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Abstract. This paper deals with numerical methods for the Maxnear criterion of multiple-
sets canonical analysis. Optimality conditions are derived. Upper and lower bounds
of the optimal objective function value are presented. Two iterative methods are pro-
posed. One is an alternating variable method, and the other called Gauss-Seidel method
is an inexact version of the alternating variable method. Convergence of these meth-
ods are analyzed. A starting point strategy is suggested for both methods. Numerical
results are presented to demonstrate the efficiency of these methods and the starting
point strategy.
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1 Introduction

Since Hotelling [3,4] proposed canonical correlation analysis (CCA) as the method for
describing the relation between the scores of a set of observation units on two groups of
variables, CCA has become an important method in multivariate statistics. It has been
widely applied in the econometrics, signal processing, biology, artificial intelligence, and
other fields. Several generalizations of canonical correlation analysis for multiple-sets
have been proposed by Kettenring [6], Van de Geer [7], Hanafi and Kiers [1] and other
scholars. In this paper, we shall concern ourselves with the Maxnear criterion proposed
by Van de Geer [7], which can be introduced briefly as follows.

Let yi =(yi,1,. . .,yi,ni
)T,i= 1,.. .,m be m-sets of random variables. Considering zi(t)=

tT
i yi,ti ∈ R

ni , which is the linear combination of yi,1,. . .,yi,ni
, the basic idea of canonical

correlation analysis is finding t1,. . .,tm so as to optimize some functions of correlations or

∗Corresponding author. Email addresses: liuxinguo656@sina.com (X.-G. Liu), you jian ping@163.com (J.-P.
You)

http://www.global-sci.org/jms 66 c©2015 Global-Science Press



Xin-Guo Liu, Jian-Ping You / J. Math. Study, 48 (2015), pp. 66-78 67

covariances of z1(t),. . .,zm(t). Therefore, given the covariance matrix A of y=(y1,. . .,ym)
T,

partitioned as
A=(Aij)m×m,Aii∈R

ni×ni ,

where Aii is the covariance matrix of yi, and Aij(i 6= j) is the covariance matrix between
yi and yj . Suppose A is symmetric and positive definite in the following, and let

n=n1+ . . .+nm, D=diag(A11,. . .,Amm).

The Maxnear criterion can be described as the following optimization problem:

min xT(mD−A)x, s.t. x∈Σm, (1.1)

Σm=















x=









x1

...
xm









∈R
n : xi ∈R

ni ,‖xi ‖2=1















.

Next, we briefly present a statistical property of Maxnear. Because the matrix A is sym-
metric and positive definite, it can be factorized as follows:

A=PTP, P=[P1,. . .,Pm], Pj∈R
n×nj .

Noting that

Var(yT
i xi−yT

j xj)=Var(yT
i xi)+Var(yT

j xj)−2cov(yT
i xi,y

T
j xj)

= xT
i Aiixi+xT

j Ajjxj−2xT
i Aijxj,

adding them up, we have

m

∑
i,j=1

Var(yT
i xi−yT

j xj)

=2mxTDx−2xT Ax=2xT(mD−A)x.

Hence, the Maxnear is equivalent to the following optimization problem:

min
m

∑
i,j=1

Var(yT
i xi−yT

j xj), s.t. x∈Σm. (1.2)

In this paper, we mainly concentrate on developing efficient algorithm for Maxnear.
In fact, lacking of efficient methods is one obstacle of applying Maxnear in practice. All
general-purpose optimization algorithms applying to (1.1) are mainly centered around
satisfying the first-order necessary condition(see Theorem 2.1 below). Without the global
minimizer, the canonical correlation would not be established, making the statistical pre-
diction less reliable. For general m≥2, several remarks about (1.1) are in order.
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• (i)If m> [ n
2 ], then the feasible set of (1.1) is not connected.

• (ii)When m = n, (1.1) is a discrete optimization problem, equivalent to max-cut,
finding its global solution is a problem of NP−hard.

• (iii)The feasible set for (1.1) is not convex,and (1.1) is not convex. So, there may be
multiple local minimum points.

On the other hand, (1.1) have two important characteristics as follows:

• (i)Its objective function is quadratic, and it is defined by the symmetric and pos-
itive semi-definite (typically, positive definite) matrix mD−A. This provides the
possibility for us to use numerical linear algebra techniques.

• (ii)The feasible region is a special product Stiefel manifold.

The main purpose of this article is to develop efficient methods based on the above char-
acteristics of (1.1).

This paper is organized as follows. Section 2 focuses on the optimality conditions for
(1.1). We propose two iteration methods in Section 3. In Section 4, we present upper and
lower bounds of the optimal objective function value, and based on these, we suggest
an efficient starting point strategy for solving (1.1). Finally, in Section 5, we present
numerical tests to demonstrate the efficiency of our methods.

2 The optimality conditions

Applying the general conclusions on constrained optimization problems [8, Theorems
12.1, 12.5 and 12.6], we can get the following three results.

Theorem 2.1. Suppose that x∗∈Σm is a solution of (1.1). Then there are scalars λ1,. . .,λm such
that the following equation holds

(mD−A)x∗=Λx∗ (2.1)

where Λ=diag(λ1 In1
,. . .,λm Inm).

Theorem 2.2. Suppose that x∗∈Σm is a solution of (1.1) and (x∗,Λ) satisfies (2.1). Then

ωT[mD−A−Λ]ω≥0, for all ω∈F

where

F=











ω=







ω1
...

ωm






∈R

n : ωi∈Rni , ωT
i x∗i =0, i=1,.. . ,m











.
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Theorem 2.3. Suppose that x∗∈Σm and (x∗,Λ) satisfies (2.1). Suppose also that

ωT[mD−A−Λ]ω>0, for all ω∈F ,ω 6=0.

Then, x∗ is a strict local minimizer of (1.1).

It is worth pointing out that the shortcoming of the above three results is not provid-
ing the information of the global minimizer. The following result provides a sufficient
condition.

Theorem 2.4. Suppose that (x∗,Λ) satisfies (2.1). If mD−A−Λ is positive semi-definite, then
x∗ is a global solution for (1.1).

Proof. Let M=mD−A, ρ(x)= xT Mx. It is not difficult to see that

(M−Λ)x∗=0, xTΛx= x∗TΛx∗, for x∈Σm.

Consequently,

ρ(x)−ρ(x∗)=(x−x∗)T(M−Λ)(x−x∗), for all x∈Σm.

Since M−Λ is symmetric and positive semi-definite, then we have

ρ(x)≥ρ(x∗), for all x∈Σm.

Theorem 2.5. Suppose m = 2, x∗ ∈ Σ2, and Mx∗ = Λx∗. Then the necessary and sufficient
condition of x∗ being a global solution for (1.1) is that M−Λ is a positive semi-definite matrix.

Proof. The sufficiency is obtained by Theorem 2.4. The proof of the necessity can be
proved similarly to [2, the Result 4].

Next, we prove that mD−A is a positive semi-definite(typically, positive definite)
matrix. Let

R=D− 1
2 AD− 1

2 =(Rij)m×m, Rij =A
− 1

2
ii Aij A

− 1
2

jj .

It is easy to see that mD−A is a positive semi-definite matrix ⇔ λmax(R)≤ m. Here,
λmax(R) denotes the largest eigenvalue of R. Some estimates of λmax(R) will be given
below. Since A is symmetric and positive definite, the matrix R can be decomposed as

R= LTL, L=[L1,. . .,Lm], Lj∈R
nj×nj , LT

j Lj= Inj
.

Let

Rx=λmax(R)x, x=







x1
...

xm






, xj ∈R

nj , ‖x‖2=1.
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Theorem 2.6. We have

λmax(R)≤
(

m

∑
i=1

‖xj ‖2

)2

. (2.2)

Proof. Observe that

λmax(R)= xTRx=‖Lx‖2
2

≤
(

m

∑
i=1

‖Lixi ‖2

)2

=

(

m

∑
i=1

‖xi ‖2

)2

.

This gives the desired estimate.

Notice that
(

m

∑
i=1

‖xi ‖2

)2

≤m,

which holds if and only if ‖ x1 ‖2= . . . =‖ xm ‖2=
1√
m

. Using this fact we can prove the

following result.

Corollary 2.1.

λmax(R)=m⇔‖x1 ‖2= . . .=‖xm ‖2=
1√
m

, and Lixi = L1x1, (i=2,3... ,m).

Proof. From the Cauchy inequality and the proof of Theorem 2.6, we have

λmax(R)=m⇔‖x1 ‖2= . . .=‖xm ‖2=
1√
m

and there exists u2,. . .,um ≥0 so that

L1x1+···+Lm−1xm−1=umLmxm,

L1x1+···+Lm−2xm−2=um−1Lm−1xm−1,

...

L1x1=u2L2x2.

Consequently, from u2,. . .,um≥0 and ‖Lixi ‖2=‖xi ‖2=
1√
m

, we see that

Lixi= L1x1, (i=2,.. . ,m).

This completes the proof.
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Because A is positive definite, the following result is a consequence of Corollary 2.1.

Corollary 2.2. We have
λmax(R)<m.

Let ρij=‖Rij‖2. Since R is positive definite, its sub-matrix

(

Ini
Rij

RT
ij Inj

)

is also positive

definite, and therefore ρij <1 (i 6= j). Let ρmax =max
i 6=j

ρij.

Theorem 2.7. We have
λmax(R)≤1+(m−1)ρmax.

Proof. Let

Rx=λmax(R)x, x=













x1

...

xm













, ‖xk ‖2= max
1≤i≤m

‖xi ‖2 .

Noticing that

λmax(R)xk = xk+
m

∑
j=1,j 6=k

Rkjxj,

we see that

λmax(R)=1+
1

‖xk ‖2
2
∑
j 6=k

xT
k Rkjxj

≤1+
m

∑
j=1,j 6=k

ρkj

( ‖xj ‖2

‖xk ‖2

)

≤1+(m−1)ρmax.

This completes the proof of the theorem.

Theorem 2.7 implies that, if ρmax is not close to 1, then λmax(R) is not very close to m.
Furthermore, except for the case where ‖x1‖2≈ . . .≈‖xm‖2≈ 1√

m
, λmax(R) is not very close

to m.

3 Numerical methods

Notice that the feasible set for (1.1) is the product of unit spheres, naturally, we propose
an alternating variable method (AVM) to solve (1.1).
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Algorithm 3.1 (AVM)

(1) Take x(0)∈Σm

(2) Iteration. Suppose that the current approximate point is x(k)=









x
(k)
1
...

x
(k)
m









, then

compute x(k+1) by

x
(k+1)
i = argmin ρ(x

(k+1)
i ,. . .,x

(k+1)
i−1 ,xi,x

(k)
i+1,. . .,x

(k)
m ), i=1,2,.. . ,m (3.1)

If ρ(x(k))−ρ(x(k+1))≤ ε, then stop the algorithm, and x(k+1) is an approximate solu-
tion.

Obviously, Algorithm 3.1 has the following property:

ρ(x(k+1))≤ρ(x(k)).

Therefore, it is a descent algorithm. Pay attention to ρ(x) ≤ m·λmin(M), we see that
{ρ(x(k))} is convergent.Let

b
(k)
i =

i−1

∑
j=1

Aijx
(k+1)
j +

m

∑
j=i+1

Aijx
(k)
j .

Then, (3.1) is equivalent to the following optimization problem:

x
(k+1)
i = arg min

‖xi‖2=1
{xT

i ((m−1)Aii)xi−2b
(k)T
i xi}. (3.2)

This is the least squares problem with the spherical constraint(LSS), several efficient
methods are available, such as Newton method, see Nocedal and Wright [8].

On the other hand, if the Newton method is used to solve the sub-problem (3.2), it
is relatively complicated contrast to the simplicity of (3.2), and there may meet hard-
cases(see, [8]). Therefore, an approximate method is given below.

Notice that

g(xi)≡ xT
i Miixi−2b

(k)T
i xi

= g(x
(k)
i )+2

〈

Miix
(k)
i −b

(k)
i ,xi−x

(k)
i

〉

+(xi−x
(k)T
i )Mii(xi−x

(k)
i )

≤h(xi)≡ g(x
(k)
i )+2

〈

Miix
(k)
i −b

(k)
i ,xi−x

(k)
i

〉

+λmax(Mii)‖xi−x
(k)
i ‖2

2 .
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Algorithm 3.2 (Gauss-Seidel method)

(1) Take x(0)∈Σm

(2) Iteration. Suppose that the current approximate point is x(k)=
(

x
(k)
1 ,. . .,x

(k)
m

)T
,

then compute x(k+1) as following:

x
(k+1)
i = arg min

‖xi‖2=1
h(xi), i=1,2,.. . ,m (3.3)

If ρ(x(k))−ρ(x(k+1))≤ε, then stop the algorithm with the approximate solution x(k+1).

Note that h(xi) can be reformulated as

h(xi)= g(x
(k)
i )+2

〈

Miix
(k)
i −b

(k)
i −λmax(Mii)x

(k)
i ,xi−x

(k)
i

〉

, (3.4)

by applying the constraints xT
i xi = 1 and x

(k)T
i x

(k)
i = 1. we see that (3.3) can be solved as

follows:

y
(k)
i =Miix

(k)
i −b

(k)
i −λmaxx

(k)
i , (3.5a)

u
(k)
i =‖y

(k)
i ‖2, x

(k+1)
i =− y

(k)
i

u
(k)
i

. (3.5b)

It is not difficult to see that g(x
(k+1)
i )≤hi(x

(k+1)
i )≤ g(x

(k)
i ). So Algorithm 3.2 is a descent

algorithm.

If y
(k)
i = 0, then x

(k)
i is a stationary point of (3.2). Further, since Mii−λmax(Mii)Ini

is

negative semi-definite, x
(k)
i is a maximum point of g(xi). For such a case, we make the

following change for x
(k+1)
i :

x
(k+1)
i =b

(k)
i /‖b

(k)
i ‖2 .

If y
(k)
i 6=0, but Miix

(k)
i −b

(k)
i −λmax(Mii)x

(k)
i =δ

(k)
i x

(k)
i ,

δ
(k)
i =u

(k)
i ,

then x
(k)
i is the maximum point of g(xi), and there must be

h(x
(k+1)
i )< g(x

(k)
i ).

Obviously, Algorithm 3.2 is more simple and more easy to implement than Algorithm
3.1, but may be slower. To overcome this shortcoming, in the next section we introduce a
starting point strategy.
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4 Starting point strategy

First, it is easy to see that the following conclusion holds.

Proposition 4.1. Let ρmaxnear = min
x∈Σm

xT(mD−A)x. Then

(m−λmax(R))
m

∑
i=1

λmin(Aii)≤ρmaxnear ≤ (m−λmin(R))
m

∑
i=1

λmin(Aii). (4.1)

Here λmin(Aii) denotes the smallest eigenvalue of Aii. In Section 2, we point out that
λmax(R)<m, and λmax(R) is usually not close to m.

Inspired by (4.1), we can give a method for choosing x(0) in Algorithm 3.2. To this

end, let vi be a unit eigenvector of Aii associated λmin(Aii), and Gk =(A1,k,. . .,Ak−1,k)
T.

Strategy 4.1

Take x
(0)
1 =v1. If y(k−1)≡

(

x
(0)
1 ,. . .,x0

k−1

)T
has been constructed, then

x
(0)
k =

{

vk, if vT
k GT

k y(k−1)≥0,
−vk, otherwise.

(4.2)

Let Mk−1=(Mij)1≤i,j≤k−1. Then

y(k)T Mky(k)=y(k−1)T Mk−1y(k−1)−2x
(0)T
k GT

k y(k−1)+(m−1)λmin(Akk).

Consequently, the following result holds.

Proposition 4.2. The x(0) constructed from Strategy 4.1 satisfies that

x(0)T(mD−A)x(0)≤ (m−1)
m

∑
i=1

λmin(Aii). (4.3)

Combining (4.3) with (4.1), it shows that x(0) is usually a good starting point for Algo-
rithm 3.2. Since Algorithm 3.2 is a descent algorithm, if x∗ is a limit point of {x(k)}, then
ρ(x∗)≤ρ(x(0)). Therefore, this choice of x(0) may also enhance the possibility of getting a
global solution of (1.1) by Algorithm 3.2.

5 Numerical Examples

In this section, we present our numerical experiment of Algorithm 3.2 and Strategy 4.1
to show their efficiency, and most importantly, the effectiveness of Strategy 4.1 both in
convergence rate and in seeking for the global minima of the Maxnear. All of our tests
were conducted in MATLAB on a PC with Intel(R) Pentium(R)4 processor of 3.20 GHZ.
The defaults value of ε is 10−5.

For our comparison, we first create a small example, Example 5.1. Then, in Examples
5.2 and 5.3, the matrices are of size 200×200, which were randomly generated,and we did
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Table 1: Numerical results for Example 5.1

Strategy4.1 Random Starting Point
ρ̄maxnear 36.4939 42.5103

Avg.Iter.♯ 7 18.8700
Avg.Time 0.0115 0.0267

the test for each matrix over 100 random starting points. The test results are documented
in Tables 1, 2 and 3, respectively. Under the first column are the average numbers of
iterations and CPU time with Strategy 4.1. Under the second column are the average
numbers of iterations and CPU time for all matrices over 100 random starting points.

Example 5.1 The matrix A is given by,

A=





















7.4470 −5.3387 −4.8906 0.0903 2.2446 3.6421 −0.1752 −0.0246 1.7437 5.8028
−5.3387 13.8905 4.5704 −1.4263 0.5230 1.8020 −3.7392 3.5696 −1.9936 −8.1650
−4.8906 4.4704 8.8486 −0.1523 −0.3143 −1.6288 −1.3250 0.4012 −2.7730 −2.6152
−0.0903 −1.4263 −0.1523 4.4653 −4.2442 −5.9271 −3.8049 −3.9631 5.1445 −0.4010
2.2446 0.5230 −0.3143 −4.2442 25.9532 6.8747 −4.8952 −0.8508 3.9045 −4.8526
3.6421 1.8020 −1.6228 −5.9271 6.8747 12.3494 2.8848 3.0664 −3.8247 0.7834
−0.1752 −3.7392 −1.3250 −3.8049 −4.8952 2.8848 11.7609 5.7035 −7.7411 6.0963
−0.0246 3.5696 0.4012 −3.9631 −0.8508 3.0664 5.7035 12.4512 −11.9284 4.7289
1.7437 −1.9936 −2.7730 5.1445 3.9045 −3.8247 −7.7411 −11.9284 16.8287 −5.8446
5.8028 −8.1650 −2.6152 −0.4010 −4.8526 0.7834 6.0963 4.7289 −5.8446 11.6403




















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Figure 1: The objective function values ρmaxnear
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Table 2: Numerical results for Example 5.2

Strategy4.1 Random Starting Point
ρ̄maxnear 4.6555 5.2392

Avg.Iter.♯ 88.52 148.0696
Avg.Time 2.1837 3.6219

with m=4,n1=2,n2=2,n3=3,n4=3.

The numerical results are documented in Table1 and the computed objective function
values are recorded in Fig. 1.

Example 5.2 In this example, we randomly generate 100 matrices with size 200×200,
with m=5,ni =40,i=1,.. . ,5. These matrices were constructed as follows.

C= rand(200,200);[Q,R]=qr(C);

Λ=diag(rand(1,200));A=Q∗Λ∗Q′ .

The numerical results are documented in Table 2 and the computed objective function
values for each matrix over 100 random tests are recorded in Fig. 2.
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Figure 2: The computed objective function values ρmaxnear
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Table 3: Numerical results for Example 5.3

Strategy4.1 Random Starting Point
ρ̄maxnear 7.6534 8.4600

Avg.Iter.♯ 22.43 69.2027
Avg.Time 0.7411 2.2009

The results in Table 2 show that Strategy 4.1 enhances Algorithm 3.2 in terms of it-
erative steps and CPU time. On the other hand, Fig. 2 shows that about 7% of the tests
Algorithm 3.2 with Strategy 4.1 did not converge to the global minima of the Maxnear.
Example 5.3 In this example, we randomly generate 100 matrices, with m=5,n1=20,ni=
n1+(i−1)10,i=2,.. . ,5. These matrices were constructed as follows.

C= rand(200,200);[Q,R]=qr(C);

Λ=diag(10∗rand(1,50),rand(1,150));

A=Q∗Λ∗Q′.

The numerical results are documented in Table 3 and the computed objective functions
values for each matrix averaged over 100 random tests are recorded in Fig. 3.
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Figure 3: The computed objective function values ρmaxnear
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The results in Table 3 show that Strategy 4.1 enhanced Algorithm 3.2 in terms of it-
erative steps and CPU time. On the other hand, Fig. 3 shows that about 8% of the tests
Algorithm 3.2 with Strategy 4.1 did not converge to the global minima of the Maxnear.

From above test results we see that Strategy 4.1 can enhance Algorithm 3.2 in terms
of iteration steps and CPU time. However, it is worth pointing out that Algorithm 3.2
with Strategy 4.1 does not guarantee to converge to the global minima of the Maxnear,
and further work is needed.
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