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Abstract. Stochastic approximation problem is to find some root or extremum of a non-

linear function for which only noisy measurements of the function are available. The

classical algorithm for stochastic approximation problem is the Robbins-Monro (RM)

algorithm, which uses the noisy evaluation of the negative gradient direction as the

iterative direction. In order to accelerate the RM algorithm, this paper gives a frame

algorithm using adaptive iterative directions. At each iteration, the new algorithm goes

towards either the noisy evaluation of the negative gradient direction or some other

directions under some switch criterions. Two feasible choices of the criterions are pro-

posed and two corresponding frame algorithms are formed. Different choices of the

directions under the same given switch criterion in the frame can also form different

algorithms. We also proposed the simultanous perturbation difference forms for the

two frame algorithms. The almost surely convergence of the new algorithms are all

established. The numerical experiments show that the new algorithms are promising.
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1. Introduction

Stochastic approximation algorithm provides a simple and effective approach for find-

ing root or minimum of function whose evaluations are contaminated with noise. Consider

a n-dimensional loss function f : Rn → R , with gradient g : Rn → Rn. We have that

g(x) = 0 if and only if x = x∗ when f has a unique local minimizer x∗ ∈ Rn. If the direct

noisy estimate of the gradient function g̃k is available, the Robbins-Monro(RM) algorithm

[1](extended by Blum [2] to multidimensional systems) estimates a root of g with the

following recursion:

xk+1 = xk −αk g̃k, (1.1)
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g̃k = g(xk) + ǫk, (1.2)

where ǫk is the noise and αk is a sequence that satisfies

αk > 0,
∑

k≥1

αk =∞,
∑

k≥1

α2
k <∞. (1.3)

Since the direct noisy measurements g̃k are sometimes not available, Kiefer and Wolfowitz

[3] introduced the finite difference form of the RM algorithm, which employs an estimator

for the gradient denoted by ĝ(xk), whose ith component is given by

ĝi(xk) =
f̃ (xk + ckei)− f̃ (xk− ckei)

2ck

, (1.4)

where ei is the unit vector along the ith axis and f̃ is a noisy measurement of the function

value f . We can call this algorithm finite difference stochastic approximation (FDSA)

algorithm or KW algorithm simply. The almost surely convergence of the KW algorithm

is also given by Kiefer and Wolfowitz [3]. The major disadvantage of the KW algorithm

is that it requires 2n measurements of the function value per iteration. By contrast, the

random direction stochastic approximation (RDSA) algorithm first given by Kushner and

Clark [4], needs only two measurements per iteration. It has the following recursion:

xk+1 = xk −αk

�

f̃ (xk + ckξk)− f̃ (xk− ckξk)

2ck

�

ξk. (1.5)

A special case of the RDSA algorithm is the simultaneous perturbation stochastic approxi-

mation (SPSA) algorithm introduced by Spall [5] which employs the estimator:

ĝ(xk) =

�

f̃ (xk + ckξk)− f̃ (xk− ckξk)

2ck

�

ζk, (1.6)

where ξk is chosen from a distribution that has to satisfy some particular constraints, and

the ith component of ζk are given by

ζ
(i)

k
= 1/ξ

(i)

k
. (1.7)

Since in fact the Bernoulli distribution is the only choice that has ever been advocated

for SPSA, SPSA is a special case of RDSA, though it does bear remarking that the use

of a Bernoulli distribution with RDSA had not been suggested until after SPSA had been

introduced. The FDSA, RDSA and SPSA algorithm exhibit similar convergence properties.

The RM algorithm is a classical stochastic approximation algorithm and exhibits the

property that it converges to a stationary point almost surely. The major disadvantage of

RM algorithm and its difference forms including the FDSA, RDSA and SPSA algorithms are

their slow speed of convergence. There have been many efforts to accelerate the RM algo-

rithm. Most of them consist in the choice of the step size αk, such as the Kesten algorithm
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(see Kesten [6], Delyon and Juditsky [7]). Spall [8] has given an extensive review on the

choice of αk in stochastic approximation algorithms when the iterative direction is − g̃k.

Note that, till now, few people have done research in the choice of iterative direction.

Because of the influence of noise, − g̃k may not always be the best iterative direction, espe-

cially when the function have narrow valleys. In fact, in practice, we find that the choice

of some faster iterative directions in the initial iterations can yield better finite-sample be-

havior. So, in this paper, we shall introduce a frame algorithm which employs some other

iterations d̃k in the initial iterations and change to − g̃k in the latter iterations. Here we

should note in [13] that a conjugate direction method is given if some information about

the Hessian need be known. In practice, it is difficult to obtain second-order information

and hence the method is restrictive in application.

The rest of this paper is organized as follows. In the next section, we present a general

frame algorithm and two different switch criterions for our algorithm, and then two new

algorithms according to the two criterions are proposed. In Section 3, we give the conver-

gence analysis of the new frame algorithm. The difference form of these algorithms are

given in Section 4. Numerical results and some implementations are reported in Section

5. The last section is some concluding remarks.

2. Our frame algorithm

In this section, we consider the situation that the direct noisy estimator g̃k is available

and give a new frame algorithm. Our basic idea is as follows. We keep the step size αk

the same with the RM algorithm and let ‖gk‖ decrease faster than in the RM algorithm

in initial iterations through using some other faster degressive directions such as the noisy

conjugate gradient direction. We change the iterative direction to the negative noisy gra-

dient direction in the later iterations to keep stabilization. Thus, the step size of the new

algorithm can be expected to be larger than the RM algorithm when ‖gk‖ attains the same

accuracy. By doing this, ‖gk‖ in the new algorithm can be expected to decrease more than

in the RM algorithm with the same number of measurements being used. In other words,

the new algorithm will have better finite-sample performance than the RM algorithm. It

has the following recursion:

xk+1 = xk+αkdk, (2.1)

dk =

(

d̃k, If some criterion satisfied;

− g̃k, otherwise.
(2.2)

We can also call it as adaptive direction stochastic approximation frame algorithm. Though

d̃k can be chosen as any directions that can make ‖gk‖ has a descent in one or several itera-

tions, directions that can let ‖gk‖ descend faster than the noisy negative gradient direction

are preferred. When the iterations near the solution, in order to guarantee the convergence

of the frame algorithm, we change to use the noisy negative gradient directions − g̃k. In

this procedure, the criterion is an important factor. Bad criterion may not guarantee the

convergence. In the following, we give two available criterions for this frame algorithm.
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2.1. Two criterions for new frame algorithm

Our purpose is to let ‖gk‖ have a certain descent during several iterations. However,

under the influence of noise we can not exactly get the value of ‖gk‖. Fortunately, we find

that in most cases, with a large probability, the minimal value of ‖ g̃k‖ over every finite

iterations still has a certain descent if ‖gk‖ is degressive during this process. So, instead

of ‖gk‖, our new direction d̃k should let the minimal value of ‖ g̃k‖ have a definite descent

during several iterations though there is noise. Based on this idea, we can give the first

switch criterion as follows.

Given positive constants β and δ and an integer r. During the initial 2r iterations, dk

equals d̃k if ‖ g̃k‖ < β . This is to avoid the overflow of ‖ g̃k‖ as a result of noise. When

k > 2r, if the norm of noisy gradient has a descent in the foregoing r iterations and if

‖ g̃k‖ < β , we let dk equal d̃k. Otherwise, we think that the direction d̃k can not work well

and hence change to the noisy gradient direction − g̃k from then on. We can formulate this

criterion as follows. Define the one dimensional function:

I (t) =

(

1, if t ≥ 0;

0, otherwise,
(2.3)

and let

tk = I (‖ g̃k‖− β), (2.4)

qk = I [‖ g̃u2(k)
‖− (‖ g̃u1(k)

‖− δ)], (2.5)

where

u1(k) = ar g min
1≤i≤k−r

‖ g̃i‖

and u2(k) = ar g min
k−r+1≤i≤k

‖ g̃i‖. Our first switch criterion computes dk as follows:

dk =

(

(1− tk)d̃k − tk g̃k, if k < 2r;

ϕk(1− tk)d̃k − [1−ϕk(1− tk)] g̃k, otherwise.
(2.6)

where ϕk is a sequence that satisfies ϕ0 = 1 and

ϕk = (1− qk)ϕk−1. (2.7)

We call this criterion (2.6) by Criterion I in this paper. Under Criterion I, we expect new

direction d̃k can make the the minimal value of ‖ g̃k‖ has a descent of at least δ every

r iterations. We can also see from Criterion I that, we can guarantee this because once

ϕk = 0 for some k, ϕl will be zero and dl will equal − g̃l for all l ≥ k according to (2.6)

and (2.7).

Influenced by noise, sometimes the condition ‖ g̃u2(k)
‖ ≤ ‖ g̃u1(k)

‖−δ in Criterion I seems

too strict. Considering this, we give the second criterion by using an expanding trust region

for ‖ g̃k‖ instead of the condition in (2.5). We think that sometimes ‖ g̃k‖ does not decrease
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through several iterations is because of the influence of noise. Under this criterion, though

sometimes ‖ g̃u2(k)
‖ ≥ ‖ g̃u1(k)

‖ − δ, it still has chance to go towards d̃k till for some k0 that

satisfies ‖ g̃k0
‖ > k0s, where s is a very small positive constant. This criterion give more

possibility for the frame algorithm to go towards the direction d̃k. By doing this, it can

also avoid the too large alteration which may sometimes go out of the neighborhood of the

solution. It computes dk as follows:

dk =

(

−tk g̃k + (1− tk)d̃k, if k < 2r;

−[1− ϕ̃k(1− tkqk)] g̃k + ϕ̃k(1− tkqk)d̃k, otherwise.
(2.8)

where ϕ̃k is a sequence that satisfies ϕ̃0 = 1 and

ϕ̃k = I (‖ g̃k‖ − ks)ϕ̃k−1. (2.9)

Here, tk and qk are also chosen as in (2.4) and (2.5) respectively. We call criterion (2.8) by

Criterion II in this paper. The frame algorithm (2.1)-(2.2) under Criterion I and Criterion II

is called by Frame I algorithm and Frame II algorithm respectively.

2.2. Choice of directions d̃k

The only problem remained for Frame I algorithm and Frame II algorithm is how to

choose a suitable direction d̃k. Though d̃k can be chosen as any direction that can make

‖gk‖ has a descent in one or several iterations, directions that can let ‖gk‖ descend faster

than the noisy negative gradient direction are preferred. We all know, conjugate gradient

method (see [9]) converges much faster than the steepest descent method when there is

no noise. The conjugate gradient method is based on the idea that the convergence to the

solution could be accelerated if we minimize the function over the hyperplane that contains

all previous search directions, instead of minimizing it over just the line that points down

gradient. So we expect that the noisy conjugate gradient directions can still have a good

performance in the initial iterations. It may work worse than the noisy steepest descent

direction − g̃k at each iteration separately, however, we expect it can work better through

several iterations. This is also the cause that conjugate gradient method works better than

the steepest descent method in deterministic optimization. Now, we give the choice of d̃k

as follows:

d̃k = − g̃k + γkdk−1, (2.10)
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which is a combination of − g̃k and dk−1. Here, γk can be chosen similarly as in conjugate

gradient method (see [9])in deterministic optimization as follows:

γk =
‖ g̃k‖

2

‖ g̃k−1‖2
, (2.11)

γk =
g̃T

k
( g̃k− g̃k−1)

‖ g̃k−1‖2
, (2.12)

γk =
g̃T

k
( g̃k − g̃k−1)

dT
k−1
( g̃k − g̃k−1)

, (2.13)

γk =
‖ g̃k‖

2

dT
k−1
( g̃k − g̃k−1)

, (2.14)

which are respectively the FR, PRP, HS and DY conjugate gradient methods in deterministic

optimization. If we just regard γk as the weighted coefficient to combine the two directions

dk−1 and − g̃k, we can choose γk in some other ways for example:

γk =
‖ g̃k‖

‖ g̃k−1‖
. (2.15)

In practice, for different functions, the different choices of γk will have different numerical

performances.

Now, we can give Frame I algorithm and Frame II algorithm with d̃k chosen in (2.10)

as follows, called by Algorithm 2.1 and Algorithm 2.2 respectively in this paper:

Algorithm 2.1.

step 0. Give r, δ, ϕ0 = 1; choose x1, measure g̃1, give β(some proportion of ‖ g̃1‖),
k = 1, d1 = − g̃1.

step 1. If some given stopping criteria is satisfied or some given maximum iteration has

been arrived, then stop and print some results, otherwise go to step 2;

step 2. Choose αk from some given sequence; If k > 1, compute dk according to (2.6),

goto step 3;

step 3. Compute xk+1 = xk +αkdk; k=k+1; goto step 1.

Algorithm 2.2. In step 2 of Algorithm 2.1, dk is calculated by (2.8) instead of (2.6).

3. Convergence analysis

In this section, we study the convergence property of Frame I algorithm and Frame II

algorithm including Algorithm 2.1 and Algorithm 2.2. We consider the problem:

ar g min
x∈ℜn

f (·) (3.1)
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where ℜn denotes the n-dimensional Euclidean space and f : ℜn → ℜ is a continuously

differentiable function, such that for some constant L we have

‖∇ f (x)−∇ f ( x̄)‖ ≤ L‖x − x̄‖, ∀x , x̄ ∈ ℜn (3.2)

where ‖ · ‖ denotes the norm of a vector.

Let xk be a sequence generated by the new frame algorithm, Fk be an increasing

sequence of σ-fields which should be interpreted as the history of the algorithm up to time

k, just before ǫk is generated. xk and dk in (2.1) are Fk-measurable. First, we give the

following assumptions:

Assumption 3.1. The stepsize αk in (2.1) satisfies that the condition (1.3).

Assumption 3.2. For all k and with probability 1, ǫk satisfies that

E[ǫk|Fk] = 0, (3.3)

E[‖ǫk‖
2|Fk]≤ A(1+ ‖gk‖

2), (3.4)

where A is a positive deterministic constant.

Lemma 3.1. There exists a K0 ∈ Z, such that dk ≡ − g̃k for all k ≥ K0 in Frame I algorithm.

Proof : Assume that there is no such K0 ∈ Z exists. We can conclude that ϕk > 0, ∀k >

0. That is we have ‖ g̃u2(k)
‖ < ‖ g̃u1(k)

‖ − δ for all k ≥ 2r. Let u3(k) = ar g min
k−2r+1≤i≤k−r

‖ g̃i‖,

according to the definition of u1(k), we have

‖ g̃u1(k)
‖ ≤ ‖ g̃u3(k)

‖ (3.5)

and

‖ g̃u3(k)
‖ ≤ ‖ g̃u1(k−r)‖ − δ. (3.6)

Then, ∀k = mr, m > 1, we can have the following inequality:

0≤‖ g̃u2(k)
‖< ‖ g̃u3(k)

‖− δ ≤ ‖ g̃u1(k−r)‖− 2δ

< ... < ‖ g̃u1(k−(m−2)r)‖ − (m− 1)δ. (3.7)

Take limits for the above inequality, we have that

lim
k→∞
‖ g̃u2(k)

‖ = −∞. (3.8)

This contradicts ‖ g̃u2(k)
‖ ≥ 0. So, there must exist some K0 ∈ Z, such that dk ≡ − g̃k for all

k ≥ K0. The lemma is proved. �

Theorem 3.1. Under Assumptions 3.1 and 3.2, for Frame I algorithm, we have either f (xk)→
−∞ or f (xk) converges to a finite value and limk→∞gk = 0 with probability 1.
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Proof : Under the Assumptions 3.1 and 3.2, according to the Proposition 3 in section

4 given by Bertsekas and Tsitsiklis [10], and by Lemma 3.1, we can easily conclude that

theorem is right. The cause is that when k ≥ K0, the Frame I algorithm has the recursion:

xk+1 = xk −αk g̃k, ∀k ≥ K0. (3.9)

Obviously, it satisfies all the conditions given in [10]. So, the theorem is proved. �

Lemma 3.2. There exists a K0 ∈ Z, such that dk ≡ − g̃k for all k ≥ K0 in Frame II algorithm.

Proof : If there does not exist K0 ∈ Z, then we have that ϕ̃k > 0, ∀k; that is ∀k we have

‖ g̃k‖ ≥ ks. (3.10)

If there exists a sequence k(1)(≥ 2r), k(2), ..., k(l)(k(l) ≥ k(l−1) + r), ... , such that

‖ g̃u2(k
(l))‖< ‖ g̃u1(k

(l))‖− δ, ∀l ≥ 1. (3.11)

Then according to k(2) ≥ k(1) + r, we can get

‖ g̃u2(k
(2))‖ < ‖ g̃u1(k

(2))‖ − δ < ‖ g̃u2(k
(1))‖ − δ < ‖ g̃u1(k

(1))‖ − 2δ. (3.12)

Similarly, we can also get that

‖ g̃u2(k
(l))‖< ‖ g̃u1(k

(1))‖− lδ. (3.13)

According to (3.10), we have

‖ g̃u2(k
(l))‖ ≥ (k

(l)− r + 1)s ≥ (k(1) − 2r + 1+ l r)s. (3.14)

By (3.13) and (3.14), we get

(k(1) − 2r + 1+ l r)s < ‖ g̃u1(k
(1))‖− lδ. (3.15)

Let l → +∞ in (3.15), we can see a contradiction. So, there exist a K1 such that ∀k ≥ K1,

we have

‖ g̃u2(k)
‖ ≥ ‖ g̃u1(k)

‖− δ. (3.16)

That is to say ∀k ≥ K1 we have

‖ g̃k‖ < β . (3.17)

This contradicts (3.10). So, there must exist some K0 ∈ Z, such that dk ≡ − g̃k for all

k ≥ K0 in Frame II algorithm. �

Theorem 3.2. Under Assumptions 3.1 and 3.2, for Frame II algorithm, we have either

f (xk)→−∞ or f (xk) converges to a finite value and limk→∞gk = 0 with probability 1.

Proof :The statement follows from Assumptions 3.1 and 3.2, according to Proposition 3

in section 4 in [10] and Lemma 3.2. �

Obviously, we can also have the following corollary from Theorems 3.1 and 3.2.

Corollary 3.1. Under Assumptions 3.1 and 3.2, for Algorithm 2.1 and Algorithm 2.2, we

both have that either f (xk)→−∞ or else f (xk) converges to a finite value and limk→∞gk =

0 with probability 1.
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4. The difference form of new frame algorithm

When we can only use the noisy function value f̃k at any point xk, our new frame

algorithm under two criterions can be also extended to the difference form respectively.

First, we can use the simultanous perturbation approximation of gradient in the SPSA

method [5] instead of g̃k in our two new frame algorithms. That is to say we can use ĝk

in (1.6) instead of g̃k. Our frame algorithm can be changed to the difference form:

dk =

(

d̂k, if some criterion is satisfied;

− ĝk, otherwise,
(4.1)

where d̂k can be chosen as any descent directions only using the noisy function value.

Now, two criterions given in Section 2 can also be changed to the ones only use the noisy

function value. Before giving them, we need to give definitions for some marks. Let

f̄k =
f̃ (xk + ckξk) + f̃ (xk− ckξk)

2
, (4.2)

t̂k = I ( f̃k − β), (4.3)

q̂k = I [ f̄u2(k)
− ( f̄u1(k)

− δ)], (4.4)

where u1(k) = ar g min
1≤i≤k−r

f̄i , u2(k) = ar g min
k−r+1≤i≤k

f̄i , and I is defined as in (2.3).

The difference form of Criterion I, called by Criterion III, computes dk as follows:

dk =

(

(1− t̂k)d̂k − t̂k ĝk, if k < 2r;

ϕ̂k(1− t̂k)d̂k − [1− ϕ̂k(1− t̂k)] ĝk, otherwise.
(4.5)

where ϕ̂k is a sequence that satisfies ϕ̂0 = 1 and

ϕ̂k = (1− q̂k)ϕ̂k−1. (4.6)

The parameters β , δ and r can be chosen similarly as in Criterion I. So, (2.1) and (4.5)

compose the difference form of Frame I algorithm, called by Frame III algorithm here.

When d̂k is computed by

d̂k = − ĝk + γkdk−1, (4.7)

where γk can be regarded as some weight coefficient, we get the difference form of the

Algorithm 2.1 called by Algorithm 2.3.

Similarly, we give the difference form of the Criterion II, it computes dk as follows:

dk =

(

− t̂k ĝk + (1− t̂k)d̂k, if k < 2r;

−[1−φk(1− t̂kq̂k)] ĝk +φk(1− t̂kq̂k)d̂k, otherwise,
(4.8)

where φk is a sequence satisfies that φ0 = 1 and

φk = I ( f̄k − ks)φk−1. (4.9)
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The algorithms (2.1) and (4.8) compose the difference form of Frame II algorithm, called

by Frame IV algorithm in this paper. Also, (2.1), (4.7) and (4.8) compose the difference

form of Algorithm 2.2, called by Algorithm 2.4 in this paper.

Frame III and Frame IV algorithms, the simultaneous perturbation forms of our new

frame algorithms, exhibit convergence properties similar to the SPSA algorithm. Similarly

to Lemmas 3.1 and 3.2, we can also prove that there exists K0 such that when k > K0,

almost surely we have dk ≡ − ĝk for Frame III and Frame IV algorithms.

5. Numerical experiment and some analysis

5.1. Case I

First, we compare the RM algorithm, Algorithm 2.1 and Algorithm 2.2. Here, in Algo-

rithm 2.1 and Algorithm 2.2, the γk in d̃k is chosen as in (2.15). This is because in practice,

our finite experiments show that this choice of γk works better. Five functions were chosen

from the collection of unconstrained minimization test problems in Moré et al.[11]. They

are listed as follows.

P1. The Helical valley function

f (x) = 100[x3− 10θ(x1, x2)]
2 + 100[
Æ

x2
1 + x2

2 − 1]2, (5.1)

where

θ(x1, x2) =

(

1

2π
arctan(

x2

x1
), if x1 > 0;

1

2π
arctan(

x2

x1
) + 0.5 if x1 < 0.

P2. The Penalty function I

f (x) =

10
∑

i=1

10−5(x i − 1)2 + (

10
∑

j=1

x2
j −

1

4
)2. (5.2)

P3. The extended Rosenbrock function (m= 4)

f (x) =

2
∑

i=1

[100(x2i − x2
2i−1)

2 + (1− x2i−1)
2]. (5.3)

P4. The Extended Powell singular function

f (x) =

4
∑

i=1

(x4i−3 + 10x4i−2)
2+ 5(x4i−1 − x4i)

2

+ (x4i−2 − 2x4i−1)
4+ 10(x4i−3− x4i)

4. (5.4)

P5. The extended Rosenbrock function (m= 10)

f (x) =

5
∑

i=1

[100(x2i − x2
2i−1)

2 + (1− x2i−1)
2]. (5.5)
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tions
P a A s x0 f ∗

1 1 0 0.001 [−1; 0; 0] 0

2 0.1 50 0.001 [1; 2; ...; 10] 7.087e-5

3 1 100 0.01 [0; 0; 0; 0] 0

4 0.1 100 0.01 [1; 3;−1; 0; ...1; 3;−1; 0] 0

5 0.1 100 0.01 [−0.5; ...;−0.5] 0Table 2: The mean fun
tion values at the terminal 2000 evaluations of gradient of four algorithms over50 independent runs. Approximate 90% 
on�den
e intervals are also shown below.
P RM Algorithm 2.1 Algorithm 2.2

1 4.13 4.25 1.59

f(×10−3) [3.84,4.42] [4.00,4.51] [1.01,2.18]

2 3.78 2.65 1.05

f(×10−2) [3.73,3.84] [2.24,3.06] [0.68,1.42]

3 2.96 2.72 2.68

f(×10−2) [2.82,3.10] [1.07,4.37] [1.65,3.71]

4 496 4.55 3.52

f(×10−2) [495,497] [3.03,6.06] [0.96,6.09]

5 22.9 2.56 0.77

f(×10−1) [22.8,23.0] [0.68,4.45] [5.46,9.91]

The initial points for the test problems and the optimal function value of each problem

are given in the last two columns of Table 1. Normal distribution noise is added to the

gradient evaluations of the above five functions, namely, ξk ∼ N(0, σ2 I), I is the identity

matrix. In our experiments, we choose σ = 0.5. For all algorithms, we choose αk with the

form

αk =
a

k+ 1+ A
. (5.6)

For each test problem, we use the same stability constants a and A for all the algorithms

given in the first two columns in Table 1. The parameters in Algorithm 2.1 and Algorithm

2.2 are the same δ = 0.001, β =min(‖ g̃0‖, 500) and r = 20. Besides, s in Algorithm 2.2 is

given in the third column in Table 1. MATLAB software was used to carry out this study.

For each test problem, we ran each algorithm for 50 times and observed the average

function values after 2000 iterations. The results are listed in Table 2. Under each average

function value, the approximate 90% confidence interval is also taken down. To avoid the

table is too broad, the power of the end points of each interval is not listed, which is the

same as that of the average function value.

From Table 2, we can see that both Algorithm 2.1 and Algorithm 2.2 perform better than

the RM algorithm especially for problem 4. We can see more clearly of the performance
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Figure 1: The mean fun
tion values of three algorithms during 2000 iterations over 50 independent runswith σ = 0.5 for problem 4.
of the three algorithms for problem 4 in Figure 1. Algorithm 2.2 performs best for all 5

problems. Although the gain for each problem is not much, we think that Algorithm 2.1

and Algorithm 2.2 are promising alternatives of the RM algorithm.

5.2. Case II

In this part, we mainly consider the case that only noisy measurements of the function

value can be used. We compare the SPSA algorithm, Algorithm 2.3 and Algorithm 2.4.

Here, in Algorithm 2.3 and Algorithm 2.4, the γk in d̂k is chosen as in (2.15). We consider

here the skewed quadratic function given by Spall ([8],chap.6) as follows

f (x) = x T BT Bx + 0.1

n
∑

i=1

(Bx)3i + 0.01

n
∑

i=1

(Bx)4i , (5.7)

with n = 10, where (·)i represents the ith component of the argument vector Bx and nB

is an upper triangular matrix of 1’s. The minimum occurs at x∗ = 0 with f (x∗) = 0,

and all runs are initialized at x0 = [1,1, ..., 1]T . Independent identical distributed noiseTable 3: The mean fun
tion values at the terminal 3000 iterations of three algorithms over 50 indepen-dent runs. Approximate 90% 
on�den
e intervals are also shown below.
SPSA Algorithm 2.3 Algorithm 2.4

0.98 0.87 0.62

[0.97,0.99] [0.82,0.93] [0.57,0.68]
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tion values of three algorithms at 3000 iterations over 50 independent runs.
ǫk is added to the measurements of function values and the distribution of the noise is

N(0,0.52). The parameters in the SPSA algorithm is chosen as a = 0.5, A = 1, c = 0.1,

α = 0.602 and γ = 0.101 which are recommended by Spall when αk and ck has the

following forms

αk =
a

(k+ 1+ A)α
, (5.8)

ck =
c

(k+ 1)γ
. (5.9)

The parameter β = min ( f̄1, 500) and δ = 0.001 in Algorithm 2.3 and Algorithm 2.4,

s = 0.001 in Algorithm 2.4. We ran each algorithm for 50 times and observed the average

function values after 3000 iterations. The results are listed in Table 3. Under each average

function value, the approximate 90% confidence interval is also taken down. We can see

more clearly the performance of the three algorithms in Figure 2. From the results, we

think that Algorithm 2.3 and Algorithm 2.4 are also promising alternatives of the SPSA

algorithm.

5.3. Implementations

Though our new frame algorithms have good numerical performance, as is typical in

all stochastic algorithms, the specific implementation details are also important.

Firstly, at each iteration, block ’bad’ steps if the new estimate for x fails a certain

criterion(i.e., set xk+1 = xk in going from k to k+1) such as ‖ g̃(xk+1)‖ > ‖ g̃(xk)‖+m or

| f̃ (xk+1)| > | f̃ (xk)|+m, m might be set about a large positive constant such as 10, 20, 50

etc. Experiments have shown that it can improve our algorithms’ stability (This method is

referred to Spall [12]).
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Secondly, note the best point at every r iteration which is the point that satisfies

x∗k = ar g min
x
{‖ g̃k−r+1‖,‖ g̃k−r+2‖, ...‖ g̃k‖}, (5.10)

when we use Frame I algorithm. When ϕk = 0, we can go back to the best point x∗
k
, and

then go towards the direction − g̃x∗
k

instead of going back to xk and towards the direction

− g̃xk
. Experiments have shown that it can improve the performance sometimes.

Thirdly, in a high noise environment, it may be desirable to compute and average

several g̃k or f̃k.

At last, different choice of d̃k may result in very different performance, so we should

choose suitable d̃k according to different problems. At the same time, if d̃k is chosen in

(2.10), different choice of γk can have different behavior.

6. Conclusions

In this paper, in order to accelerate the convergence of stochastic approximation algo-

rithm, two useful frame algorithms with adaptive directions are proposed. Either of the

two frame algorithms can produce different algorithms by different choice of d̃k. We give

suitable choice of d̃k in (2.10). We also prove the almost surely convergence property un-

der some assumptions for the two frame algorithms. Limited numerical experiments show

that they can perform better than the RM algorithm. We also propose two difference forms

frame algorithms when there are only noisy function values can be used. The numerical

experiments also show that for the test problem the two difference forms frame algorithms

outperform SPSA algorithm. They are promising. We expect that these algorithms are

useful in some other circumstances.
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