arrow
Volume 15, Issue 5
A Frequency Determination Method for Digitized NMR Signals

H. Yan, K. Li, R. Khatiwada, E. Smith, W. M. Snow, C. B. Fu, P.-H. Chu, H. Gao & W. Zheng

Commun. Comput. Phys., 15 (2014), pp. 1343-1351.

Published online: 2014-05

Export citation
  • Abstract

We present a high precision frequency determination method for digitized NMR FID signals. The method employs high precision numerical integration rather than simple summation as in many other techniques. With no independent knowledge of the other parameters of a NMR FID signal (phase $ϕ$, amplitude $A$, and transverse relaxation time $T_2$) this method can determine the signal frequency $f_0$ with a precision of 1/(8$π^2$$f^2_0$$T^2_2$) if the observation time $T$ ≫ $T_2$. The method is especially convenient when the detailed shape of the observed FT NMR spectrum is not well defined. When $T_2$ is +∞ and the signal becomes pure sinusoidal, the precision of the method is 3/(2$π^2$$f^2_0$$T_2$) which is one order more precise than the ±1 count error induced precision of a typical frequency counter. Analysis of this method shows that the integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and no extra signal filters are needed. For a pure sinusoidal signal we find from numerical simulations that the noise-induced error in this method reaches the Cramer-Rao Lower Band (CRLB) on frequency determination. For the damped sinusoidal case of most interest, the noise-induced error is found to be within a factor of 2 of CRLB when the measurement time $T$ is 2 or 3 times larger than $T_2$. We discuss possible improvements for the precision of this method.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CiCP-15-1343, author = {}, title = {A Frequency Determination Method for Digitized NMR Signals}, journal = {Communications in Computational Physics}, year = {2014}, volume = {15}, number = {5}, pages = {1343--1351}, abstract = {

We present a high precision frequency determination method for digitized NMR FID signals. The method employs high precision numerical integration rather than simple summation as in many other techniques. With no independent knowledge of the other parameters of a NMR FID signal (phase $ϕ$, amplitude $A$, and transverse relaxation time $T_2$) this method can determine the signal frequency $f_0$ with a precision of 1/(8$π^2$$f^2_0$$T^2_2$) if the observation time $T$ ≫ $T_2$. The method is especially convenient when the detailed shape of the observed FT NMR spectrum is not well defined. When $T_2$ is +∞ and the signal becomes pure sinusoidal, the precision of the method is 3/(2$π^2$$f^2_0$$T_2$) which is one order more precise than the ±1 count error induced precision of a typical frequency counter. Analysis of this method shows that the integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and no extra signal filters are needed. For a pure sinusoidal signal we find from numerical simulations that the noise-induced error in this method reaches the Cramer-Rao Lower Band (CRLB) on frequency determination. For the damped sinusoidal case of most interest, the noise-induced error is found to be within a factor of 2 of CRLB when the measurement time $T$ is 2 or 3 times larger than $T_2$. We discuss possible improvements for the precision of this method.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.110613.270913a}, url = {http://global-sci.org/intro/article_detail/cicp/7140.html} }
TY - JOUR T1 - A Frequency Determination Method for Digitized NMR Signals JO - Communications in Computational Physics VL - 5 SP - 1343 EP - 1351 PY - 2014 DA - 2014/05 SN - 15 DO - http://doi.org/10.4208/cicp.110613.270913a UR - https://global-sci.org/intro/article_detail/cicp/7140.html KW - AB -

We present a high precision frequency determination method for digitized NMR FID signals. The method employs high precision numerical integration rather than simple summation as in many other techniques. With no independent knowledge of the other parameters of a NMR FID signal (phase $ϕ$, amplitude $A$, and transverse relaxation time $T_2$) this method can determine the signal frequency $f_0$ with a precision of 1/(8$π^2$$f^2_0$$T^2_2$) if the observation time $T$ ≫ $T_2$. The method is especially convenient when the detailed shape of the observed FT NMR spectrum is not well defined. When $T_2$ is +∞ and the signal becomes pure sinusoidal, the precision of the method is 3/(2$π^2$$f^2_0$$T_2$) which is one order more precise than the ±1 count error induced precision of a typical frequency counter. Analysis of this method shows that the integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and no extra signal filters are needed. For a pure sinusoidal signal we find from numerical simulations that the noise-induced error in this method reaches the Cramer-Rao Lower Band (CRLB) on frequency determination. For the damped sinusoidal case of most interest, the noise-induced error is found to be within a factor of 2 of CRLB when the measurement time $T$ is 2 or 3 times larger than $T_2$. We discuss possible improvements for the precision of this method.

H. Yan, K. Li, R. Khatiwada, E. Smith, W. M. Snow, C. B. Fu, P.-H. Chu, H. Gao & W. Zheng. (2020). A Frequency Determination Method for Digitized NMR Signals. Communications in Computational Physics. 15 (5). 1343-1351. doi:10.4208/cicp.110613.270913a
Copy to clipboard
The citation has been copied to your clipboard