956e-06
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Case k0=0.5

Table 10: Ex. 3 by ETR1 with k0=0.5.

space step time step
fourth-order ETR1 sixth-order ETR1

Real part Imag part Real part Imag part

40 40 1.44238e-05 9.57133e-06 1.44191e-05 9.56810e-06

50 50 5.93460e-06 3.91038e-06 5.93270e-06 3.90917e-06

55 55 4.01793e-06 2.66899e-06 4.01676e-06 2.66804e-06

60 60 2.86247e-06 1.88233e-06 2.86154e-06 1.88174e-06

65 65 2.05508e-06 1.36505e-06 * *

Table 11: Ex. 3 by ETR2 with k0=0.5.

space step time step
fourth-order ETR2 sixth-order ETR2

Real part Imag part Real part Imag part

40 40 1.44229e-05 9.57078e-06 1.44191e-05 9.56809e-06

50 50 5.93417e-06 3.91009e-06 5.93270e-06 3.90921e-06

55 55 4.01765e-06 2.66874e-06 4.01676e-06 2.66805e-06

60 60 2.86222e-06 1.88215e-06 2.86154e-06 1.88178e-06

65 65 2.05493e-06 1.36490e-06 2.05451e-06 1.36454e-06

Table 12: Ex. 3 by E sixth-order with k0=0.5.

space step time step
E sixth-order ETR1 E sixth-order ETR2

Real part Imag part Real part Imag part

10 10 4.68075e-05 2.28108e-05 4.68103e-05 2.28387e-05

20 20 5.62901e-07 3.84382e-07 5.62130e-07 3.85044e-07

25 25 1.51025e-07 9.94895e-08 1.50925e-07 9.96516e-08

30 30 5.20329e-08 3.29773e-08 5.20190e-08 3.31157e-08

4.4 Test example 4

Consider (1.1) with

a=0,b=1,ω(x,y)=−4x2+4y2−4x−4y+β2−4β+2

β2
.

Provide the following initial function ϕ(x,y)= e
− (x−0.5)2

β − (y−0.5)2

β , which generates the tran-
sient Gaussian distribution

u(x,y,t)= e
− (x−0.5)2

β − (y−0.5)2

β −it
(4.4)
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Table 13: Ex. 4 by ETR1 with β=0.5.

h,τ
fourth-order ETR1 sixth-order ETR1 E sixth-order

Real part Imag part Real part Imag part Real part Imag part
(1/8,1/8) 2.8923e-05 5.4086e-05 4.1791e-06 1.1666e-05 1.4463e-08 6.8715e-09

(1/12,1/12) 1.0391e-06 5.7207e-07 4.0181e-06 1.6374e-06 9.3227e-09 3.5786e-09

(1/16,1/16) 6.0380e-07 4.5665e-07 7.1341e-07 4.0877e-07 1.4679e-09 1.1960e-09

(1/20,1/20) 2.3410e-07 1.4718e-07 5.0302e-07 2.0591e-07 2.4981e-10 2.6100e-10

(1/24,1/24) 1.3021e-07 9.5952e-08 2.7930e-07 9.2733e-08 * *

(1/28,1/28) 7.5273e-08 5.1069e-08 1.4236e-07 4.6678e-08 * *

(1/32,1/32) 4.4995e-08 2.1869e-08 8.2092e-08 2.9901e-08 * *

(1/40,1/40) 2.7763e-08 1.5645e-08 * * * *

Table 14: Ex. 4 by ETR2 with β=0.5.

h,τ
fourth-order ETR2 sixth-order ETR2 E sixth-order

Real part Imag part Real part Imag part Real part Imag part
(1/8,1/8) 4.5767e-05 0.00011081 1.1424e-05 1.4378e-05 2.5206e-08 3.3978e-08

(1/12,1/12) 2.7952e-06 2.1359e-06 3.5067e-06 2.1118e-06 1.4313e-08 6.9036e-09

(1/16,1/16) 2.2082e-07 3.8459e-07 1.0870e-06 5.1952e-07 1.3022e-09 1.7616e-09

(1/20,1/20) 2.7006e-07 2.3705e-07 4.5702e-07 2.4896e-07 4.4629e-10 1.1144e-10

(1/24,1/24) 2.3529e-07 1.2006e-07 2.6795e-07 9.1002e-08 * *

(1/28,1/28) 1.5812e-07 7.5954e-08 1.2414e-07 5.5799e-08 * *

(1/32,1/32) 7.3039e-08 4.6183e-08 6.9837e-08 4.0550e-08 * *

(1/40,1/40) 2.6131e-08 1.2273e-08 2.1414e-08 1.4899e-08 * *

Boundary conditions can be easily derived from (4.4). We set β=0.5 and the initial con-
dition is a Gaussian pulse with unit height centered at x=0.5 and y=0.5.

For test examples (4.1) and (4.2), we show the comparison of numerical results by
conducting fixed-order ETRs in coarse steps in time and space. Results in Tables 3, 4, 5
and 6 show the high accuracy of fourth-order ETRs and sixth-order ETRs. The sixth-order
extrapolation results are also illustrated. However, due to the truncation errors produced
by E sixth-order ETRs, there is no information being definitely positive for sixth-order
ETRs and E sixth-order ETRs. Here we actually do not claim the priority of ETR1 and
ETR2, even though the numerical results and computational cost show the advantage of
ETR2. In addition, the numerical results of test examples (4.3) and (4.4) are quite affected
by the different values of parameters k0 and β. The reason for this phenomenon seems to
be another topic to be studied in the future. At the same time, for problem (4.3) in case
k0 =2.5 or case k0 =0.5 , there is small difference between the results of fourth-order and
sixth-order ETR1. If we compare the results of ETR1 and ETR2, the same phenomenon
occurs. For test example (4.4), we draw six pictures about surface plot of error with
different steps corresponding to Table 14.



48 X.-H. Liu, et. al. / J. Math. Study, 48 (2015), pp. 30-52

Figure 1: Imag part of Fourth-order ETR2, error surface vs steps.

Figure 2: Imag part of Sixth-order ETR2, error surface vs steps.
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Figure 3: Imag part of E Sixth-order ETR2, error surface vs steps.

Figure 4: Real part of Fourth-order ETR2, error surface vs steps.
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Figure 5: Real part of Sixth-order ETR2, error surface vs steps.

Figure 6: Real part of E Sixth-order ETR2, error surface vs steps.
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Numerical experiments performed give illustration that the fourth-order ETR1, sixth-
order ETR1, E sixth-order ETR1 and fourth-order ETR2, sixth-order ETR2, E sixth-order
ETR2 combined with the fourth-order Padé compact technique are in high accuracy for
solving Shrödinger equation.

5 Conclusion

Combining BVMs with (ν,ν−1)-boundary conditions, we modify symmetric ETRs with
same numbers of initial and finial equations, which can be obtained by a class of Adams-
Moulton. Making use of the Kronecker products, we extend the application of ETRs
with various orders to ODEs. Instead of using compact ADI schemes from [11, 13–15,
23, 24] for Schrödinger equation, we apply the sixth-order ETRs to the fourth-order Padé
compact scheme. Then a stable scheme with order O(τ6+h4) is presented. Furthermore
the convergence order in time can be changed alternatively by using various ETRs. By
virtue of Richardson extrapolation, the convergence order will be raised to O(τ6+h6).
This is a good method with high accuracy. Finally, numerical tests of four examples are
carried out to confirm the stability and the high convergence of our methods.
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