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Abstract. For two simple connected graphs G1 and G2, we introduce a new graph op-
eration called the total corona G1⊛G2 on G1 and G2 involving the total graph of G1.
Subsequently, the adjacency (respectively, Laplacian and signless Laplacian) spectra
of G1⊛G2 are determined in terms of these of a regular graph G1 and an arbitrary
graph G2. As applications, we construct infinitely many pairs of adjacency (respec-
tively, Laplacian and signless Laplacian) cospectral graphs. Besides we also compute
the number of spanning trees of G1⊛G2.
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1 Introduction

In this paper, all graphs considered are finite, simple connected graphs. Let G= (V,E)
be a graph with vertex set V={v1,v2,. . .,vn} and edge set E(G). The adjacency matrix of
G is an n×n matrix whose (i, j)-entry is 1 if vi and vj are adjacent in G and 0 otherwise,
denoted by A(G). The degree of vi in G is denoted by di = dG(vi). Let D(G) be the di-
agonal degree matrix of G which diagonal entries are d1,d2,. . .,dn. The Laplacian matrix
L(G) of G is defined as D(G)−A(G). The signless Laplacian matrix of G is defined as
Q(G)= D(G)+A(G). For an n×n matrix M associated to G, the characteristic polyno-
mial det(xIn−M) of M is called the M-characteristic polynomial of G and is denoted by
φ(M;x). In denotes the identity matrix. The roots of φ(M;x) are called the eigenvalues
of matrix M. The set of all eigenvalues is called the spectrum of matrix M or graph G. In
particular, if M is the adjacency matrix A(G) of G, then the A-spectrum of G is denoted by
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σ(A(G))=(λ1(G),λ2(G),. . .,λn(G)), where λ1(G)≥λ2(G)≥···≥λn(G) are the eigenval-
ues of A(G). If M is the Laplacian matrix L(G) of G, then the L-spectrum of G is denoted
by σ(L(G))=(µ1(G),µ2(G),. . .,µn(G)), where µ1(G)≤µ2(G)≤···≤µn(G) are the eigen-
values of L(G). If M is the signless Laplacian matrix Q(G) of G, then the Q-spectrum
of G is denoted by σ(Q(G))=(ν1(G),ν2(G),. . .,νn(G)), where ν1(G)≤ν2(G)≤···≤νn(G)
are the eigenvalues of Q(G). For more review about the A-spectrum, L-spectrum and
Q-spectrum of G, readers may refer to [4–7] and the references therein.

It is of interest to study some spectral properties of certain composite operations be-
tween two graphs such as the Cartesian product, the Kronecker product, the corona, the
edge corona, the neighbourhood corona, the subdivision-vertex neighbourhood corona,
the subdivision-edge neighbourhood corona. For example, the A-spectra, L-spectra and
Q-spectra of the (edge) corona of two graphs can be expressed by these of the two factor
graphs [1–3, 8, 9, 11, 13–17]. Recently, the R-vertex (neighbourhood) corona and R-edge
(neighbourhood) corona of two graphs have been defined in [12] and the A-spectra, L-
spectra and Q-spectra of these four operations of two graphs were computed in [12].

Motivated by the works above, we define a new graph operation based on the total
graph as follows. The total graph [6] of a graph G, denoted by T(G), is that graph whose
set of vertices is the union of the set of vertices and the set of edges of G, with two vertices
of T(G) being adjacent if and only if the corresponding elements of G are adjacent or
incident.

Definition 1.1. The total corona of G1 and G2, denoted by G1⊛G2, is obtained by taking
one copy of T(G1) and |V(G1)| copies of G2, and joining the ith vertex of G1 to every
vertex in the ith copy of G2.

Let Pn be a path of order n. Figure 1 depicts the total corona P3⊛P2 of P3 and P2.
Note that if G1 is an r-regular graph on n1 vertices and m1 edges, and G2 is an arbi-
trary graph on n2 vertices and m2 edges, then G1⊛G2 has n1+m1+n1n2 vertices and

n1m2+n1n2+3m1+
n1r(r−1)

2 edges.

In this paper, we focus on determining the A-spectra, L-spectra and the Q-spectra
of G1⊛G2 in terms of the corresponding spectra of a regular graph G1 and an arbitrary
graph G2. As applications of these results, we construct infinitely many pairs of adjacency
(respectively, Laplacian and signless Laplacian) cospectral graphs. Moreover, we also
compute the number of spanning trees of G1⊛G2 in terms of the L-spectra of two factor
graphs G1 and G2.

2 Main results

In this section, we determine the spectra of total corona with the help of the coronal of a
matrix. The M-coronal ΓM(x) of a matrix M of order n is defined [3, 16] to be the sum of
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Figure 1: The total corona of P3⊛P2 of two paths P3 and P2.

the entries of the matrix (xIn−M)−1, that is, ΓM(x)=1T
n (xIn−M)−11n, where 1n denotes

the column vector of size n with all the entries equal to one. The Kronecker product
A⊗B of two matrices A=(aij)m×n and B=(bij)p×q is the mp×nq matrix obtained from A
by replacing each element aij by aijB. This is an associative operation with the property

that (A⊗B)T = AT⊗BT and (A⊗B)(C⊗D)= AC⊗BD. whenever the products AC and
BD exist. The latter implies (A⊗B)−1 = A−1⊗B−1 for no-singular matrices A and B.
Moreover, if A and B are n×n and p×p matrices, then det(A⊗B)=(detA)p(detB)n. The
reader can refer to [10] for other properties of the Kronecker product.

Let G=(V,E) be a simple graph with vertex set V={v1,v2,. . .,vn} and edge set E(G)=
{e1,e2,. . .,em}. The incident matrix of G is an n×m matrix whose (i, j)-entry is 1 if vi and
ej are incident in G and 0, otherwise , denoted by R(G). If the graph G is an r regular,

then R(G)R(G)T =A(G)+rIn.

Let G1 be an r-regular graph on n1 vertices and m1 edges, and G2 is an arbitrary
graph on n2 vertices. We first label the vertices of G1⊛G2 as follows. Let V(G1) =
{v1,v2,. . .,vn1

}, I(G1) = {e1,e2,. . .,em1
}, and V(G2) = {u1,u2,. . .,un2}. For i = 1,2,.. . ,n1, let

V i(G2)={ui
1,ui

2,. . .,ui
n2
} denote the vertex set of the ith copy of G2. Then V(G1)∪ I(G1)∪

[
n1
⋃

i=1
V i(G2)] is a partition of V(G1⊛G2). It is clear that degrees of the vertices of G1⊛G2

are

dG1⊛G2
(vi)=2dG1

(vi)+n2, i=1,2,.. .n1,

dG1⊛G2
(ei)=2r, i=1,2,.. .m1,

dG1⊛G2
(ui

j)=dG2
(uj)+1, i=1,2,.. .n1, j=1,2,.. . ,n2.

In the following, we first consider the adjacency spectra of G1⊛G2.

Theorem 2.1. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 is an arbitrary
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graph on n2 vertices. Then

φ(A(G1⊛G2);x)=(x+2)m1−n1(φ(A(G2)))
n1

n1

∏
i=1

[

x2+(2−ΓA(G2)(x)−r1−2λi)x

+λ2
i +(r1+ΓA(G2)(x)−3)λi+(r1−2)ΓA(G2)(x)−r1

]

.

Proof. We label the vertices of G1⊛G2 as above, the adjacency matrix of G1⊛G2 can be
written as

A(G1⊛G2)=





A(G1) R In1
⊗1T

n2

RT B 0
In1

⊗1n2 0 In1
⊗A(G2)



,

where R is the vertex-edge incidence matrix of G1, B=RTR−2Im1
. Then the characteristic

polynomial of G1⊛G2 is

φ(A(G1⊛G2))=det





xIn1
−A(G1) −R −In1

⊗1T
n2

−RT xIm1
−B 0

−In1
⊗1n2 0 In1

⊗(xIn2−A(G2))





=det(In1
⊗(xIn2−A(G2)))det(S)

=(φ(A(G2)))
n1 det(S),

where

S=

(

xIn1
−A(G1) −R
−RT xIm1

−B

)

−

(

−In1
⊗1T

n2

0

)

(In1
⊗(xIn2−A(G2))

−1)•

(

−In1
⊗1n2 0

)

=

(

xIn1
−A(G1) −R
−RT xIm1

−B

)

−

(

ΓA(G2)(x)In1
0

0 0

)

=

(

(x−ΓA(G2)(x))In1
−A(G1) −R

−RT xIm1
−B

)

is the Schur complement [18] of In1
⊗(xIn2−A(G2)) and

detS=det

(

(x−ΓA(G2)(x))In1
−RRT+r1 In1

−R

−RT (x+2)Im1
−RTR

)

=det

(

(x−ΓA(G2)(x)+r1)In1
−RRT −R

−(1+x−ΓA(G2)(x)+r1)RT+RTRRT (x+2)Im1

)

=det
(

(x−ΓA(G2)(x)+r1)In1
−(1+

1+x−ΓA(G2)
(x)+r1

x+2 )RRT+ 1
x+2 RRTRRT 0

−(1+x−ΓA(G2)(x)+r1)RT+RTRRT (x+2)Im1

)
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=(x+2)m1 det((x−ΓA(G2)(x)+r1)In1
−

2x−ΓA(G2)(x)+r1+3

x+2
(A(G1)+r1 In1

)

+
1

x+2
(A(G1)+r1 In1

)2)

=(x+2)m1 det(
1

x+2
A2(G1)+

r1+ΓA(G2)(x)−2x−3

x+2
A(G1)

+
x2+(2−ΓA(G2)(x)−r1)x−(r1−2)ΓA(G2)(x)−r1

x+2
In1

)

=(x+2)m1−n1

n1

∏
i=1

(x2+(2−ΓA(G2)(x)−r1−2λi(G1))x+λ2
i (G1)

+(r1+ΓA(G2)(x)−3)λi(G1)+(r1−2)ΓA(G2)(x)−r1),

where RRT=A(G1)+r1 In1
and λi(G1) is the ith eigenvalue of matrix A. Hence the result

follows.

Corollary 2.1. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 be an
r2-regular graph on n2 vertices. Then the A-spectrum of G1⊛G2 consists of:

(i) −2, repeated m1−n1 times;

(ii) λi(G2), repeated n1 times for i=2,3,.. . ,n2;

(iii) three roots of the equation, for j=1,2,.. . ,n1,

x3+(2−2λj(G1)−r2−r1)x2+[λ2
j (G1)+(2r2+r1−3)λj(G1)+r2(r1−2)

−n2−r1]x+[−r2λ2
j (G1)+(n2−r1r2+3r2)λj(G1)+n2(r1−2)+r1r2]=0.

Proof. Since G2 is r2-regular. Then Proposition 2 in [3] implies that

ΓA(G2)(x)=
n2

x−r2
.

Thus, by Theorem 2.1, λi(G2) is an eigenvalue of G1⊛G2 repeated n1 times, for each
i=2,3,.. . ,n2 and −2 is also an eigenvalue of G1⊛G2 repeated m1−n1 times. The remaining
eigenvalues are obtained by solving the equation as above.

Corollary 2.2. Let G be an r-regular graph on n vertices and m edges, where r≥2, and H
be a complete bipartite graph Kp,q with p,q≥1. Then the A-spectrum of G⊛H consists of:

(i) −2, repeated m−n times;

(ii) 0, repeated n(p+q−2) times;
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(iii) four roots of the equation, for j=1,2,.. . ,n,

x4+(2−r−2λj(G))x3+[λ2
j (G)+(r−3)λj(G)−r−pq−p−q]x2+[pq(r+2λj(G)−4)

+(p+q)(λj(G)+r−2)]x+pq[−λ2
j (G)+(5−r)λj(G)+3r−4]=0.

Proof. It is well known [16] that the A(Kp,q)-coronal of Kp,q is

ΓA(Kp,q)(x)=
(p+q)x+2pq

x2−pq
.

Simplifying the characteristic polynomial in Theorem 2.1, we can obtain 0 is the eigen-
value repeated n(p+q−2) times. The remaining eigenvalues are obtained by solving the
equation as above.

Applying Theorem 2.1, we can obtain infinitely many pairs of A-cospectral graphs in
the following corollary.

Corollary 2.3. (i) If G1,G2 are two A-cospectral regular graphs and H is an arbitrary
graph, then G1⊛H and G2⊛H are A-cospectral;

(ii) If G is a regular graph and H1,H2 are two A-cospectral graphs with ΓA(H1)(x)=
ΓA(H2)(x), then G⊛H1 and G⊛H2 are A-cospectral;

(iii) If G1,G2 are two A-cospectral regular graphs and H1,H2 are two A-cospectral
graphs with ΓA(H1)(x)=ΓA(H2)(x), then G1⊛H1 and G2⊛H2 are A-cospectral.

Next, we consider the Laplacian spectra of G1⊛G2.

Theorem 2.2. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 is an arbitrary
graph on n2 vertices. Then

φ(L(G1⊛G2);x)=(x−2r1−2)m1−n1

n2

∏
i=2

(x−1−µi(G2))
n1

n1

∏
i=1

[x3−(2µi(G1)+r1+n2+3)x2

+((µi(G1)+1)r1+µ2
i (G1)+(n2+5)µi(G1)+2n2+2)x

−µ2
i (G1)−µi(G1)(r1+3)].

Proof. We labele the vertices of G as above, the diagonal degree matrix of G1⊛G2 can be
written as

D(G1⊛G2)=





D(G1)+(n2+r1)In1
0 0

0 2r1 Im1
0

0 0 In1
⊗(D(G2)+ In2)



.

Since L(G)=D(G)−A(G), the Laplacian matrix of G1⊛G2 is

L(G1⊛G2)=





L(G1)+(n2+r1)In1
−R −In1

⊗1T
n2

−RT 2r1 Im1
−B 0

−In1
⊗1n2 0 In1

⊗(L(G2)+ In2)



.
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Then the Laplacian characteristic polynomial of G1⊛G2 is

φ(L(G1⊛G2))=det





(x−r1−n2)In1−L(G1) R In1 ⊗1T
n2

RT (x−2r1)Im1+B 0
In1⊗1n2 0 In1 ⊗((x−1)In2−L(G2))





=det(In1⊗((x−1)In2−L(G2))) ·det(S)

=
n2

∏
i=1

(x−1−µi(G2))
n1 ·det(S),

where

S=

(

(x−r1−n2−ΓL(G2)(x−1))In1
−L(G1) R

RT (x−2r1)Im1
+B

)

is the Schur complement [18] of In1
⊗((x−1)In2−L(G2)). Since each row sum of L(G2)

equals 0,

ΓL(G2)(x−1)=
n2

x−1
.

Note that RRT =A(G1)+r1 In1
, then

detS=det

(

(x−r1−n2−ΓL(G2)(x−1))In1
−L(G1) R

RT (x−2r1−2)Im1
+RTR

)

=det

(

(x−r1−n2−ΓL(G2)(x−1))In1
−L(G1) R

RT−(x−r1−n2−ΓL(G2)(x−1))RT+RT L(G1) (x−2r1−2)Im1

)

=(x−2r1−2)m1−n1

n1

∏
i=1

(λ2
i (G1)+(2x−3r1−n2−

n2

x−1
−3)λi(G1)+x2

−(3r1+n2+2+
n2

x−1
)x+2r2

1+(3+n2+
n2

x−1
)r1+2n2+

2n2

x−1
).

Note that µ1(G2)=0. Now the result follows easily.

Let G be a connected graph of order n with Laplacian eigenvalues 0=µ1(G)≤µ2(G)≤
···≤µn(G). It is well known [6] that the number of spanning trees of G is

t(G)=
µ2(G)µ3(G)···µn(G)

n
.

Thus, by Theorem 2.2, we can obtain the following results.

Corollary 2.4. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 is an
arbitrary graph on n2 vertices. Then the number of spanning trees of G1⊛G2 is

t(G1⊛G2)=

(2r1+2)m1−n1

n2

∏
i=2

(1+µi(G2))n1

n1

∏
i=1

(µ2
i (G1)+µi(G1)(r1+3))

n1+m1+n1n2
.



X.-Q. Zhu, G.-X. Tian and S.-Y. Cui / J. Math. Study, 49 (2016), pp. 72-81 79

Corollary 2.5. (i) If G1,G2 are two L-cospectral regular graphs and H is an arbitrary graph,
then G1⊛H and G2⊛H are L-cospectral;

(ii) If G is a regular graph and H1,H2 two are L-cospectral graphs, then G⊛H1 and
G⊛H2 are L-cospectral;

(iii) If G1,G2 are L-cospectral regular graphs and H1,H2 are L-cospectral graphs, then
G1⊛H1 and G2⊛H2 are L-cospectral.

Finally, we consider the signless Laplacian spectra of G1⊛G2.

Theorem 2.3. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 is an arbitrary
graph on n2 vertices. Then

φ(Q(G1⊛G2);x)=(x−2r1+2)m1−n1

n2

∏
i=1

(x−1−νi(G2))
n1

n1

∏
i=1

[

x2+(2−2νi(G1)−3r1−n2

−ΓQ(G2)(x−1))x+2r2
1+(3νi(G1)+2n2+2ΓQ(G2)(x−1)−2)r1

+ν2
i (G1)+(n2+ΓQ(G2)(x−1)−3)νi(G1)−2n2−2ΓQ(G2)(x−1)

]

.

Proof. With respect to the partition as above, we have

Q(G1⊛G2)=





Q(G1)+(n2+r1)In1
R In1

⊗1T
n2

RT B+2r1 Im1
0

In1
⊗1n2 0 In1

⊗(Q(G2)+ In2)



.

Then the signless Laplacian characteristic polynomial of G1⊛G2 is

φ(Q(G1⊛G2))=det





(x−r1−n2)In1−Q(G1) −R −In1 ⊗1T
n2

−RT −B+(x−2r1)Im1 0
−In1 ⊗1n2 0 In1⊗((x−1)In2−Q(G2))





=det(In1⊗((x−1)In2−Q(G2))) ·det(S)

=
n2

∏
i=1

(x−1−νi(G2))
n1 ·det(S),

where

S=

(

(x−r1−n2−ΓQ(G2)(x−1))In1
−Q(G1) −R

−RT (x−2r1)Im1
−B

)

is the Schur complement [18] of In1
⊗((x−1)In2 −Q(G2)) and

detS=det

(

(x−r1−n2−ΓQ(G2)
(x−1))In1−Q(G1) −R

−RT (x−2r1+2)Im1−RT R

)

=det

(

(x−r1−n2−ΓQ(G2)
(x−1))In1−Q(G1) −R

−RT−(x−r1−n2−ΓQ(G2)
(x−1))RT+RTQ (x−2r1+2)Im1

)

=(x−2r1+2)m1−n1

n1

∏
i=1

(x2+(2−2νi(G1)−3r1−n2−ΓQ(G2)
(x−1))x+2r2

1+(3νi(G1)+2n2

+2ΓQ(G2)
(x−1)−2)r1+ν2

i (G1)+(n2+ΓQ(G2)
(x−1)−3)νi(G1)−2n2−2ΓQ(G2)

(x−1)).
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Now the result follows easily.

Corollary 2.6. Let G1 be an r1-regular graph on n1 vertices and m1 edges, and G2 be an
r2-regular graph on n2 vertices. Then the Q-spectrum of G1⊛G2 consists of:

(i) 2r1−2, repeated m1−n1 times;

(ii) 1+νi(G2), repeated n1 times for i=2,3,.. . ,n2;

(iii) three roots of the equation, for j=1,2,.. . ,n1,

x3+(1−2νi(G1)−n2−3r1−2r2)x2+[2r2
1+(3νi(G1)+2n2+6r2+1)r1+νi(G1)

2

+(4r2+n2−1)νi(G1)+(2r2−2)n2−4r2−2]x−(4r2+2)r2
1+(2r2+1)[(2−3νi(G1))r1

−ν2
i (G1)]+4n2r2(1−r1)+[(3−n2)(2r2+1)+n2]νi(G1)=0.

Proof. Since each row sum of Q(G2) equals 2r2,

ΓQ(G2)(x−1)=
n2

x−1−2r2
.

Thus, by Theorem 2.3, 1+νi(G2) is a signless Laplacian eigenvalue of G1⊛G2 repeated
n1 times, for i = 2,.. . ,n2, and 2r1−2 is also a signless Laplacian eigenvalue of G1⊛G2,
repeated m1−n1 times. The remaining signless Laplacian eigenvalues are obtained by
solving the equation as above.

Applying Theorem 2.3, we can obtain infinitely many pairs of Q-cospectral graphs in
the following corollary.

Corollary 2.7. (i) If G1,G2 are Q-cospectral r-regular graphs and H is an arbitrary graph,
then G1⊛H and G2⊛H are Q-cospectral.

(ii) If G is a regular graph, H1 and H2 are Q-cospectral graphs with ΓQ(H1)(x) =
ΓQ(H2)(x), then G⊛H1 and G⊛H2 are Q-cospectral.

(iii)If G1,G2 are Q-cospectral regular graphs and H1,H2 are Q-cospectral graphs with
ΓQ(H1)(x)=ΓQ(H2)(x), then G1⊛H1 and G2⊛H2 are Q-cospectral.
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