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Abstract. We present a local convergence analysis for higher order methods in order
to approximate a locally unique solution of an equation in a Banach space setting. In
earlier studies, Taylor expansions and hypotheses on higher order Fréchet-derivatives
are used. We expand the applicability of these methods using only hypotheses on the
first Fréchet derivative. Moreover, we obtain a radius of convergence and computable
error bounds using Lipschitz constants not given before. Numerical examples are also
presented in this study.
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1 Introduction

In this study, we are concerned with the problem of approximating a locally unique so-
lution x∗ of the nonlinear equation

F(x)=0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y. Denote by L(X,Y) the space of bounded linear
operators from X into Y.

A lot of problems from Computational Sciences and other disciplines can be brought
in the form of Eq. (1.1) using Mathematical Modeling [2, 5, 10, 17, 22]. The solution of
these equations can rarely be found in closed form. That is why the solution methods for
these equations are iterative. In particular, the practice of numerical analysis for finding
such solutions is essentially connected to variants of Newton’s method [1–22].
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The study about convergence matter of iterative procedures is usually based on two
types: semi-local and local convergence analysis. The semi-local convergence matter is,
based on the information around an initial point, to give conditions ensuring the conver-
gence of the iterative procedure; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls. There exist many studies
which deal with the local and semi-local convergence analysis of Newton-like methods
such as [1–22]. In order to obtain a higher order of convergence, Newton-like methods
have been studied such as Potra-Ptak, Chebyshev, Cauchy, Halley and Ostrowski, meth-
ods [2, 5, 16, 22]. The number of function evaluations per step increases with the order of

convergence. In the scalar case the efficiency index [16,22] EI=p
1
m provides a measure of

balance where p is the order of the methods and m is the number of function evaluations.
We study the local convergence of the two-step methods defined for each n=0,1,2...

by

yn = xn−ΘF′(xn)
−1F(xn),

xn+1= xn−
1

2
F′(xn)

−1F(xn)+(F′(xn)−3F′(yn))
−1F(xn) (1.2)

and

yn = xn−ΘF′(xn)
−1F(xn),

xn+1= xn−H(xn,yn)F′(xn)
−1F(xn) (1.3)

where x0 is an initial point, Θ∈R a parameter and H : X2 → L(X,Y) a given continuous
operator. Method (1.2) was studied by Basu in [7], when X =Y = R

m and Θ = 2
3 . The

method (1.2) was shown to be of order four using Taylor expansions and hypotheses
reaching up to the sixth derivative of F. Notice that method (1.2) is really a particular
case of Jarratt’s method [2, 5, 16, 22]. Moreover, method (1.3) was studied by Chun et al.
in [8] the same way. This method is also of order four assuming that function H satisfies
certain initial conditions [8]. The case H(xn,yn)= F′(xn)−1F(yn) was also studied in [8]
(see also our Remark 2.3 (6)). Method (1.2) uses two inverses and one function evaluation.
Two-step Newton methods comparable to method (1.2) are given by

yn = xn−F′(xn)
−1F(xn),

xn+1=yn−F′(yn)
−1F(xn) (1.4)

or

yn = xn−F′(xn)
−1F(xn),

xn+1=yn−F′(yn)
−1F(yn). (1.5)

Method (1.4) uses two inverses and one function evaluation (so does method (1.2)) but it
is of order three. Moreover, method (1.5) uses two inverses and two function evaluations
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and it is of order four. However, method (1.2) is cheaper, since it uses one less function
evaluation than method (1.5). The single step Newton’s method

xn+1= xn−F′(xn)
−1F(xn)

uses one inverse and one function evaluation but it is of order two. Hence, method (1.2)
is more robust than the preceding Newton methods. The hypotheses on the derivatives
limit the applicability of these methods. As a motivational example, let us define function
F on X=[− 1

2 , 5
2 ] by

F(x)=

{

x3 lnx2+x5−x4, x 6=0
0, x=0.

Choose x∗=1. We have that

F′(x)=3x2 lnx2+5x4−4x3+2x2, F′(1)=3,

F′′(x)=6xlnx2+20x3−12x2+10x

F′′′(x)=6lnx2+60x2−24x+22.

Then, obviously function F does not have bounded third derivative in X. Notice that,
there is a plethora of iterative methods for approximating solutions of nonlinear equa-
tions [1–22]. These results show that if the initial point x0 is sufficiently close to the
solution x∗, then the sequence {xn} converges to x∗. But how close to the solution x∗ the
initial guess x0 should be? These local results give no information on the radius of the
convergence ball for the corresponding method. We address this question for method
(1.2) and method (1.3) in Section 2. The same technique can be used to other methods.

The paper is organized as follows. In Section 2 we present the local convergence anal-
ysis. We also provide a radius of convergence, computable error bounds and uniqueness
result not given in the earlier studies using Taylor expansions. Special cases and numer-
ical examples are presented in the concluding Section 3.

2 Local convergence analysis

We present the local convergence analysis of the method (1.2) and method (1.3) in this
section. Let L0 >0, L>0, M≥1 and Θ∈R be given parameters. It is convenient for the
local convergence analysis that follows to define some scalar functions and parameters.
Define functions g1,p and hp on the interval [0, 1

L0
) by

g1(t)=
1

2(1−L0t)
(Lt+2|1−Θ|M),

p(t)=
L0

2
(1+3g1(t))t, hp(t)= p(t)−1
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and parameters r1 and rA by

r1=
2(1−M|1−Θ|)

2L0+L
, rA =

2

2L0+L
.

Suppose that
M|1−Θ|<1. (2.1)

Then, we have that 0< r1 < rA. We get by the the definition of functions p and hp that

hp(0)=−1< 0 and hp(t)→+∞ as t→ 1
L0

−
. It then, follows from the intermediate value

theorem that function hp has zeros in the interval (0, 1
L0
). Denote by rp the smallest zero

of function hp in the interval (0, 1
L0
). Moreover, define functions g2 and h2 on the interval

[0,rp) by

g2(t)=
1

2(1−L0t)

(

Lt+
3L0M(1+g1(t))

2(1−p(t))

)

t

and
h2(t)= g2(t)−1.

We get that h2(0)=−1< 0 and h2(t)→+∞ as t→ r−p . Denote by r2 the smallest zero of
function h2 in the interval (0,rp). Set

r=min{r1,r2}. (2.2)

Then, we have that

0< r≤ rA <
1

L0
, (2.3)

and for each t∈ [0,r)

0≤ g1(t)<1, (2.4)

0≤ p(t)<1 (2.5)

and
0≤ g2(t)<1. (2.6)

Next, we present the local convergence analysis of the method (1.2), using the preceding
notation.

Theorem 2.1. Let F : D⊂ X →Y be a Fréchet-differentiable operator. Suppose that there exist
x∗∈D, L0>0, L>0, M≥1 and Θ∈R such that (2.1) and for each x,y∈D

F(x∗)=0,F′(x∗)−1∈L(Y,X) (2.7)

‖F′(x∗)−1(F′(x)−F′(x∗))‖≤ L0‖x−x∗‖, (2.8)

‖F′(x∗)−1(F′(x)−F′(y))‖≤ L‖x−x∗‖, (2.9)

‖F′(x∗)−1F′(x)‖≤M (2.10)
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and

Ū(x∗,r)⊆D, (2.11)

hold, where the radius r is given by (2.2). Then, the sequence {xn} generated for x0∈U(x∗,r)−
{x∗} by method (1.2) is well defined , remains in U(x∗,r) for each n=0,1,2..... and converges to
x∗. Moreover, the following estimates hold

‖yn−x∗‖≤ g1(‖xn−x∗‖)‖xn−x∗‖<‖xn−x∗‖< r, (2.12)

and

‖xn+1−x∗‖≤ g2(‖xn−x∗‖)‖xn−x∗‖<‖xn−x∗‖ (2.13)

where the “g” functions are defined above Theorem 2.1. Furthermore, for T∈[r, 2
L0
) the limit point

x∗ is the only solution of the equation F(x)=0 in Ū(x∗,T)∩D.

Proof. We shall show estimates (2.12) and (2.13) using mathematical induction. By hy-
pothesis x0∈U(x∗,r)−{x∗}, (2.3) and (2.8), we get that

‖F′(x∗)−1(F′(x0)−F′(x∗))‖≤ L0‖x0−x∗‖< L0r<1. (2.14)

It follows from (2.14) and Banach Lemma on invertible operators [2,5,12,22] that F′(x0)−1∈
L(Y,X) and

‖F′(x0)
−1F′(x∗)‖≤

1

1−L0‖x0−x∗‖
. (2.15)

Hence, y0 is well defined by the first sub-step of method (1.2) for n=0. We can write by
(2.7) that

F(x0)=F(x0)−F(x∗)=
∫ 1

0
F′(x∗+θ(x0−x∗))(x0−x∗)dθ. (2.16)

Notice that ‖x∗+θ(x0−x∗)−x∗‖=θ‖x0−x∗‖<r, so x∗+θ(x0−x∗)∈U(x∗,r). Then, using
(2.10) and (2.16), we get that

‖F′(x∗)−1F(x0)‖ =

∥

∥

∥

∥

∫ 1

0
F′(x∗)−1F′(x∗+θ(x0−x∗))(x0−x∗)dθ

∥

∥

∥

∥

≤‖x0−x∗‖. (2.17)

In view of (2.2), (2.4), (2.9), (2.15) and (2.17), we obtain in turn that

y0−x∗=(x0−x∗−F′(x0)
−1F(x0))+(1−Θ)F′(x0)

−1F(x0),
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so

‖y0−x∗‖≤‖F′(x0)
−1F′(x∗)‖

∥

∥

∥

∥

∫ 1

0
F′(x∗)−1(F′(x∗+θ(x0−x∗))

−F′(x0))(x0−x∗)dθ

∥

∥

∥

∥

+|1−Θ|‖F′(x0)
−1F′(x∗)‖‖F′(x∗)−1F′(x0)‖

≤
L‖x0−x∗‖2

2(1−L0‖x0−x∗‖)
+
|1−Θ|M‖x0−x∗‖

1−L0‖x0−x∗‖

= g1(‖x0−x∗‖)‖x0−x∗‖<‖x0−x∗‖< r, (2.18)

which shows (2.12) for n=0 and y0∈U(x∗,r). Next, we shall show that (F′(x0)−3F′(y0))−1∈
L(Y,X). Using (2.3), (2.5), (2.15) and (2.18), we get that

‖(−2F′(x∗))−1[(F′(x0)−F′(x∗))−3(F′(y0)−F′(x∗))]‖

≤
1

2
[‖F′(x∗)−1(F′(x0)−F′(x∗))‖+3‖F′(x∗)−1(F′(y0)−F′(x∗))‖]

≤
L0

2
(‖x0−x∗‖+3‖y0−x∗‖)

≤
L0

2
(1+3g1(‖x0−x∗‖)‖x0−x∗‖)

= p(‖x0−x∗‖)< p(r)<1. (2.19)

We get from (2.19) that

‖(F′(x0)−3F′(y0))
−1F′(x∗)‖≤

1

2(1−p(‖x0−x∗‖))
. (2.20)

That is x1 is well defined by the second sub-step of method (1.2) for n=0. Then, we can
write

x1−x∗ = x0−x∗−F′(x0)
−1F(x0)

+
3

2
(F′(x0)−3F′(y0))

−1(F′(x0)−F′(x∗))+(F′(x∗)−F′(y0))

(F′(x0)
−1F′(x∗))(F′(x∗)−1F(x0)). (2.21)

Using (2.3), (2.6), (2.15), (2.17), (2.18) and (2.21), we have in turn that

‖x1−x∗‖≤
L‖x0−x∗‖2

2(1−L0‖x0−x∗‖)
+

3L0M(1+g1(‖x0−x∗‖))‖x0−x∗‖2

4(1−L0‖x0−x∗‖)(1−p(‖x0−x∗‖))

= g2(‖x0−x∗‖)‖x0−x∗‖<‖x0−x∗‖< r, (2.22)

which shows (2.13) for n=0 and x1∈U(x∗,r). By simply replacing x0,y0,x1 by xk,yk,xk+1 in
the preceding estimates, we arrive at estimates (2.12) and (2.13). Then, from the estimate
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‖xk+1−x∗‖< ‖xk−x∗‖< r, we deduce that limk→∞ xk = x∗ and xk+1 ∈U(x∗,r). To show

the uniqueness part, let Q=
∫ 1

0
F′(y∗+θ(x∗−y∗)dθ for some y∗∈ Ū(x∗,T) with F(y∗)=0.

Using (2.8) we get that

‖F′(x∗)−1(Q−F′(x∗))‖ ≤
∫ 1

0
L0‖y∗+θ(x∗−y∗)−x∗‖dθ

≤
∫ 1

0
L0(1−θ)‖x∗−y∗‖dθ≤

L0

2
T<1. (2.23)

It follows from (2.23) and the Banach Lemma on invertible functions that Q is invertible.
Finally, from the identity 0=F(x∗)−F(y∗)=Q(x∗−y∗), we conclude that x∗=y∗.

In order for us to study the local convergence analysis of method (1.3), we need to
define some additional functions and parameters. Let ψ : [0, 1

L0
)→ [0,+∞) be a continuous

nondecreasing function. Define functions ḡ2 and h̄2 on the interval [0,rp) by

ḡ2(t)=
1

2(1−L0t)
(Lt+2ψ(t)M)

and

h̄2(t)= ḡ2(t)−1. (2.24)

Suppose that

Mψ(0)<1.

Then, we have that h̄2(0)= Mψ(0)−1< 0 and h̄2(t)→+∞ as t→ 1
L0

−
. Denote by R2 the

smallest zero of function h̄2 in the interval (0, 1
L0
). Set

R=min{r1,R2}. (2.25)

Then, we have that

0<R≤ rA <
1

L0
(2.26)

and for each t∈ [0,r)

0≤ g1(t)<1

(2.27)

and

0≤ ḡ2(t)<1. (2.28)

Next, we present the local convergence analysis of the method (1.3), using the preceding
notation.
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Theorem 2.2. Let F :D⊂X→Y be a Fréchet-differentiable operator. Let also H :X2→L(X,Y) be
an operator and ψ : [0, 1

L0
)→ [0,+∞) be a continuous and nondecreasing function. Suppose that

hypotheses (2.7)-(2.10),

‖I−H(x,y)‖≤ψ(‖x−x∗‖) for each x,y∈D, (2.29)

Mψ(0)<1 (2.30)

and
Ū(x∗,R)⊆D, (2.31)

hold, where the radius R is given by (2.25). Then, the sequence {xn} generated for x0∈U(x∗,r)−
{x∗} by method (1.3) is well defined, remains in U(x∗,R) for each n=0,1,2..... and converges to
x∗. Moreover, the following estimates hold

‖yn−x∗‖≤ g1(‖xn−x∗‖)‖xn−x∗‖<‖xn−x∗‖<R, (2.32)

and
‖xn+1−x∗‖≤ ḡ2(‖xn−x∗‖)‖xn−x∗‖<‖xn−x∗‖. (2.33)

Furthermore, for T ∈ [R, 2
L0
) the limit point x∗ is the only solution of the equation F(x) = 0 in

Ū(x∗,R)∩D.

Proof. According to the proof of Theorem 2.1 we only need to show estimate (2.33). Using
the second substep of method (1.3) for n=0, we can write

x1−x∗= x0−x∗−F′(x0)
−1F(x0)+(I−H(x0,y0))F′(x0)

−1F(x0).

(2.34)

Then, using (2.15), (2.17), (2.18), (2.25), (2.28), (2.29) and (2.34) (for x= x0), we get in turn
that

‖x1−x∗‖≤
L‖x0−x∗‖2

2(1−L0‖x0−x∗‖)
+

ψ(‖x0−x∗‖)M‖x0−x∗‖

1−L0‖x0−x∗‖

= ḡ2(‖x0−x∗‖)‖x0−x∗‖<‖x0−x∗‖<R,

which shows (2.33) for n = 0 and x1 ∈ U(x∗,R). The rest follows by induction and the
uniqueness part follows by replacing r by R in the proof of Theorem 2.1.

Remark 2.1. 1. In view of (2.8) and the estimate

‖F′(x∗)−1F′(x)‖ =‖F′(x∗)−1(F′(x)−F′(x∗))+ I‖

≤1+‖F′(x∗)−1(F′(x)−F′(x∗))‖≤1+L0‖x−x∗‖

condition (2.10) can be dropped and be replaced by

M(t)=1+L0t,
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or
M=M(t)=2,

since t∈ [0, 1
L0
).

2. The results obtained here can be used for operators F satisfying autonomous differ-
ential equations [3, 6, 17] of the form

F′(x)=G(F(x))

where T is a continuous operator. Then, since F′(x∗) = G(F(x∗)) = G(0), we can
apply the results without actually knowing x∗. For example, let F(x)= ex−1. Then,
we can choose: G(x)= x+1.

3. The local results obtained here can be used for projection methods such as the
Arnoldi’s method, the generalized minimum residual method (GMRES), the gen-
eralized conjugate method (GCR) for combined Newton/finite projection methods
and in connection to the mesh independence principle can be used to develop the
cheapest and most efficient mesh refinement strategies [2–7].

4. The parameter r1 was shown by us to be the convergence radius of Newton’s method
[3, 6]

xn+1= xn−F′(xn)
−1F(xn) for each n=0,1,2,··· (2.35)

under the conditions (2.8)-(2.10). It follows from the definitions of the radii that
the convergence radius r of the preceding methods cannot be larger than the con-
vergence radius r1 of the second order Newton’s method (2.35). As already noted
in [2, 5] r1 is at least as large as the convergence ball given by Rheinboldt [19]

rR =
2

3L
.

In particular, for L0< L we have that

rR < r1

and
rR

r1
→

1

3
as

L0

L
→0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The
same value for rR was given by Traub [22].

5. It is worth noticing that the studied methods are not changing when we use the
conditions of the preceding Theorems instead of the stronger conditions used in
[7, 16]. Moreover, we can compute the computational order of convergence (COC)
defined by

ξ= ln

(

‖xn+1−x∗‖

‖xn−x∗‖

)

/ln

(

‖xn−x∗‖

‖xn−1−x∗‖

)
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or the approximate computational order of convergence

ξ1= ln

(

‖xn+1−xn‖

‖xn−xn−1‖

)

/ln

(

‖xn−xn−1‖

‖xn−1−xn−2‖

)

.

This way we obtain in practice the order of convergence.

6. Let us show how to chose function ψ in the case when H(xn,yn)= F′(xn)
−1

F′(yn).
We have that

‖I−H(xn,yn)‖ ≤‖F′(xn)
−1F′(x∗)‖(‖F′(x∗)−1(F′(xn)−F′(x∗))‖

+‖F′(x∗)−1(F′(yn)−F′(x∗))‖)

≤
L0(1+g1(‖xn−x∗‖)‖xn−x∗‖

1−L0‖xn−x∗‖
.

So, we can define function ψ on the interval [0, 1
L0
) by

ψ(t)=
L0(1+g1(t))t

1−L0t
.

3 Numerical examples

The numerical examples are presented in this section with ψ(t)= L0(1+g1(t))t
1−L0t .

Example 3.1. Let D=(−∞,+∞). Define function f of D by

f (x)=sin(x). (3.1)

Then we have for x∗=0 that L0 = L= M=1. The parameters for methods (1.2) and (1.3)
are given in Table 1.

Table 1: Parameters for methods (1.2) and (1.3) of Example 3.1.

Θ rA r1 rp r2 r R2 R
2
3 0.6667 0.4444 0.3508 0.2494 0.2494 0.2676 0.2676
3
4 0.6667 0.5000 0.3802 0.2687 0.2687 0.2761 0.2761
4
5 0.6667 0.5333 0.4000 0.2815 0.2815 0.2815 0.2815
5
6 0.6667 0.5556 0.4142 0.2908 0.2908 0.2853 0.2853
8
7 0.6667 0.5714 0.4249 0.2977 0.2977 0.2881 0.2881

Example 3.2. Let X=Y=R
3, D= Ū(0,1), x∗=(0,0,0)T . Define function F on D for w=

(x,y,z)T by

F(w)=(ex−1,
e−1

2
y2+y,z)T .
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Then, the Fréchet-derivative is given by

F′(v)=





ex 0 0
0 (e−1)y+1 0
0 0 1



.

Notice that using the (2.8)-(2.10) conditions, we get L0=e−1, L=e, M=2. The parameters
for methods (1.2) and (1.3) are given in Table 2.

Table 2: Parameters for methods (1.2) and (1.3) of Example 3.2.

Θ rA r1 rp r2 r R2 R
2
3 0.3249 0.1083 0.1465 0.0869 0.0869 0.0911 0.0911
3
4 0.3249 0.1625 0.1648 0.0971 0.0971 0.0969 0.0969
4
5 0.3249 0.1950 0.1778 0.1044 0.1044 0.1007 0.1007
5
6 0.3249 0.2166 0.1875 0.1099 0.1099 0.1035 0.1035
8
7 0.3249 0.2321 0.1950 0.1141 0.1141 0.1055 0.1055

Example 3.3. Let X=Y=C[0,1], the space of continuous functions defined on [0,1] and
be equipped with the max norm. Let D=U(0,1) and B(x)=F′′(x) for each x∈D. Define
function F on D by

F(ϕ)(x)= ϕ(x)−5
∫ 1

0
xθϕ(θ)3dθ. (3.2)

We have that

F′(ϕ(ξ))(x)= ξ(x)−15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ∈D.

Then, we get that x∗= 0, L0 = 7.5, L= 15, M= 2. The parameters for methods (1.2) and
(1.3) are given in Table 3.

Table 3: Parameters for methods (1.2) and (1.3) of Example 3.2.

Θ rA r1 rp r2 r R2 R
2
3 0.0667 0.0222 0.0325 0.0196 0.0196 0.0201 0.0201
3
4 0.0667 0.0333 0.0362 0.0218 0.0218 0.0213 0.0213
4
5 0.0667 0.0400 0.0389 0.0234 0.0234 0.0221 0.0221
5
6 0.0667 0.0444 0.0408 0.0246 0.0246 0.0227 0.0227
8
7 0.0667 0.0476 0.0423 0.0255 0.0255 0.0231 0.0231

Example 3.4. Returning back to the motivational example at the introduction of this
study, we have L0 = L= 146.6629073, M= 2. The parameters for methods (1.2) and (1.3)
are given in Table 4.
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Table 4: Parameters for methods (1.2) and (1.3) of Example 3.2.

Θ rA r1 rp r2 r R2 R
2
3 0.0045 0.0045 0.0018 0.0011 0.0011 0.0011 0.0011
3
4 0.0045 0.0023 0.0021 0.0012 0.0012 0.0012 0.0012
4
5 0.0045 0.0027 0.0023 0.0013 0.0013 0.0013 0.0013
5
6 0.0045 0.0030 0.0024 0.0014 0.0014 0.0013 0.0013
8
7 0.0045 0.0032 0.0025 0.0014 0.0014 0.0013 0.0013
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