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Abstract. In this paper, the following p(x)-Laplacian equation:

∆p(x)u+V(x)|u|p(x)−2u=Q(x) f (x,u), x∈R
N ,

is studied. By applying an extension of Clark’s theorem, the existence of infinitely
many solutions as well as the structure of the set of critical points near the origin are
obtained.
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1 Introduction

The Clark theorem [2] is an important tool in critical point theory, which is constantly
and effectively applied to sublinear differential equations with symmetry. A variant of
the Clark Theorem was given by Heinz in [8].

Theorem 1.1. Let X be a Banach space, Φ∈C1(X,R). Assume that Φ satisfies the (PS) condi-
tion, is even and bounded from below, and Φ(0)=0. If for any k∈N, there exists a k-dimensional
subsequence Xk of X and ρk>0 such that supXk∩Sρk

Φ<0, where Sρ={u∈X|‖u‖=ρ}, then Φ

has a sequence of critical values ck <0 satisfying ck →0 as k→∞.

Theorem 1.1 asserts the existence of a sequence of critical values ck<0 satisfying ck→0
as k→∞, without giving any information on the structure of the set of critical points. A
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very interesting question arising from Theorem 1.1 is whether there are a sequence of
critical points uk such that Φ(uk)→ 0 and ‖uk‖→ 0 as k→∞ under the assumptions of
Theorem 1.1. In [11], the authors answered this question and gave the structure of the set
of critical points near the original in the abstract setting of Clark’s theorem. One of the
results is the following.

Theorem 1.2. Let X be a Banach space, Φ∈C1(X,R). Assume that Φ satisfies the (PS) condi-
tion, is even and bounded from below, and Φ(0)=0. If for any k∈N, there exists a k-dimensional
subsequence Xk of X and ρk >0 such that supXk∩Sρk

Φ<0, where Sρ={u∈X|‖u‖=ρ}, then at

least one of the following conclusions holds.

(i) There exist a sequence of critical points uk satisfying Φ(uk)< 0 for all k and ‖uk‖→ 0 as
k→∞.

(ii) There exists r>0 such that for any 0< a<r, there exists a critical point u such that ‖u‖= a
and Φ(u)=0.

In [11], the authors got some variants of Clark Theorem which were applied to indefi-
nite problems such as problems on periodic solutions of first order Hamiltonian systems.
And the Theorem 1.2 is applied to a p-Laplace equation on R

N . i.e.,

{

−∆pu+V(x)|u|p−2u=Q(x) f (x,u), x∈R
N ,

u∈W1,p(RN),
(1.1)

where p>1. Assuming

(a1) there exists δ > 0, 1 ≤ γ < p, C > 0 such that f ∈ C(RN×[−δ,δ],R), f is odd in u,
| f (x,u)| ≤C|u|γ−1, and limu→0 F(x,u)/|u|p =+∞ uniformly in some ball Br(x0)⊂
R

N ;

(a2) V,Q ∈ C(RN,R1), V(x)≥ α0 and 0 < Q(x)≤ β0 for some α0 > 0, β0 > 0, and M ,

Q
p

p−γ V
−γ
p−γ ∈L1(RN).

With conditions (a1) and (a2), equation (1.1) has infinitely many solutions uk such that
‖uk‖L∞ →0 as k→∞.

In this paper, the following p(x)-Laplacian equation (p(x)>1) is considered:

{

−∆p(x)u+V(x)|u|p(x)−2u=Q(x) f (x,u), x∈R
N ,

u∈W1,p(x)(RN),
(1.2)

where ∆p(x)u=div(|∇u|p(x)−2∇u),p(x)∈C(RN).
When p(x)≡ const., problem (1.2) is the equation (1.1), which was studied in [11].

The variable exponent Sobolev space W1,p(x)(Ω) is a natural generalization of the classi-
cal Sobolev space W1,p(Ω). The variable exponent p(x)-Laplacian equations arise from
nonlinear elastic mechanics (see [15]) and electrorheological fluids(see [1, 12]). And the
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p(x)-Laplacian operator possesses more complicated nonlinearities, for example, it is in-
homogeneous, so in the discussion, some special techniques needed will be given in Sec-
tion 2.

Following the argument in [11] and using Theorem 1.2, we get the following result.

Theorem 1.3. Assume

(b1) there exists δ > 0, 1 ≤ γ < p−, C > 0 such that f ∈ C(RN×[−δ,δ],R), f is odd in u,
| f (x,u)|≤C|u|γ−1, and limu→0 F(x,u)/|u|p(x)=+∞ uniformly in some ball Br(x0)⊂R

N ,

(b2) V,Q ∈ C(RN,R1), V(x) ≥ α0 and 0 < Q(x)≤ β0 for some α0 > 0, β0 > 0, and M ,

Q
p(x)

p(x)−γ V
−γ

p(x)−γ ∈L1(RN).

Then equation(1.2) has infinitely many solutions uk such that ‖uk‖L∞ →0 as k→∞.

2 Preliminaries

Let Ω⊂R
N(N≥2), p(x)∈C(Ω), set

Lp(x)(Ω)=
{

u : u is measureableand real−valued,
∫

Ω
|u|p(x)dx<∞

}

,

The space Lp(x)(Ω) is a Banach space endowed with the Luxemburg norm

‖u‖p(x), inf

{

λ>0,
∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

p(x)
dx≤1

}

. (2.1)

Proposition 2.1. (see [4])

(1) The space Lp(x)(Ω) is a separable, uniform convex Banach space, and its conjugate
space is Lq(x), where 1

p(x)+
1

q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣

∣

∫

Ω
uvdx

∣

∣≤2‖u‖p(x)‖v‖q(x).

(2) If p1,p2 ∈ C+(Ω̄), p1(x)≤ p2(x) for any x ∈ Ω̄, then Lp2(x)(Ω) →֒ Lp1(x)(Ω) and the
embedding is continuous.

Proposition 2.2. (see [4, 9]) Set ρ(u)=
∫

Ω
|u(x)|p(x)dx. If u,uk∈Lp(x)(Ω), we have

(1) for u 6=0, ‖u‖p(x)=λ⇔ρ( u
λ )=1;

(2) ‖u‖p(x)<1(=1;>1)⇔ρ(u)<1(=1,>1);

(3) if ‖u‖p(x)>1, then ‖u‖
p−
p(x)

≤ρ(u)≤‖u‖
p+
p(x)

;

(4) if ‖u‖p(x)<1, then ‖u‖
p+
p(x)

≤ρ(u)≤‖u‖
p−
p(x)

.

The space W1,p(x)(Ω) is defined by

W1,p(x)(Ω),
{

u∈Lp(x)(Ω)||∇u|∈Lp(x)(Ω)
}



382 Z. Zhou and X. Si / J. Math. Study, 47 (2014), pp. 379-387

and equipped with the norm

‖u‖W1,p(x)(Ω),‖u‖p(x)+||∇u||p(x) .

We denote the closure of C∞

0 (Ω) in W1,p(x)(Ω) by W
1,p(x)
0 (Ω) and

p∗(x)=

{

N p(x)
N−p(x) , p(x)<N,

∞, p(x)≥N.
(2.2)

1< p−, inf
x∈Ω

p(x)≤ p+,sup
x∈Ω

p(x). (2.3)

Proposition 2.3. (see [4])

(1) W1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable, reflexive Banach spaces.

(2) If q∈C+(Ω̄) and q(x)< p∗(x) for all x ∈ Ω̄, then the embedding from W1,p(x)(Ω) to
Lp(x)(Ω) is compact and continuous.

(3) There is a constant C>0 such that

‖u‖p(x)≤C‖∇u‖p(x), ∀u∈W
1,p(x)
0 (Ω).

Proposition 2.4. (see [5]) Define I(u)=
∫

(|∇u|p(x)+a(x)|u|p(x)), where 0<a−<a(x)<∞,
use the norm

‖u‖= inf

{

λ>0 :
∫

RN

(

∣

∣

∣

∣

∇u

λ

∣

∣

∣

∣

p(x)

+a(x)
∣

∣

∣

u

λ

∣

∣

∣

p(x)
)

≤1

}

.

Let u∈W1,p(x)(Ω), then

(i) ‖u‖<1(=1,>1)⇔ I(u)<1(=1,>1);

(ii) if ‖u‖≥1, then ‖u‖p− ≤ I(u)≤‖u‖p+ ;

(iii) if ‖u‖≤1, then ‖u‖p+ ≤ I(u)≤‖u‖p− ;

(iv) I(un)→0⇔‖un‖→0;

(v) I(un)→∞⇔‖un‖→∞.

Definition 2.1. u∈W1,p(x)(RN) is called a weak solution of problem (1.2) if
∫

RN
|∇u|p(x)−2∇u∇φdx+V(x)|u|p(x)−2uφdx=

∫

RN
Q(x) f (x,u)φdx, ∀φ∈W1,p(x)(RN).

Set

F(x,u)=
∫ u

0
f (x,s)ds, ∀(x,t)∈R

N×R (2.4)

and

Φ(u)=
∫

RN

1

p(x)
(|∇u|p(x)+V(x)|u|p(x))−

∫

RN
Q(x)F(x,u), u∈W1,p(x)(RN). (2.5)

We know that the critical points of Φ are just the weak solutions of problem (1.2).
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3 Proof of Theorem 1.1

Proof. We prove it in three steps:
Step 1. Construct proper functional and get the coerciveness. Choose f̂ ∈C(RN×R,R)
so that f̂ is odd in u∈R, f̂ (x,u)= f (x,u) for x∈R and |u|<δ/2, and f̂ (x,u)=0 for x∈R

N

and |u|>δ. In order to obtain solutions of (1.2) we study

{

−∆p(x)u+V(x)|u|p(x)−2u=Q(x) f̂ (x,u), x∈R
N ,

u∈W1,p(x)(RN),
(3.1)

which is the Euler equation of the functional

Φ(u)=
∫

RN

1

p(x)
(|∇u|p(x)+V(x)|u|p(x))−

∫

RN
Q(x)F̂(x,u), u∈X,

where X is the Banach space

X={u∈W1,p(x)(RN)|
∫

RN
V(x)|u|p(x)

<∞}

endowed with the norm (see [5])

‖u‖= inf

{

λ>0 :
∫

RN

(

∣

∣

∣

∣

∇u

λ

∣

∣

∣

∣

p(x)

+V(x)
∣

∣

∣

u

λ

∣

∣

∣

p(x)
)

≤1

}

. (3.2)

and F̂(x,u)=
∫ u

0 f̂ (x,s)ds. It is standard to check that Φ∈C1(X,R), Φ is even, and Φ(0)=0.
For u∈X,

∫

RN
Q(x)|F̂(x,u)|≤C1

∫

RN
Q(x)|u|γ =C1

∫

RN
(QV

− γ
p(x) )(V

γ
p(x) |u|γ)

≤2C1‖QV
− γ

p(x)‖ p(x)
p(x)−γ

·‖V
γ

p(x) |u|γ‖ p(x)
γ

(3.3)

≤2C1

(

∫

RN
|QV

− γ
p(x) |

p(x)
p(x)−γ

)

p+−γ
p+

·

(

∫

RN
|V

γ
p(x) |u|γ|

p(x)
γ

)

γ
p+

(3.4)

≤2C1‖M‖
p+−γ

p+

L1(RN)

(

∫

RN
|V|u|p(x)

)
γ

p+

(3.5)

≤C2‖u‖γ. (3.6)

Therefore,

Φ(u)≥
1

p+
‖u‖p−−C2‖u‖γ, u∈X,

and then Φ is coercive and bounded below.
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Step 2. The (PS) condition holds. Let {un} be a (PS) sequence, thus Φ(un) is bounded
and Φ

′(un)→ 0. Then {un} is bounded. Assume un ⇀ u in W1,p(x)(RN) and strongly in

L
p(x)
loc (RN). Then Φ

′(u)→0, and

〈Φ′(un)−Φ
′(u),un−u〉=[

∫

RN
|∇un|

p(x)−2∇un−|∇u|p(x)−2∇u)·(∇un−∇u

+
∫

RN
(V(x)|un|

p(x)−2un−|u|p(x)−2u)·(un−u)]

−
∫

RN
Q(x)( f̂ (x,un) f̂ (x,u))·(un−u)

, I1− I2→0 (3.7)

For ξ,η∈R
N , using the monotonous inequalities (see [6]),

(|ξ|p(x)−2−|η|p(x)−2)·(ξ−η)≥

{

c(|ξ|+|η|)p(x)−2|ξ−η|2, 1< p(x)<2,

c|ξ−η|p(x), p(x)≥2,
(3.8)

where c>0 is a constant.

For p(x)≥2, it is easy to see that

I1≥C3‖un−u‖
p+
p(x)

. (3.9)

In the case 1< p(x)<2, for any v,w∈Lp(x)(RN), we have

∫

RN
|w|p(x)=

∫

RN
(|w|p(x)|v|

p(x)
p(x)−2 )|v|

p(x)
2−p(x)

≤2‖|w|p(x)|v|
p(x)

p(x)−2‖ 2
p(x)

·‖|v|
p(x)

2−p(x)‖ 2
2−p(x)

≤2

[

∫

RN
(|w|p(x)|v|

p(x)
p(x)−2 )

2
p(x)

]

p+
2

·

[

∫

RN
|v|p(x)

]

2−p−
2

=2

(

∫

RN
|v|p(x)−2|w|2

)

p+
2

·

(

∫

RN
|v|p(x)

)

2−p−
2

Thus
∫

RN
|v|p(x)−2|w|2 ≥

(
∫

RN |w|p(x))
2

p+

2
2

p+ (
∫

RN |v|p(x))
2−p−

p+

≥
‖w‖2

p(x)

2
2

p+ (
∫

RN |v|p(x))
2−p−

p+

(3.10)

Substitute w= |un−u|, v= |un|+|u| to (3.8), (3.10), we have for 1< p(x)<2,

I1≥C4‖un−u‖2
p(x). (3.11)
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Now we estimate I2, for any R>0,
∫

RN
Q(x)( f̂ (x,un)− f̂ (x,u))·(un−u)

≤C5

∫

RN\BR(0)
Q(x)(|un|

γ+|u|γ)+C5

∫

BR(0)
(|un|

γ−1+|u|γ−1)(un−u)

=C5

∫

RN\BR(0)
(V

γ
p(x) |un|

γ)(QV
−γ
p(x) )+C5

∫

RN\BR(0)
(V

γ
p(x) |u|γ)(QV

−γ
p(x) )

+C5

∫

BR(0)
|un|

γ−1|un−u|+C5

∫

BR(0)
|u|γ−1|un−u|

≤2C5

(

‖V
γ

p(x) |un|
γ‖

L
p(x)

γ (RN\BR(0))
+‖V

γ
p(x) |u|γ‖

L
p(x)

γ (RN\BR(0))

)

‖QV
−γ
p(x)‖ p(x)−γ

γ

(3.12)

+C5

(

‖un‖
γ−1
Lγ(BR(0))

+‖u‖γ−1
Lγ(BR(0))

)

‖un−u‖Lγ(BR(0))

≤2C5

[

(

∫

RN\BR(0)
(V|un|

p(x))

)

γ
p+

+

(

∫

RN\BR(0)
(V|u|p(x))

)

γ
p+

]

‖M‖
p+−γ

p+

L1(RN\BR(0))
(3.13)

+C5

(

‖un‖
γ−1
Lγ(BR(0))

+‖u‖γ−1
Lγ(BR(0))

)

‖un−u‖Lγ(BR(0))

≤C6‖M‖
p+−γ

p+

L1(RN\BR(0))
+C6‖un−u‖Lγ(BR(0)). (3.14)

where we used Hölder inequality (Proposition 2.1) in (3.12), Proposition 2.2 in (3.13), and
the definition of X in (3.14). By the condition (b2), we have ‖M‖L1(RN\BR(0))

→0 as R→∞.

Lp(x) →֒ Lγ leads to ‖un−u‖Lγ(BR(0))→0. Thus

lim
n→∞

∫

RN
Q(x)( f̂ (x,un)− f̂ (x,u))·(un−u). (3.15)

Combining with(3.7), (3.9), (3.11) and (3.15), {un} converges strongly in X and the (PS)
condition holds for Φ.
Step 3. Equation (1.2) has infinitely many Clark type solutions. For any K>0, there exists
δ= δ(K)>0 such that if u∈C∞

0 (Br(x0)) and |u|∞ < δ, then Q(x)F̂(x,u)≥K|u(x)|p(x), and
thus

Φ(u)≤
1

p−
‖u‖p−−K‖u‖

p+
p(x)

.

This implies, for any k∈N, if Xk is a k-dimensional subsequence of C∞

0 (Br(x0)) and ρk>0
is sufficiently small, then supXk∩Sρk

Φ<0, where Sρ={u∈X : ‖u‖=ρ}. Now we appeal to

Theorem 1.2 to obtain infinitely many solutions {uk} for (3.1) such that ‖uk‖→0 as k→∞.
In the following, we show that ‖uk‖L∞ →0 as k→∞. In the case 1< p(x)<N, denote

p∗= N p(x)
N−p(x)

. Let u be a solution of (3.1) and constant α > 0. Let T > 0 and set uT(x) =

max{−T,min{u(x),T}}. Multiplying both sides of (3.1) with |uT|αuT implies

∫

RN
|uT|α|∇uT |p(x)=

∫

RN

(

p(x)

α+p(x)

)p(x)

|∇|uT |
α+p(x)

p(x) |p(x)≤C
∫

RN
|uT|α+1. (3.16)
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Since
(

∫

RN
|uT|

α+p(x)
p(x)

Np(x)
N−p(x)

)

N−p−
Np−

≤C‖|uT|
α+p(x)

p(x) ‖
L

Np(x)
N−p(x) (RN)

(3.17)

and

‖∇|uT |
α+p(x)

p(x) ‖Lp(x)(RN)≤

(

∫

RN
|∇|uT |

α+p(x)
p(x) |p(x)

)
1

p+

. (3.18)

Combining (3.16)-(3.18) with Sobolev inequality, we have

‖uT‖
N(α+p−)

N−p−

N−p−
Np−

L
N(α+p−)

N−p− (RN)

≤

(

∫

RN
|uT |

N(α+p(x))
N−p(x)

)

N−p−
Np−

≤C

(

∫

RN
|∇|uT |

α+p(x)
p(x) |p(x)

)
1

p+

(3.19)

≤C

(

α+p(x)

p(x)

)

p(x)
p+
(

∫

RN
|uT|α+1

)
1

p+

≤ (C(α+p(x)))
p(x)
p+ ‖uT‖

α+1
p+

Lα+1 . (3.20)

Thus

‖uT‖
L

N(α+p−)
N−p− (RN)

≤ (C(α+p(x)))
p(x)
p+

(N−p+)Np−
N(α+p+)(N−p−) ‖u‖

α+1
p+

(N−p+)p−
(α+p+)(N−p−)

Lα+1(RN)

≤ (C(α+p+))
p+

α+p+ ‖u‖
α+1

α+p+

(N−p+)p−
(N−p−)p+

Lα+1(RN)
. (3.21)

where C≥ 1, independent of u and α. Set α0 = p∗−−1= N p−
N−p−

−1 and αk =
(αk−1+p−)N

N−p−
−1,

that is αk =
(p∗−/p−)k+1−1

(p∗−/p−)−1
α0, for k=1,2,··· . From (3.21), an iterating process leads to

‖uT‖
Lαk+1+1(RN)

≤exp

(

Σ
k
i=0

p− ln(C(αi+p−))

αi+p−

)

‖uT‖νk

Lp∗− (RN)
, (3.22)

where νk =Π
k
i=0

αi+1
αi+p+

(N−p+)p−
(N−p−)p+

. Sending T to infinity and then k to infinity, as a conse-

quence, we have

‖uT‖L∞(RN)≤exp

(

Σ
∞

i=0

p− ln(C(αi+p−))

αi+p−

)

‖uT‖ν

Lp∗− (RN)
, (3.23)

where ν=Π
∞

i=0
αi+1

αi+p+

(N−p+)p−
(N−p−)p+

is a number in (0,1) and exp
(

Σ
k
i=0

p− ln(C(αi+p−))
αi+p−

)

is a posi-

tive number. For the case p(x)≥N and p∗=∞ , the argument is similar and even simpler.
Therefore, ‖uk‖L∞ →0 as k→∞, and uk with k sufficiently large are solutions of (1.2).
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